Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images

Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua Jg. 77; H. 1; S. 1081 - 1101
1. Verfasser: Akram, Arslan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Henderson Tech Science Press 2023
Schlagworte:
ISSN:1546-2226, 1546-2218, 1546-2226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this technique. The proposed method comprises converting histopathological images from Red Green Blue (RGB) to Chrominance of Blue and Chrominance of Red (YCBCR), utilizing a wavelet transform to extract texture information, and classifying the images with Extreme Gradient Boosting (XGBOOST). Furthermore, SMOTE has been used for resampling as the dataset has imbalanced samples. The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27% on the BreakHis 1.0 40X dataset, 98.95% on the BreakHis 1.0 100X dataset, 98.92% on the BreakHis 1.0 200X dataset, 98.78% on the BreakHis 1.0 400X dataset, and 98.80% on the combined dataset. The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.
AbstractList Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this technique. The proposed method comprises converting histopathological images from Red Green Blue (RGB) to Chrominance of Blue and Chrominance of Red (YCBCR), utilizing a wavelet transform to extract texture information, and classifying the images with Extreme Gradient Boosting (XGBOOST). Furthermore, SMOTE has been used for resampling as the dataset has imbalanced samples. The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27% on the BreakHis 1.0 40X dataset, 98.95% on the BreakHis 1.0 100X dataset, 98.92% on the BreakHis 1.0 200X dataset, 98.78% on the BreakHis 1.0 400X dataset, and 98.80% on the combined dataset. The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.
Author Akram, Arslan
Author_xml – sequence: 1
  givenname: Arslan
  surname: Akram
  fullname: Akram, Arslan
BookMark eNp1kM1LAzEQxYNUsFbvHgOet-Zjd90ctbS2UBCkpceQTSbblHZTkxSsf71b60EE5_KG4b0Z5neNeq1vAaE7SoaclSR_0Ds9ZITxIclpUVQXqE-LvMwYY2XvV3-FrmPcEMJLLkgfrd5A-6Z1n65t8HMAFRMeqVZDwMt4mo1NA9kKXLNOYPACPtIhAJ6AOmnE3uKpi8nvVVr7rW-OeLZTDcQbdGnVNsLtjw7QcjJejKbZ_PVlNnqaZ5pTnjJRm0LnprKgK92VEoJZxQ2tAEhN60poURdCPxpiwXSf1SWxubXKVMBKUfABuj_v3Qf_foCY5MYfQtudlJwKUXGaC9K5yNmlg48xgJX74HYqHCUl8huf7PDJEz55xtdFyj8R7ZJKzrcpKLf9P_gFKcB4ZA
CitedBy_id crossref_primary_10_2139_ssrn_5230103
crossref_primary_10_3390_diagnostics15050582
crossref_primary_10_1371_journal_pone_0304995
crossref_primary_10_1007_s12672_025_03501_3
crossref_primary_10_32604_cmc_2023_040512
crossref_primary_10_1111_1556_4029_70143
crossref_primary_10_1007_s13369_025_10528_9
Cites_doi 10.1080/03772063.2019.1583610
10.5815/ijigsp.2012.10.05
10.1613/jair.953
10.1108/WJE-09-2020-0456
10.1016/j.iswa.2022.200066
10.1155/2022/8904768
10.1109/TMI.2016.2525803
10.1038/s41598-022-19112-9
10.3390/s20164373
10.1038/srep46450
10.1093/eurpub/ckz216
10.1155/2023/4597445
10.1002/ima.22465
10.3390/math10214109
10.1093/bioinformatics/btac267
10.1080/23808993.2019.1585805
10.1016/j.ipm.2020.102439
10.1016/j.icte.2021.11.010
10.32604/cmc.2023.032005
10.3390/app13010156
10.17762/ijritcc.v10i4.5532
10.1016/j.bspc.2021.103212
10.1155/2021/8396438
10.1371/journal.pone.0267955
10.1166/jmihi.2019.2648
10.32604/cmc.2023.035287
10.1016/j.media.2004.06.007
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.041558
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1101
ExternalDocumentID 10_32604_cmc_2023_041558
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-9bd5c4d8fec8cccca992fa3d18ee0b1b89c9b59c7d0fed041b60f4ffad8e26953
IEDL.DBID BENPR
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001105875700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:07:20 EDT 2025
