Alternating pattern orientation or phase can increase the amplitude of the visual evoked potential

•No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Vision research (Oxford) Ročník 231; s. 108609
Hlavní autoři: Ara, Jawshan, Tavakkoli, Alireza, Crognale, Michael A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.06.2025
Témata:
ISSN:0042-6989, 1878-5646, 1878-5646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for the L-M but not for the S pathway. Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation’s effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a “reversing” onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.
AbstractList Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.
•No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for the L-M but not for the S pathway. Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation’s effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a “reversing” onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.
Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.
ArticleNumber 108609
Author Crognale, Michael A.
Tavakkoli, Alireza
Ara, Jawshan
Author_xml – sequence: 1
  givenname: Jawshan
  surname: Ara
  fullname: Ara, Jawshan
  email: jara@unr.edu, jawshan@gmail.com
  organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA
– sequence: 2
  givenname: Alireza
  surname: Tavakkoli
  fullname: Tavakkoli, Alireza
  organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA
– sequence: 3
  givenname: Michael A.
  surname: Crognale
  fullname: Crognale, Michael A.
  organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40305940$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFv1DAQhS1URLeFf4CQj1yyHceOY1-QqqotlSpxKWfLcSbUSzYOtrMS_74OKRy5eDxPb55mvgtyNoUJCfnIYM-AyavD_uRTxLSvoW6KpCToN2THVKuqRgp5RnYAoq6kVvqcXKR0AIC2qfU7ci6AQ6MF7Eh3PWaMk81--kFnm9eGhuhxykUL65_OzzYhdXaifnIR1yY_I7XHefR56ZGG4Y9Q9lnsSPEUfmJP55BLiLfje_J2sGPCD6_1kny_u326-Vo9frt_uLl-rBxnPFe2azstHILqB5CsaXgrZKc7tEo6Lru2brSskbUoeyuUY84K3iJYLrRQg-CX5POWO8fwa8GUzdEnh-NoJwxLMpxpxaG8rFg_vVqX7oi9maM_2vjb_OVSDGIzuBhSoTz8szAwK35zMBt-s-I3G_4y9mUbw3LnyWM0yRWUDnsf0WXTB___gBfOupA0
Cites_doi 10.1590/1414-431X20122428
10.1016/0042-6989(93)90010-T
10.1113/jphysiol.2002.033555
10.1007/s10633-020-09780-1
10.1093/brain/57.4.355
10.1016/S0896-6273(00)81036-3
10.1113/jphysiol.1959.sp006308
10.1111/j.1749-6632.1969.tb14007.x
10.1007/s10633-009-9170-0
10.1167/iovs.07-0018
10.1364/JOSAA.10.001818
10.1016/0042-6989(74)90120-5
10.1016/j.cobeha.2019.04.001
10.1016/0013-4694(65)90076-3
10.1038/158540a0
10.1016/j.visres.2011.02.012
10.1167/15.6.4
10.1016/0013-4694(54)90007-3
10.1038/153360a0
10.1126/science.149.3688.1115
10.1016/S0042-6989(00)00021-3
10.1364/JOSAA.14.002595
10.1126/science.aaw5868
10.1016/S0896-6273(00)81037-5
10.1016/S0042-6989(97)00425-2
10.1016/0013-4694(66)90088-5
10.1017/S095252380000239X
10.1136/bjo.73.7.502
10.1016/0042-6989(94)90222-4
10.1167/3.2.5
10.1017/S0952523812000351
10.1111/j.1748-1716.1960.tb01840.x
10.1364/JOSA.69.001183
10.1016/j.knosys.2022.109715
10.1016/S0042-6989(98)00219-3
10.1016/S0896-6273(00)81038-7
10.1113/jphysiol.1983.sp014619
10.1152/jn.1978.41.3.788
10.1038/s41433-021-01614-x
10.1016/0042-6989(90)90102-Q
10.1167/10.12.34
10.1016/0042-6989(91)90169-6
10.1016/0042-6989(73)90237-X
10.1016/0042-6989(91)90111-H
10.1113/jphysiol.1984.sp015498
10.1007/BF01184777
10.1113/jphysiol.2010.188862
10.1038/292543a0
10.1038/86061
10.1016/0042-6989(84)90178-0
10.1017/S0952523808080243
10.1167/2.6.2
10.1113/jphysiol.1984.sp015499
10.1007/s10633-016-9553-y
10.1016/S0166-2236(96)10036-9
10.1016/S0042-6989(99)00098-X
10.1523/JNEUROSCI.0276-22.2022
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.visres.2025.108609
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5646
ExternalDocumentID 40305940
10_1016_j_visres_2025_108609
S0042698925000707
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P30 GM145646
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABDPE
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
H~9
IHE
IXB
J1W
K-O
KOM
L7B
LZ2
M29
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
TEORI
TN5
WUQ
X7M
XOL
XPP
ZGI
ZKB
ZMT
~G-
9DU
AAYXX
ABUFD
ACIEU
ACLOT
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c313t-ab7b94ce08df061553746b9bea86c36b725962e17e6da48c1ca437e0a34948f43
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485133600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0042-6989
1878-5646
IngestDate Fri Oct 03 00:06:40 EDT 2025
Sun Jun 29 01:31:19 EDT 2025
Sat Nov 29 07:55:26 EST 2025
Sat Jun 14 16:51:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Chromatic VEP
Visual pathways
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-ab7b94ce08df061553746b9bea86c36b725962e17e6da48c1ca437e0a34948f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40305940
PQID 3198303191
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3198303191
pubmed_primary_40305940
crossref_primary_10_1016_j_visres_2025_108609
elsevier_sciencedirect_doi_10_1016_j_visres_2025_108609
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Vision research (Oxford)
PublicationTitleAlternate Vision Res
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Norcia, Appelbaum, Ales, Cottereau, Rossion (b0180) 2015; 15
Strasburger, Murray, Remkey (b0270) 1993; 8
Shapley, Kaplan, Soodak (b0240) 1981; 292
Gegenfurtner, Hawken (b0090) 1996; 19
Dougherty, Press, Wandell (b0070) 1999; 24
Epub 2016 Jul 21. PMID: 27443562.
Li, Todo, Tang, Tang (b0150) 2022; 254
Gerth, Delahunt, Crognale, Werner (b0100) 2003; 3
Jones, Keck (b0130) 1978; 17
Adrian (b0005) 1944; 153
Hamilton, Bach, Heinrich, Hoffmann, Odom, McCulloch, Thompson (b0105) 2021; 142
Rabin, Switkes, Crognale, Schneck, Adams (b0200) 1994; 34
Schiller, Malpeli (b0225) 1978; 41
Barboni, Gomes, Souza, Rodrigues, Ventura, Silveira (b0015) 2013; 46
Garg, Li, Rashid, Callaway (b0085) 2019; 364
Souza, Gomes, Lacerda, Saito, Filho, Silveira (b0250) 2008; 25
Regan, Spekreijse (b0215) 1974; 14
Robson, Kulikowski (b0220) 2012; 29
Derrington, Krauskopf, Lennie (b0060) 1984; 357
Crognale, Switkes, Adams (b0040) 1997; 14
Van der Tweel, Spekreijse (b0295) 1969; 156
McDonald, Mannion, Goddard, Clifford (b0170) 2010; 10
Johnson, Hawken, Shapley (b0125) 2001; 4
Highsmith, Crognale (b0115) 2009; 119
Regan (b0205) 1966; 20
1–12. doi:10.1111/j.1748-1716.1960.tb01840.x.
Marmoy, Viswanathan (b0160) 2021; 35
Stockman, Sharpe (b0265) 2000; 40
Derrington, Lennie (b0065) 1984; 357
Friedman, Zhou, von der Heydt (b0080) 2003; 548
Hubel, Wiesel (b0120) 1959; 148
Crognale, Teller, Motulsky, Deeb (b0050) 1998; 38
Hicks, Lee, Vidyasagar (b0110) 1983; 337
Gegenfurtner, Kiper, Beusmans, Carandini, Zaidi, Movshon (b0095) 1994; 11
Kamp A, Sem Jacobsen CW, Storm Van Leeuwen W & van der TWEEL L (1960). Cortical responses to modulated light in the human subject.
MacLeod, Boynton (b0155) 1979; 69
Crognale, Switkes, Rabin, Schneck, Hægerström-Portnoy, Adams (b0045) 1993; 10
Shapley, Hawken (b0235) 2011; 51
Switkes, Crognale (b0275) 1999; 39
Flanagan, Cavanagh, Favreau (b0075) 1990; 30
Nunez, Gordon, Shapley (b0185) 2022; 42
Souza, Gomes, Saito, da Silva, Silveira (b0255) 2007; 48
Murray, Parry, Carden, Kulikowski (b0175) 1987; 1
Parry, Murray, Hadjizenonos (b0195) 1999; 39
Cavanagh, Anstis (b0025) 1991; 31
Chichilnisky, Heeger, Wandell (b0030) 1993; 33
Seidemann, Poirson, Wandell, Newsome (b0230) 1999; 24
Crognale (b0035) 2002; 2
Tobimatsu, Tomoda, Kato (b0285) 1996; 8
Berninger, Arden, Hogg, Frumkes (b0020) 1989; 73
Dawson (b0055) 1954; 6
(1), 1–9.
Van Der Tweel, Lunel (b0290) 1965; 18
Shapley, Nunez, Gordon (b0245) 2019; 30
Adrian, Matthews (b0010) 1934; 57
Walter, Dovey, Shipton (b0300) 1946; 158
Wandell, Poirson, Newsome, Baseler, Boynton, Huk, Gandhi, Sharpe (b0305) 1999; 24
Regan (b0210) 1973; 13
Stockman, MacLeod, DePriest (b0260) 1991; 31
Teller (b0280) 1984; 24
Lee, Sun, Valberg (b0145) 2011; 589
Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., & Tormene, A. P. (2016). International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update).