Tue Nov 18 20:48:39 EST 2025
Sat Nov 29 08:12:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-9bd5c4d8fec8cccca992fa3d18ee0b1b89c9b59c7d0fed041b60f4ffad8e26953
Notes correction
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199831490?pq-origsite=%requestingapplication%
PQID 3199831490
PQPubID 2048737
PageCount 21
ParticipantIDs proquest_journals_3199831490
crossref_primary_10_32604_cmc_2023_041558
crossref_citationtrail_10_32604_cmc_2023_041558
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Zhang (ref17) 2019; 9
Seo (ref24) 2022; 38
Hao (ref26) 2022; 17
Stephen (ref15) 2023; 2023
Rehman (ref27) 2022; 71
Mustaqeem (ref32) 2012; 4
Parekh (ref12) 2019; 4
Rashid (ref4) 2023; 74
Sharma (ref35) 2022; 8
Tummala (ref14) 2022; 10
Alqudah (ref22) 2022; 68
Spanhol (ref29) 2016
Chu (ref5) 2023; 75
Hameed (ref10) 2020; 20
Zhang (ref21) 2021; 58
Mattiuzzi (ref1) 2020; 30
Akram (ref7) 2022; 19
Wetstein (ref18) 2022; 12
Chawla (ref30) 2002; 16
Wakili (ref19) 2022; 2022
Clement (ref23) 2023; 13
Xie (ref2) 2021; 2021
Prastawa (ref33) 2004; 8
Rakhlin (ref11) 2018; 15
Akram (ref6) 2022; 41
Wang (ref8) 2017
Mohanaiah (ref31) 2013; 3
Cruz-Roa (ref3) 2017; 7
Cireşan (ref9) 2013; 16
Saturi (ref25) 2022; 103
Sirinukunwattana (ref13) 2016; 35
Saxena (ref34) 2021; 31
Rao (ref16) 2021
Kadhim (ref20) 2022; 10
Joseph (ref28) 2022; 14
References_xml – volume: 68
  start-page: 59
  year: 2022
  ident: ref22
  article-title: Sliding window based support vector machine system for classification of breast cancer using histopathological microscopic images
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2019.1583610
– volume: 4
  start-page: 34
  year: 2012
  ident: ref32
  article-title: An efficient brain tumor detection algorithm using watershed & thresholding based segmentation
  publication-title: International Journal of Image, Graphics and Signal Processing
  doi: 10.5815/ijigsp.2012.10.05
– volume: 16
  start-page: 321
  year: 2002
  ident: ref30
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– start-page: 2097
  year: 2017
  ident: ref8
  article-title: ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– volume: 19
  start-page: 459
  year: 2022
  ident: ref7
  article-title: Image splicing detection using discriminative robust local binary pattern and support vector machine
  publication-title: World Journal of Engineering
  doi: 10.1108/WJE-09-2020-0456
– volume: 14
  start-page: 200066
  year: 2022
  ident: ref28
  article-title: Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer)
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2022.200066
– volume: 15
  start-page: 737
  year: 2018
  ident: ref11
  article-title: Deep convolutional neural networks for breast cancer histology image analysis
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref19
  article-title: Classification of breast cancer histopathological images using DenseNet and transfer learning
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2022/8904768
– volume: 35
  start-page: 1196
  year: 2016
  ident: ref13
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 12
  start-page: 15102
  year: 2022
  ident: ref18
  article-title: Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-19112-9
– volume: 20
  start-page: 43
  year: 2020
  ident: ref10
  article-title: Breast cancer histopathology image classification using an ensemble of deep learning models
  publication-title: Sensors
  doi: 10.3390/s20164373
– volume: 7
  start-page: 1
  year: 2017
  ident: ref3
  article-title: Accurate and reproducible invasive breast cancer detection in whole-slide images: A deep learning approach for quantifying tumor extent
  publication-title: Scientific Reports
  doi: 10.1038/srep46450
– volume: 30
  start-page: 1026
  year: 2020
  ident: ref1
  article-title: Cancer statistics: A comparison between World Health Organization (WHO) and global burden of disease (GBD)
  publication-title: European Journal of Public Health
  doi: 10.1093/eurpub/ckz216
– volume: 2023
  start-page: 1
  year: 2023
  ident: ref15
  article-title: Using deep learning with bayesian-gaussian inspired convolutional neural architectural search for cancer recognition and classification from histopathological image frames
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2023/4597445
– volume: 31
  start-page: 168
  year: 2021
  ident: ref34
  article-title: Breast cancer histopathology image classification using kernelized weighted extreme learning machine
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22465
– volume: 10
  start-page: 4109
  year: 2022
  ident: ref14
  article-title: BreaST-Net: Multi-class classification of breast cancer from histopathological images using ensemble of swin transformers
  publication-title: Mathematics
  doi: 10.3390/math10214109
– volume: 38
  start-page: i92
  year: 2022
  ident: ref24
  article-title: Scaling multi-instance support vector machine to breast cancer detection on the BreaKHis dataset
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac267
– start-page: 1
  year: 2021
  ident: ref16
  article-title: Logistic regression versus XGBoost: Machine learning for counterfeit news detection
– volume: 4
  start-page: 59
  year: 2019
  ident: ref12
  article-title: Deep learning and radiomics in precision medicine
  publication-title: Expert Review of Precision Medicine And Drug Development
  doi: 10.1080/23808993.2019.1585805
– volume: 58
  start-page: 102439
  year: 2021
  ident: ref21
  article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102439
– volume: 8
  start-page: 101
  year: 2022
  ident: ref35
  article-title: The Xception model: A potential feature extractor in breast cancer histology images classification
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.11.010
– volume: 74
  start-page: 1235
  year: 2023
  ident: ref4
  article-title: Real-time multiple guava leaf disease detection from a single leaf using hybrid deep learning technique
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2023.032005
– volume: 13
  start-page: 156
  year: 2023
  ident: ref23
  article-title: Multi-class breast cancer histopathological image classification using multi-scale pooled image feature representation (MPIFR) and one-versus-one support vector machines
  publication-title: Applied Sciences
  doi: 10.3390/app13010156
– volume: 3
  start-page: 1
  year: 2013
  ident: ref31
  article-title: Image texture feature extraction using GLCM approach
  publication-title: International Journal of Scientific and Research Publications
– volume: 10
  start-page: 36
  year: 2022
  ident: ref20
  article-title: Evaluation of machine learning models for breast cancer diagnosis via histogram of oriented gradients method and histopathology images
  publication-title: International Journal on Recent and Innovation Trends in Computing and Communication
  doi: 10.17762/ijritcc.v10i4.5532
– volume: 71
  start-page: 103212
  year: 2022
  ident: ref27
  article-title: Novel architecture with selected feature vector for effective classification of mitotic and non-mitotic cells in breast cancer histology images
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103212
– volume: 41
  start-page: 330
  year: 2022
  ident: ref6
  article-title: A robust and scale invariant method for image forgery classification using edge weighted local texture features
  publication-title: Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)
– volume: 16
  start-page: 411