McCullough (b0165) 1965; 149
Shapley (10.1016/j.visres.2025.108609_b0235) 2011; 51
Derrington (10.1016/j.visres.2025.108609_b0065) 1984; 357
Gegenfurtner (10.1016/j.visres.2025.108609_b0095) 1994; 11
Rabin (10.1016/j.visres.2025.108609_b0200) 1994; 34
Shapley (10.1016/j.visres.2025.108609_b0245) 2019; 30
Crognale (10.1016/j.visres.2025.108609_b0035) 2002; 2
Berninger (10.1016/j.visres.2025.108609_b0020) 1989; 73
Crognale (10.1016/j.visres.2025.108609_b0045) 1993; 10
Schiller (10.1016/j.visres.2025.108609_b0225) 1978; 41
Crognale (10.1016/j.visres.2025.108609_b0040) 1997; 14
Hubel (10.1016/j.visres.2025.108609_b0120) 1959; 148
Barboni (10.1016/j.visres.2025.108609_b0015) 2013; 46
Van Der Tweel (10.1016/j.visres.2025.108609_b0290) 1965; 18
10.1016/j.visres.2025.108609_b0135
Teller (10.1016/j.visres.2025.108609_b0280) 1984; 24
Shapley (10.1016/j.visres.2025.108609_b0240) 1981; 292
Switkes (10.1016/j.visres.2025.108609_b0275) 1999; 39
Flanagan (10.1016/j.visres.2025.108609_b0075) 1990; 30
Stockman (10.1016/j.visres.2025.108609_b0260) 1991; 31
Derrington (10.1016/j.visres.2025.108609_b0060) 1984; 357
Johnson (10.1016/j.visres.2025.108609_b0125) 2001; 4
Regan (10.1016/j.visres.2025.108609_b0215) 1974; 14
Hicks (10.1016/j.visres.2025.108609_b0110) 1983; 337
MacLeod (10.1016/j.visres.2025.108609_b0155) 1979; 69
Crognale (10.1016/j.visres.2025.108609_b0050) 1998; 38
Murray (10.1016/j.visres.2025.108609_b0175) 1987; 1
Li (10.1016/j.visres.2025.108609_b0150) 2022; 254
Seidemann (10.1016/j.visres.2025.108609_b0230) 1999; 24
Highsmith (10.1016/j.visres.2025.108609_b0115) 2009; 119
Nunez (10.1016/j.visres.2025.108609_b0185) 2022; 42
Strasburger (10.1016/j.visres.2025.108609_b0270) 1993; 8
Chichilnisky (10.1016/j.visres.2025.108609_b0030) 1993; 33
Tobimatsu (10.1016/j.visres.2025.108609_b0285) 1996; 8
Friedman (10.1016/j.visres.2025.108609_b0080) 2003; 548
Adrian (10.1016/j.visres.2025.108609_b0010) 1934; 57
Dougherty (10.1016/j.visres.2025.108609_b0070) 1999; 24
Lee (10.1016/j.visres.2025.108609_b0145) 2011; 589
Norcia (10.1016/j.visres.2025.108609_b0180) 2015; 15
Gerth (10.1016/j.visres.2025.108609_b0100) 2003; 3
Robson (10.1016/j.visres.2025.108609_b0220) 2012; 29
10.1016/j.visres.2025.108609_b0190
Walter (10.1016/j.visres.2025.108609_b0300) 1946; 158
Regan (10.1016/j.visres.2025.108609_b0205) 1966; 20
Dawson (10.1016/j.visres.2025.108609_b0055) 1954; 6
Van der Tweel (10.1016/j.visres.2025.108609_b0295) 1969; 156
Cavanagh (10.1016/j.visres.2025.108609_b0025) 1991; 31
Marmoy (10.1016/j.visres.2025.108609_b0160) 2021; 35
Gegenfurtner (10.1016/j.visres.2025.108609_b0090) 1996; 19
McCullough (10.1016/j.visres.2025.108609_b0165) 1965; 149
Souza (10.1016/j.visres.2025.108609_b0250) 2008; 25
Adrian (10.1016/j.visres.2025.108609_b0005) 1944; 153
Garg (10.1016/j.visres.2025.108609_b0085) 2019; 364
McDonald (10.1016/j.visres.2025.108609_b0170) 2010; 10
Stockman (10.1016/j.visres.2025.108609_b0265) 2000; 40
Hamilton (10.1016/j.visres.2025.108609_b0105) 2021; 142
Wandell (10.1016/j.visres.2025.108609_b0305) 1999; 24
Parry (10.1016/j.visres.2025.108609_b0195) 1999; 39
Souza (10.1016/j.visres.2025.108609_b0255) 2007; 48
Jones (10.1016/j.visres.2025.108609_b0130) 1978; 17
Regan (10.1016/j.visres.2025.108609_b0210) 1973; 13
References_xml – volume: 30
  start-page: 769
  year: 1990
  end-page: 778
  ident: b0075
  article-title: Independent orientation-selective mechanisms for the cardinal directions of colour space
– volume: 19
  start-page: 394
  year: 1996
  end-page: 401
  ident: b0090
  article-title: Interaction of motion and color in the visual pathways
– reference: 1–12. doi:10.1111/j.1748-1716.1960.tb01840.x.
– volume: 8
  start-page: 211
  year: 1993
  end-page: 234
  ident: b0270
  article-title: Sustained and transient mechanism in the steady-state visual evoked potential: Onset presentation compared to pattern reversal
– volume: 69
  start-page: 1183
  year: 1979
  end-page: 1186
  ident: b0155
  article-title: Chromaticity diagram showing cone excitation by stimuli of equal luminance
– volume: 18
  start-page: 587
  year: 1965
  end-page: 598
  ident: b0290
  article-title: Human visual responses to sinusoidaly modulated light
– volume: 51
  start-page: 701
  year: 2011
  end-page: 717
  ident: b0235
  article-title: Color in the Cortex—single- and double-opponent cells
– volume: 364
  start-page: 1275
  year: 2019
  end-page: 1279
  ident: b0085
  article-title: Color and orientation are jointly coded and spatially organized in primate primary visual cortex
– volume: 149
  start-page: 1115
  year: 1965
  end-page: 1116
  ident: b0165
  article-title: Color Adaptation of Edge-Detectors in the Human Visual System
– volume: 4
  start-page: 409
  year: 2001
  end-page: 416
  ident: b0125
  article-title: The spatial transformation of color in the primary visual cortex of the macaque monkey
– volume: 35
  start-page: 2386
  year: 2021
  end-page: 2405
  ident: b0160
  article-title: Clinical electrophysiology of the optic nerve and retinal ganglion cells
– volume: 119
  start-page: 59
  year: 2009
  end-page: 66
  ident: b0115
  article-title: Changes in chromatic pattern-onset VEP with full-body inversion
– volume: 34
  start-page: 2657
  year: 1994
  end-page: 2671
  ident: b0200
  article-title: Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing
– volume: 158
  start-page: 540
  year: 1946
  end-page: 541
  ident: b0300
  article-title: Analysis of the Electrical Response of the Human Cortex to Photic Stimulation
– volume: 14
  start-page: 89
  year: 1974
  end-page: 95
  ident: b0215
  article-title: Evoked potential indications of colour blindness
– volume: 3
  start-page: 171
  year: 2003
  ident: b0100
  article-title: Topography of the chromatic pattern-onset VEP
– volume: 337
  start-page: 183
  year: 1983
  end-page: 200
  ident: b0110
  article-title: The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings
– volume: 40
  start-page: 1711
  year: 2000
  end-page: 1737
  ident: b0265
  article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype
– volume: 39
  start-page: 1823
  year: 1999
  end-page: 1831
  ident: b0275
  article-title: Comparison of color and luminance contrast: Apples versus oranges?
– volume: 33
  start-page: 2113
  year: 1993
  end-page: 2125
  ident: b0030
  article-title: Functional segregation of color and motion perception examined in motion nulling
– volume: 6
  start-page: 65
  year: 1954
  end-page: 84
  ident: b0055
  article-title: A summation technique for the detection of small evoked potentials
– volume: 24
  start-page: 901
  year: 1999
  end-page: 909
  ident: b0305
  article-title: Color signals in human motion-selective cortex
– volume: 10
  start-page: 1818
  year: 1993
  end-page: 1825
  ident: b0045
  article-title: Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies
– volume: 30
  start-page: 1
  year: 2019
  end-page: 7
  ident: b0245
  article-title: Cortical double-opponent cells and human color perception
– volume: 42
  start-page: 4380
  year: 2022
  end-page: 4393
  ident: b0185
  article-title: Signals from Single-Opponent Cortical Cells in the Human cVEP
– volume: 15
  start-page: 4
  year: 2015
  ident: b0180
  article-title: The steady-state visual evoked potential in vision research: A review
– volume: 39
  start-page: 3491
  year: 1999
  end-page: 3497
  ident: b0195
  article-title: Spatio-temporal tuning of VEPs: Effect of mode of stimulation
– volume: 10
  start-page: 34
  year: 2010
  ident: b0170
  article-title: Orientation-selective chromatic mechanisms in human visual cortex
– volume: 148
  start-page: 574
  year: 1959
  end-page: 591
  ident: b0120
  article-title: Receptive fields of single neurones in the cat’s striate cortex
– volume: 1
  start-page: 231
  year: 1987
  end-page: 244
  ident: b0175
  article-title: Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings
– volume: 57
  start-page: 355
  year: 1934
  end-page: 385
  ident: b0010
  article-title: The Berger rhythm: Potential changes from the occipital lobes in man
– volume: 14
  start-page: 2595
  year: 1997
  end-page: 2607
  ident: b0040
  article-title: Temporal response characteristics of the spatiochromatic visual evoked potential: Nonlinearities and departures from psychophysics
– volume: 24
  start-page: 1233
  year: 1984
  end-page: 1246
  ident: b0280
  article-title: Linking propositions
– volume: 8
  start-page: 241
  year: 1996
  end-page: 243
  ident: b0285
  article-title: Human VEPs to isoluminant chromatic and achromatic sinusoidal gratings: Separation of parvocellular components
– volume: 153
  start-page: 360
  year: 1944
  end-page: 362
  ident: b0005
  article-title: Brain Rhythms*
– volume: 31
  start-page: 189
  year: 1991
  end-page: 208
  ident: b0260
  article-title: The temporal properties of the human short-wave photoreceptors and their associated pathways
– volume: 17
  start-page: 652
  year: 1978
  end-page: 659
  ident: b0130
  article-title: Visual evoked response as a function of grating spatial frequency
– volume: 548
  start-page: 593
  year: 2003
  ident: b0080
  article-title: The coding of uniform colour figures in monkey visual cortex
– reference: Kamp A, Sem Jacobsen CW, Storm Van Leeuwen W & van der TWEEL L (1960). Cortical responses to modulated light in the human subject.
– reference: (1), 1–9.
– volume: 48
  start-page: 3396
  year: 2007
  end-page: 3404
  ident: b0255
  article-title: Spatial Luminance Contrast Sensitivity Measured with Transient VEP: Comparison with Psychophysics and Evidence of Multiple Mechanisms
– reference: Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., & Tormene, A. P. (2016). International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update).
– reference: . Epub 2016 Jul 21. PMID: 27443562.
– volume: 2
  start-page: 2
  year: 2002
  ident: b0035
  article-title: Development, maturation, and aging of chromatic visual pathways: VEP results
– volume: 357
  start-page: 219
  year: 1984
  end-page: 240
  ident: b0065
  article-title: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque
– volume: 25
  start-page: 317
  year: 2008
  end-page: 325
  ident: b0250
  article-title: Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: Contribution of different visual pathways
– volume: 46
  start-page: 154
  year: 2013
  end-page: 163
  ident: b0015
  article-title: Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics
– volume: 73
  start-page: 502
  year: 1989
  end-page: 511
  ident: b0020
  article-title: Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results
– volume: 142
  start-page: 17
  year: 2021
  end-page: 24
  ident: b0105
  article-title: ISCEV extended protocol for VEP methods of estimation of visual acuity
– volume: 29
  start-page: 301
  year: 2012
  end-page: 313
  ident: b0220
  article-title: Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways
– volume: 11
  start-page: 455
  year: 1994
  end-page: 466
  ident: b0095
  article-title: Chromatic properties of neurons in macaque MT
– volume: 13
  start-page: 2381
  year: 1973
  end-page: 2402
  ident: b0210
  article-title: Evoked potentials specific to spatial patterns of luminance and colour
– volume: 254
  year: 2022
  ident: b0150
  article-title: The mechanism of orientation detection based on color-orientation jointly selective cells
– volume: 24
  start-page: 911
  year: 1999
  end-page: 917
  ident: b0230
  article-title: Color Signals in Area MT of the Macaque Monkey
– volume: 292
  start-page: 543
  year: 1981
  end-page: 545
  ident: b0240
  article-title: Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque
– volume: 20
  start-page: 238
  year: 1966
  end-page: 248
  ident: b0205
  article-title: Some characteristics of average steady-state and transient responses evoked by modulated light
– volume: 357
  start-page: 241
  year: 1984
  end-page: 265
  ident: b0060
  article-title: Chromatic mechanisms in lateral geniculate nucleus of macaque
– volume: 38
  start-page: 3377
  year: 1998
  end-page: 3385
  ident: b0050
  article-title: Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies
– volume: 24
  start-page: 893
  year: 1999
  end-page: 899
  ident: b0070
  article-title: Perceived speed of colored stimuli
– volume: 41
  start-page: 788
  year: 1978
  end-page: 797
  ident: b0225
  article-title: Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey
– volume: 31
  start-page: 2109
  year: 1991
  end-page: 2148
  ident: b0025
  article-title: The contribution of color to motion in normal and color-deficient observers
– volume: 589
  start-page: 59
  year: 2011
  end-page: 73
  ident: b0145
  article-title: Segregation of chromatic and luminance signals using a novel grating stimulus
– volume: 156
  start-page: 678
  year: 1969
  end-page: 695
  ident: b0295
  article-title: Signal transport and rectification in the human evoked-response system
– volume: 46
  start-page: 154
  year: 2013
  ident: 10.1016/j.visres.2025.108609_b0015
  article-title: Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics
  publication-title: Braz J Med Biol Res
  doi: 10.1590/1414-431X20122428
– volume: 33
  start-page: 2113
  year: 1993
  ident: 10.1016/j.visres.2025.108609_b0030
  article-title: Functional segregation of color and motion perception examined in motion nulling
  publication-title: Vision Research
  doi: 10.1016/0042-6989(93)90010-T
– volume: 548
  start-page: 593
  year: 2003
  ident: 10.1016/j.visres.2025.108609_b0080
  article-title: The coding of uniform colour figures in monkey visual cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2002.033555
– volume: 142
  start-page: 17
  year: 2021
  ident: 10.1016/j.visres.2025.108609_b0105
  article-title: ISCEV extended protocol for VEP methods of estimation of visual acuity
  publication-title: Doc Ophthalmol
  doi: 10.1007/s10633-020-09780-1
– volume: 57
  start-page: 355
  year: 1934
  ident: 10.1016/j.visres.2025.108609_b0010
  article-title: The Berger rhythm: Potential changes from the occipital lobes in man
  publication-title: Brain: A Journal of Neurology
  doi: 10.1093/brain/57.4.355
– volume: 24
  start-page: 893
  year: 1999
  ident: 10.1016/j.visres.2025.108609_b0070
  article-title: Perceived speed of colored stimuli
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81036-3
– volume: 148
  start-page: 574
  year: 1959
  ident: 10.1016/j.visres.2025.108609_b0120
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 156
  start-page: 678
  year: 1969
  ident: 10.1016/j.visres.2025.108609_b0295
  article-title: Signal transport and rectification in the human evoked-response system
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1969.tb14007.x
– volume: 119
  start-page: 59
  year: 2009
  ident: 10.1016/j.visres.2025.108609_b0115
  article-title: Changes in chromatic pattern-onset VEP with full-body inversion
  publication-title: Doc Ophthalmol
  doi: 10.1007/s10633-009-9170-0
– volume: 48
  start-page: 3396
  year: 2007
  ident: 10.1016/j.visres.2025.108609_b0255
  article-title: Spatial Luminance Contrast Sensitivity Measured with Transient VEP: Comparison with Psychophysics and Evidence of Multiple Mechanisms
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.07-0018
– volume: 10
  start-page: 1818
  year: 1993
  ident: 10.1016/j.visres.2025.108609_b0045
  article-title: Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies
  publication-title: Journal of Optics Soc Am A, JOSAA
  doi: 10.1364/JOSAA.10.001818
– volume: 8
  start-page: 211
  year: 1993
  ident: 10.1016/j.visres.2025.108609_b0270
  article-title: Sustained and transient mechanism in the steady-state visual evoked potential: Onset presentation compared to pattern reversal
  publication-title: Clin Vision Sci
– volume: 14
  start-page: 89
  year: 1974
  ident: 10.1016/j.visres.2025.108609_b0215
  article-title: Evoked potential indications of colour blindness
  publication-title: Vision Research
  doi: 10.1016/0042-6989(74)90120-5
– volume: 30
  start-page: 1
  year: 2019
  ident: 10.1016/j.visres.2025.108609_b0245
  article-title: Cortical double-opponent cells and human color perception
  publication-title: Current Opinion in Behavioral Sciences
  doi: 10.1016/j.cobeha.2019.04.001
– volume: 18
  start-page: 587
  year: 1965
  ident: 10.1016/j.visres.2025.108609_b0290
  article-title: Human visual responses to sinusoidaly modulated light
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(65)90076-3
– volume: 158
  start-page: 540
  year: 1946
  ident: 10.1016/j.visres.2025.108609_b0300
  article-title: Analysis of the Electrical Response of the Human Cortex to Photic Stimulation
  publication-title: Nature
  doi: 10.1038/158540a0
– volume: 51
  start-page: 701
  year: 2011
  ident: 10.1016/j.visres.2025.108609_b0235
  article-title: Color in the Cortex—single- and double-opponent cells
  publication-title: Vision Research
  doi: 10.1016/j.visres.2011.02.012
– volume: 15
  start-page: 4
  year: 2015
  ident: 10.1016/j.visres.2025.108609_b0180
  article-title: The steady-state visual evoked potential in vision research: A review
  publication-title: Journal of Vision
  doi: 10.1167/15.6.4
– volume: 6
  start-page: 65
  year: 1954
  ident: 10.1016/j.visres.2025.108609_b0055
  article-title: A summation technique for the detection of small evoked potentials
  publication-title: Electroencephalography & Clinical Neurophysiology
  doi: 10.1016/0013-4694(54)90007-3
– volume: 153
  start-page: 360
  year: 1944
  ident: 10.1016/j.visres.2025.108609_b0005
  article-title: Brain Rhythms*
  publication-title: Nature
  doi: 10.1038/153360a0
– volume: 149
  start-page: 1115
  year: 1965
  ident: 10.1016/j.visres.2025.108609_b0165
  article-title: Color Adaptation of Edge-Detectors in the Human Visual System
  publication-title: Science
  doi: 10.1126/science.149.3688.1115
– volume: 40
  start-page: 1711
  year: 2000
  ident: 10.1016/j.visres.2025.108609_b0265
  article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(00)00021-3
– volume: 14
  start-page: 2595
  year: 1997
  ident: 10.1016/j.visres.2025.108609_b0040
  article-title: Temporal response characteristics of the spatiochromatic visual evoked potential: Nonlinearities and departures from psychophysics
  publication-title: Journal of Optics Soc Am A, JOSAA
  doi: 10.1364/JOSAA.14.002595
– volume: 364
  start-page: 1275
  year: 2019
  ident: 10.1016/j.visres.2025.108609_b0085
  article-title: Color and orientation are jointly coded and spatially organized in primate primary visual cortex
  publication-title: Science
  doi: 10.1126/science.aaw5868
– volume: 24
  start-page: 901
  year: 1999
  ident: 10.1016/j.visres.2025.108609_b0305
  article-title: Color signals in human motion-selective cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81037-5
– volume: 38
  start-page: 3377
  year: 1998
  ident: 10.1016/j.visres.2025.108609_b0050
  article-title: Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(97)00425-2
– volume: 20
  start-page: 238
  year: 1966
  ident: 10.1016/j.visres.2025.108609_b0205
  article-title: Some characteristics of average steady-state and transient responses evoked by modulated light
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(66)90088-5
– volume: 11
  start-page: 455
  year: 1994
  ident: 10.1016/j.visres.2025.108609_b0095
  article-title: Chromatic properties of neurons in macaque MT
  publication-title: Vis Neurosci
  doi: 10.1017/S095252380000239X
– volume: 73
  start-page: 502
  year: 1989
  ident: 10.1016/j.visres.2025.108609_b0020
  article-title: Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.73.7.502
– volume: 34
  start-page: 2657
  year: 1994
  ident: 10.1016/j.visres.2025.108609_b0200
  article-title: Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing
  publication-title: Vision Research
  doi: 10.1016/0042-6989(94)90222-4
– volume: 3
  start-page: 171
  year: 2003
  ident: 10.1016/j.visres.2025.108609_b0100
  article-title: Topography of the chromatic pattern-onset VEP
  publication-title: Journal of vision
  doi: 10.1167/3.2.5
– volume: 29
  start-page: 301
  year: 2012
  ident: 10.1016/j.visres.2025.108609_b0220
  article-title: Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways
  publication-title: Visual Neuroscience
  doi: 10.1017/S0952523812000351
– ident: 10.1016/j.visres.2025.108609_b0135
  doi: 10.1111/j.1748-1716.1960.tb01840.x
– volume: 69
  start-page: 1183
  year: 1979
  ident: 10.1016/j.visres.2025.108609_b0155
  article-title: Chromaticity diagram showing cone excitation by stimuli of equal luminance
  publication-title: Journal of Optics Soc Am, JOSA
  doi: 10.1364/JOSA.69.001183
– volume: 254
  year: 2022
  ident: 10.1016/j.visres.2025.108609_b0150
  article-title: The mechanism of orientation detection based on color-orientation jointly selective cells
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109715
– volume: 39
  start-page: 1823
  year: 1999
  ident: 10.1016/j.visres.2025.108609_b0275
  article-title: Comparison of color and luminance contrast: Apples versus oranges?
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(98)00219-3
– volume: 24
  start-page: 911
  year: 1999
  ident: 10.1016/j.visres.2025.108609_b0230
  article-title: Color Signals in Area MT of the Macaque Monkey
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81038-7
– volume: 337
  start-page: 183
  year: 1983
  ident: 10.1016/j.visres.2025.108609_b0110
  article-title: The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1983.sp014619
– volume: 41
  start-page: 788
  year: 1978
  ident: 10.1016/j.visres.2025.108609_b0225
  article-title: Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1978.41.3.788
– volume: 35
  start-page: 2386
  year: 2021
  ident: 10.1016/j.visres.2025.108609_b0160
  article-title: Clinical electrophysiology of the optic nerve and retinal ganglion cells
  publication-title: Eye
  doi: 10.1038/s41433-021-01614-x
– volume: 30
  start-page: 769
  year: 1990
  ident: 10.1016/j.visres.2025.108609_b0075
  article-title: Independent orientation-selective mechanisms for the cardinal directions of colour space
  publication-title: Vision Research
  doi: 10.1016/0042-6989(90)90102-Q
– volume: 10
  start-page: 34
  year: 2010
  ident: 10.1016/j.visres.2025.108609_b0170
  article-title: Orientation-selective chromatic mechanisms in human visual cortex
  publication-title: Journal of Vision
  doi: 10.1167/10.12.34
– volume: 31
  start-page: 2109
  year: 1991
  ident: 10.1016/j.visres.2025.108609_b0025
  article-title: The contribution of color to motion in normal and color-deficient observers
  publication-title: Vision Research
  doi: 10.1016/0042-6989(91)90169-6
– volume: 13
  start-page: 2381
  year: 1973
  ident: 10.1016/j.visres.2025.108609_b0210
  article-title: Evoked potentials specific to spatial patterns of luminance and colour
  publication-title: Vision Research
  doi: 10.1016/0042-6989(73)90237-X
– volume: 31
  start-page: 189
  year: 1991
  ident: 10.1016/j.visres.2025.108609_b0260
  article-title: The temporal properties of the human short-wave photoreceptors and their associated pathways
  publication-title: Vision Research
  doi: 10.1016/0042-6989(91)90111-H
– volume: 357
  start-page: 219
  year: 1984
  ident: 10.1016/j.visres.2025.108609_b0065
  article-title: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1984.sp015498
– volume: 8
  start-page: 241
  year: 1996
  ident: 10.1016/j.visres.2025.108609_b0285
  article-title: Human VEPs to isoluminant chromatic and achromatic sinusoidal gratings: Separation of parvocellular components
  publication-title: Brain Topogr
  doi: 10.1007/BF01184777
– volume: 589
  start-page: 59
  year: 2011
  ident: 10.1016/j.visres.2025.108609_b0145
  article-title: Segregation of chromatic and luminance signals using a novel grating stimulus
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2010.188862
– volume: 1
  start-page: 231
  year: 1987
  ident: 10.1016/j.visres.2025.108609_b0175
  article-title: Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings
  publication-title: Clinical vision sciences
– volume: 292
  start-page: 543
  year: 1981
  ident: 10.1016/j.visres.2025.108609_b0240
  article-title: Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque
  publication-title: Nature
  doi: 10.1038/292543a0
– volume: 4
  start-page: 409
  year: 2001
  ident: 10.1016/j.visres.2025.108609_b0125
  article-title: The spatial transformation of color in the primary visual cortex of the macaque monkey
  publication-title: Nat Neurosci
  doi: 10.1038/86061
– volume: 24
  start-page: 1233
  year: 1984
  ident: 10.1016/j.visres.2025.108609_b0280
  article-title: Linking propositions
  publication-title: Vision Research
  doi: 10.1016/0042-6989(84)90178-0
– volume: 17
  start-page: 652
  year: 1978
  ident: 10.1016/j.visres.2025.108609_b0130
  article-title: Visual evoked response as a function of grating spatial frequency
  publication-title: Invest Ophthalmol Vis Sci
– volume: 25
  start-page: 317
  year: 2008
  ident: 10.1016/j.visres.2025.108609_b0250
  article-title: Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: Contribution of different visual pathways
  publication-title: Visual Neuroscience
  doi: 10.1017/S0952523808080243
– volume: 2
  start-page: 2
  year: 2002
  ident: 10.1016/j.visres.2025.108609_b0035
  article-title: Development, maturation, and aging of chromatic visual pathways: VEP results
  publication-title: Journal of Vision
  doi: 10.1167/2.6.2
– volume: 357
  start-page: 241
  year: 1984
  ident: 10.1016/j.visres.2025.108609_b0060
  article-title: Chromatic mechanisms in lateral geniculate nucleus of macaque
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1984.sp015499
– ident: 10.1016/j.visres.2025.108609_b0190
  doi: 10.1007/s10633-016-9553-y
– volume: 19
  start-page: 394
  year: 1996
  ident: 10.1016/j.visres.2025.108609_b0090
  article-title: Interaction of motion and color in the visual pathways
  publication-title: Trends in Neurosciences
  doi: 10.1016/S0166-2236(96)10036-9
– volume: 39
  start-page: 3491
  year: 1999
  ident: 10.1016/j.visres.2025.108609_b0195
  article-title: Spatio-temporal tuning of VEPs: Effect of mode of stimulation
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(99)00098-X
– volume: 42
  start-page: 4380
  year: 2022
  ident: 10.1016/j.visres.2025.108609_b0185
  article-title: Signals from Single-Opponent Cortical Cells in the Human cVEP
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0276-22.2022
SSID ssj0007529
Score 2.4672017
Snippet •No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of...
Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108609
SubjectTerms Adult
Chromatic VEP
Color Perception - physiology
Contrast Sensitivity - physiology
Electroencephalography
Evoked Potentials, Visual - physiology
Female
Humans
Male
Pattern Recognition, Visual - physiology
Photic Stimulation - methods
Visual pathways
Young Adult
Title Alternating pattern orientation or phase can increase the amplitude of the visual evoked potential
URI https://dx.doi.org/10.1016/j.visres.2025.108609
https://www.ncbi.nlm.nih.gov/pubmed/40305940
https://www.proquest.com/docview/3198303191
Volume 231
WOSCitedRecordID wos001485133600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1878-5646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007529
  issn: 0042-6989
  databaseCode: AIEXJ
  dateStart: 20240610
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgQ4gXBBsf5WMyEuKlypTGThw_RmgIEExIFNS3yHGctetIqrYrhb-eO9tJKk0THxIvkWs1dpL75e7s_O6OkJfGjJSpZBjoMikCrjgLUp3qQCLvL6kqmRibXf-DOD1NJxP5yfN0V7acgKjrdLuVi_8qaugDYWPo7F-IuxsUOqANQocjiB2OfyT47MLv8WGYuc2eCR7hcuZjjLA9XEzVyvK9hrMavUb4gf6nQnY55rpsiQOb2QqjS8ymmYNfumjWSC3y83uH9quNTR_6nEFTm7106wjz_RbD0hNyv6-mPRjHaqPm88aFZ2cXoHp_9qyhZXNWt0xnR-wfZse7OxRR3DOp3LZZGzrT85SsKuZRgNUrd1Vx5CzCFbXudhjOj-G24X6OcRJbIiqUvRnryIWf7boQRo6w2IPAVAP7kYgl6Lz97N3J5H1nqUUcyTZECU9oQyst_-_qXNe5LtctTayLMr5H7vq1Bc0cJu6TG6Y-IIcZYKH59oO-opbtaz-jHJDbHz2p4pAUO4ihHjF0BzHQphYxFBBDW8RQAAjtEEObynY4xFCHGNoh5gH58uZk_Ppt4EtvBJqN2DpQhSgk1yZMywqd3pgJnhSyMCpNNEsKEWHVJjMSJikVT_VIw1suTKgw21FacfaQ7NVNbR4TylisuaqKsDSal0VclCUMwFiFlQhkogckaJ9qvnAZVvKWenieOynkKIXcSWFARPvoc-8lOu8vB7T85swXraRyUKL4ZUzVprlc5WCHUobxfKMBeeRE2F0LR5Moefjkn-d9Su70r8UzsrdeXprn5JberOGvR-SmmKRHHpq_APVxpvY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+pattern+orientation+or+phase+can+increase+the+amplitude+of+the+visual+evoked+potential&rft.jtitle=Vision+research+%28Oxford%29&rft.au=Ara%2C+Jawshan&rft.au=Tavakkoli%2C+Alireza&rft.au=Crognale%2C+Michael+A.&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0042-6989&rft.volume=231&rft_id=info:doi/10.1016%2Fj.visres.2025.108609&rft.externalDocID=S0042698925000707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6989&client=summon