  year: 2013
  ident: ref9
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
– volume: 103
  start-page: 1589
  year: 2022
  ident: ref25
  article-title: Histopathology breast cancer detection and classification using optimized superpixel clustering algorithm and support vector machine
  publication-title: Journal of the Institution of Engineers (India): Series B
– volume: 2021
  start-page: 8396438
  year: 2021
  ident: ref2
  article-title: Interpretable diagnosis for whole-slide melanoma histology images using convolutional neural network
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2021/8396438
– volume: 17
  start-page: e0267955
  year: 2022
  ident: ref26
  article-title: Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0267955
– volume: 9
  start-page: 735
  year: 2019
  ident: ref17
  article-title: Breast cancer histopathological image classification based on convolutional neural networks
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2019.2648
– volume: 75
  start-page: 1863
  year: 2023
  ident: ref5
  article-title: Deep learning method to detect the road cracks and potholes for smart cities
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2023.035287
– start-page: 2560
  year: 2016
  ident: ref29
  article-title: Breast cancer histopathological image classification using convolutional neural networks
– volume: 8
  start-page: 275
  year: 2004
  ident: ref33
  article-title: A brain tumor segmentation framework based on outlier detection
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2004.06.007
SSID ssj0036390
Score 2.3260891
Snippet Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1081
SubjectTerms Breast cancer
Classification
Clinical outcomes
Datasets
Histopathology
Medical imaging
Resampling
Texture recognition
Wavelet transforms
Title Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images
URI https://www.proquest.com/docview/3199831490
Volume 77
WOSCitedRecordID wos001105875700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwRrzlgYXBNImdhycEqBWVoKpQoWWKEj8QEn2QBAZ-PWfH4bGwkMVDEivyd767nO_uQ-iEcZ0lzGeEJ5IRJpQguY4jEgoWZj4NubBkMA83cb-fjMd84AJupUurbHSiVdRyJkyMvE1NMRgFf947n78SwxplTlcdhcYiaplOZSDnrctOf3DX6GIK9teWRIYsIgFYs_qgElwWj7XFxLQwDOiZqVI3lO8_DdNvvWyNTXftv5-5jladm4kvarnYQAtquonWGgoH7Hb0Fhrd1QlEH2DB8KVJUK_wlRGEAttkAtyRT4qMbPxUSTwEVf5WKGwcRxhLPNPYNhoxxMY2QI97E9BQ5Ta673aGV9fEcS0QQX1aEZ5LgEcmWolEwJVxHuiMSj9Rysv9POGC54BcLD2tJKxYHnmaaZ3JRAURD-kOWprOpmoX4VgEuQfTMQGmP2IxQM6EYCrLOMu0zvdQu1noVLhG5IYP4yWFHxILTQrQpAaatIZmD51-vTGvm3D88exhA0zqtmOZfqOy__ftA7Ri5qpjLIdoqSre1BFaFu_Vc1kcO-mCcdC7HTx-AiGx234
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hBam98Gor3vhQDj24m4c3iQ8I8RQrltWq2hZ6CokfCAl2YbOA4EfxG5lxEgoXbhyaSw5JLDv-9M3YnpkP4LuQNkuEL7hMtOBCGcVzG0e8pUQr88OWVE4M5k8n7naT01PZm4CnOheGwiprTnRErYeK9sibISWDhejPe1vXN5xUo-h0tZbQKGFxZB7ucclWbLb3cH43guBgv797yCtVAa5CPxxzmWvsiE6sUYnCK5MysFmo_cQYL_fzRCqZYx9j7VmjPeHnkWeFtZlOTBBJUolAyp8UBPYGTPbax72_NfeHaO9dCmZLRDxA61kejKKL5ImmuqKSiUH4k7LiSWL-tSF8aweccTuY-d9-yyxMV2402y5xPwcTZjAPM7VEBasY6wuc_CoDpB7RQrMdCsAfs10C-oi5YAm2r88NP3H7w0azPpqq25Fh5BjjvWBDy1whFRJudgcQrH2FDFx8hd8fMrxv0BgMB2YBWKyC3MPmhELXJhIxQlooJUyWSZFZmy9Cs57YVFWF1knv4zLFBZeDQopQSAkKaQmFRfjx8sV1WWTknXdXaiCkFd0U6T8ULL3_eB0-HfaPO2mn3T1ahs_UbrmftAKN8ejWrMKUuhtfFKO1CtkMzj4aNc-Ayjvn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+Breast+Cancer+Using+Edge-Weighted+Texture+Features+of+Histopathology+Images&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Akram%2C+Arslan&rft.date=2023&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=77&rft.issue=1&rft.spage=1081&rft.epage=1101&rft_id=info:doi/10.32604%2Fcmc.2023.041558&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_041558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon