Object Detection for Cargo Unloading System Based on Fuzzy C Means

With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry sector. Algorithm studies related to object recognition have been actively conducted in convergence with the emerging artificial intelligence fie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 71; číslo 2; s. 4167 - 4181
Hlavní autoři: Hwang, Sunwoo, Park, Jaemin, Won, Jongun, Kwon, Yongjang, Kim, Youngmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2022
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry sector. Algorithm studies related to object recognition have been actively conducted in convergence with the emerging artificial intelligence field, but so far, algorithms suitable for automatic unloading devices that need to identify a number of unstructured cargoes require further development. In this study, the object recognition algorithm of the automatic loading device for cargo was selected as the subject of the study, and a cargo object recognition algorithm applicable to the automatic loading device is proposed to improve the amorphous cargo identification performance. The fuzzy convergence algorithm is an algorithm that applies Fuzzy C Means to existing algorithm forms that fuse YOLO(You Only Look Once) and Mask R-CNN(Regions with Convolutional Neuron Networks). Experiments conducted using the fuzzy convergence algorithm showed an average of 33 FPS(Frames Per Second) and a recognition rate of 95%. In addition, there were significant improvements in the range of actual box recognition. The results of this study can contribute to improving the performance of identifying amorphous cargoes in automatic loading devices.
AbstractList With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry sector. Algorithm studies related to object recognition have been actively conducted in convergence with the emerging artificial intelligence field, but so far, algorithms suitable for automatic unloading devices that need to identify a number of unstructured cargoes require further development. In this study, the object recognition algorithm of the automatic loading device for cargo was selected as the subject of the study, and a cargo object recognition algorithm applicable to the automatic loading device is proposed to improve the amorphous cargo identification performance. The fuzzy convergence algorithm is an algorithm that applies Fuzzy C Means to existing algorithm forms that fuse YOLO(You Only Look Once) and Mask R-CNN(Regions with Convolutional Neuron Networks). Experiments conducted using the fuzzy convergence algorithm showed an average of 33 FPS(Frames Per Second) and a recognition rate of 95%. In addition, there were significant improvements in the range of actual box recognition. The results of this study can contribute to improving the performance of identifying amorphous cargoes in automatic loading devices.
Author Park, Jaemin
Won, Jongun
Kim, Youngmin
Hwang, Sunwoo
Kwon, Yongjang
Author_xml – sequence: 1
  givenname: Sunwoo
  surname: Hwang
  fullname: Hwang, Sunwoo
– sequence: 2
  givenname: Jaemin
  surname: Park
  fullname: Park, Jaemin
– sequence: 3
  givenname: Jongun
  surname: Won
  fullname: Won, Jongun
– sequence: 4
  givenname: Yongjang
  surname: Kwon
  fullname: Kwon, Yongjang
– sequence: 5
  givenname: Youngmin
  surname: Kim
  fullname: Kim, Youngmin
BookMark eNp1kM1PAjEUxBuDiYDePTbxvPjabsvuUVZREwwH5dyUfpAl0GK7HOCvt4gHY-Jp5jAzL-83QD0fvEXolsCIUQHlvd7qEQVKR0AZrfkF6hNeioJSKnq__BUapLQGYILV0EeT-XJtdYcfbZelDR67EHGj4irghd8EZVq_wu-H1NktnqhkDc6Z6f54POAGv1nl0zW6dGqT7M2PDtFi-vTRvBSz-fNr8zArNCOsK2o-duNKUFGZbLSmhnBHrAEqTGVKBmpJ6rpacuOAlOBKp0stFICllTJGsyG6O-_uYvjc29TJddhHn09KKggXVcmrOqfEOaVjSClaJ3XbqdNnXVTtRhKQ37xk5iVPvOSZVy7Cn-IutlsVD_9XvgAP1m45
CitedBy_id crossref_primary_10_3390_e25020298
crossref_primary_10_1088_1755_1315_1412_1_012029
Cites_doi 10.7232/JKIIE.2020.46.1.071
10.20462/TeBS.2020.04.21.2.17
10.32604/cmc.2021.016871
10.32604/cmc.2021.017480
10.1126/science.1127647
10.32604/cmc.2020.011191
10.32604/cmc.2021.018781
10.1016/j.neunet.2005.06.042
10.1109/TPAMI.2009.167
10.5302/J.ICROS.2015.15.0157
10.32604/cmc.2020.05317
10.5302/J.ICROS.2015.15.0027
10.5391/JKIIS.2019.29.6.430
10.32604/cmc.2021.015249
10.32604/cmc.2021.018461
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.023295
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 4181
ExternalDocumentID 10_32604_cmc_2022_023295
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-957f786268d7f7cc2d15f1ed026d8d430ab1998b5df0140f4fc4c6a00e28addc3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000729659500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 08:02:22 EST 2025
Sat Nov 29 03:13:21 EST 2025
Tue Nov 18 21:53:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-957f786268d7f7cc2d15f1ed026d8d430ab1998b5df0140f4fc4c6a00e28addc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2615684589?pq-origsite=%requestingapplication%
PQID 2615684589
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2615684589
crossref_citationtrail_10_32604_cmc_2022_023295
crossref_primary_10_32604_cmc_2022_023295
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Yu (ref3) 2021; 36
Kim (ref26) 2006; 10
Choi (ref4) 2019; 34
Zhou (ref22) 2021; 69
Amin (ref21) 2021; 69
Rumelhart (ref9) 1986; 1
Park (ref5) 2020; 28
Soeleman (ref25) 2012
Baccouche (ref23) 2021; 69
Kwak (ref2) 2020; 46
Murthy (ref19) 2021; 69
Chen (ref17) 2020; 65
Graves (ref10) 2005; 18
Park (ref11) 2015; 21
Matija (ref24) 2018
Hwang (ref7) 2019; 20
Bay (ref13) 2006
Shin (ref1) 2020; 21
Park (ref12) 2015; 21
Meng (ref18) 2020; 63
Lowe (ref14) 1999; 2
Girshick (ref16) 2014
Amin (ref20) 2021; 68
Felzenszwalb (ref15) 2010; 32
Won (ref6) 2019; 29
Hinton (ref8) 2006; 313
References_xml – volume: 1
  start-page: 318
  year: 1986
  ident: ref9
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition
– volume: 46
  start-page: 71
  year: 2020
  ident: ref2
  article-title: Study of logistics object tracking service for smart SCM
  publication-title: Journal of the Korean Institute of Industrial, Engineers
  doi: 10.7232/JKIIE.2020.46.1.071
– volume: 21
  start-page: 17
  year: 2020
  ident: ref1
  article-title: A study on trends in the use of logistics technology based on the 4th industrial revolution
  publication-title: The e-Business Studies
  doi: 10.20462/TeBS.2020.04.21.2.17
– volume: 2
  start-page: 1150
  year: 1999
  ident: ref14
  article-title: Object recognition from local scale-invariant features
– volume: 36
  start-page: 22
  year: 2021
  ident: ref3
  article-title: Technical trends of robot task intelligence in intelligent logistics/agriculture
  publication-title: Electronics and Telecommunications Trends
– volume: 68
  start-page: 2693
  year: 2021
  ident: ref20
  article-title: Convolutional Bi-lSTM based human gait recognition using video sequences
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.016871
– volume: 20
  start-page: 287
  year: 2019
  ident: ref7
  article-title: A study on the factors affecting the acceptance of logistics robot in the fulfillment center using the technology acceptance model
  publication-title: Journal of the Korea Academia-Industrial Cooperation Society
– volume: 10
  start-page: 871
  year: 2006
  ident: ref26
  article-title: The pattern segmentation of 3D image information using FCM
  publication-title: Journal of the Korea Institute of Information and Communication Engineering
– volume: 69
  start-page: 161
  year: 2021
  ident: ref22
  article-title: Algorithm of helmet wearing detection based on at-yOLO deep mode
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.017480
– start-page: 319
  year: 2018
  ident: ref24
  article-title: Ball detection using YOLO and mask R-cNN
– volume: 313
  start-page: 504
  year: 2006
  ident: ref8
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 65
  start-page: 2201
  year: 2020
  ident: ref17
  article-title: Road damage detection and classification using mask R-cNN with denseNet backbone
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.011191
– volume: 69
  start-page: 3015
  year: 2021
  ident: ref19
  article-title: YOLOv2PD: An efficient pedestrian detection algorithm using improved YOLOv2 model
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.018781
– volume: 18
  start-page: 602
  year: 2005
  ident: ref10
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.06.042
– volume: 32
  start-page: 1627
  year: 2010
  ident: ref15
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.167
– volume: 21
  start-page: 989
  year: 2015
  ident: ref12
  article-title: Multiple-background model-based object detection for fixed-embedded surveillance system
  publication-title: Journal of Institute of Control, Robotics and Systems
  doi: 10.5302/J.ICROS.2015.15.0157
– start-page: 580
  year: 2014
  ident: ref16
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 63
  start-page: 183
  year: 2020
  ident: ref18
  article-title: A novel steganography algorithm based on instance segmentation
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.05317
– start-page: 404
  year: 2006
  ident: ref13
  article-title: Surf: Speeded up robust features
– year: 2012
  ident: ref25
  article-title: Adaptive threshold for background subtraction in moving object detection using fuzzy C means clustering
– volume: 21
  start-page: 958
  year: 2015
  ident: ref11
  article-title: An object recognition method based on depth information for an indoor mobile robot
  publication-title: Journal of Institute of Control, Robotics and Systems
  doi: 10.5302/J.ICROS.2015.15.0027
– volume: 28
  start-page: 661
  year: 2020
  ident: ref5
  article-title: Automatic picking/classification system using video analysis
– volume: 29
  start-page: 430
  year: 2019
  ident: ref6
  article-title: Deep learning based cargo recognition algorithm for automatic cargo unloading system
  publication-title: Journal of Korean Institute of Intelligent Systems
  doi: 10.5391/JKIIS.2019.29.6.430
– volume: 69
  start-page: 785
  year: 2021
  ident: ref21
  article-title: 3D semantic deep learning networks for leukemia detection
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.015249
– volume: 34
  start-page: 98
  year: 2019
  ident: ref4
  article-title: Logistics and delivery robots in the 4th industrial revolution
  publication-title: Electronics and Telecommunications Trends
– volume: 69
  start-page: 1407
  year: 2021
  ident: ref23
  article-title: Breast lesions detection and classification via YOLO-based fusion models
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.018461
SSID ssj0036390
Score 2.2911465
Snippet With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4167
SubjectTerms Algorithms
Artificial intelligence
Cargo handling
Convergence
Courier services
Frames per second
Logistics
Object recognition
Title Object Detection for Cargo Unloading System Based on Fuzzy C Means
URI https://www.proquest.com/docview/2615684589
Volume 71
WOSCitedRecordID wos000729659500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA8sDKZ5OGkyIVpawdASISqVKXL8QEglKW2KRH8958ThsXRhSqQ4kZU733d3Pt-H0AUVnvCoL0iiHEZoqARhKggJ9RkATMAY95KCbKIzGgWTSRiZhNvClFVWNrEw1CLjOkfeBk_f8wPqBeH17J1o1ii9u2ooNDZRXXcqAz2vd_uj6LGyxS7gb3EkEqZDHECzcqMSXBaLtvmbbmHoOFcAW47ml_gNTH_tcgE2g8Z_p7mLdoybiW9KvdhDGzLdR42KwgGbFX2Aug-JTsTgW5kXNVkpBicW99j8JcPjdJoVFfa4bGuOu4B4AsOYwXK1-sQ9PJQAdIdoPOg_9e6IoVUg3LXdnIReR3V0IBMIuOHcEbanbCkgGhOBoK7FEn3wLvGE0uGXoopT7jPLkk4A1pC7R6iWZqk8RlhKMJXMsoWrBKXUZRzcFzexRKJ8rhRvonb1T2Nueo5r6otpDLFHIYUYpBBrKcSlFJro8vuNWdlvY83YViWD2Ky8RfwjgJP1j0_Rtv5WmU5poVo-X8oztMU_8tfF_NwoElyj-2H0_AVw_dJG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BQYKF8hRvPMDAYJo6TpoMCEGhooKWDiDBFBw_EFJJoS0g-qP4jZzz4LGwMbBFimPJ-U733dm--wC2ufKUx31FY8ME5aFRVJggpNwXSDCBENKLU7GJWrsdXF-HnTF4L2ph7LXKwiemjlr1pN0jr2Ck7_kB94Lw4PGJWtUoe7paSGhkZnGm314xZRvsN48R3x3GGieX9VOaqwpQ6VbdIQ29mqnZOD5Q-CAlU1XPVLXCZEQFiruOiG3dWewpY7MPw43k0heOo1mAzkC6OO84THBr7CWY6DRbnZvC97vI92kJJi6fMmTP7GAUQySHV-SDbZnI2B7SJLN6Ft-J8CcPpOTWKP-33zILM3kYTQ4zu5-DMZ3MQ7mQqCC5x1qAo4vYbjSRYz1M75wlBIN0Uhf9ux65Srq9tIKAZG3byREyuiI4pvE8Gr2ROmlpJPJFuPqTlSxBKeklehmI1kgFwqkq1yjOuSskhmdu7KjY-NIYuQKVAsNI5j3VrbRHN8LcKkU9QtQji3qUob4Cu59fPGb9RH4Zu15gHuWeZRB9Ab76--stmDq9bJ1H58322RpM23mzraN1KA37z3oDJuXL8H7Q38yNmMDtXxvIB-AoLo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+for+Cargo+Unloading+System+Based+on+Fuzzy+C+Means&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Hwang%2C+Sunwoo&rft.au=Park%2C+Jaemin&rft.au=Won%2C+Jongun&rft.au=Kwon%2C+Yongjang&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=2&rft.spage=4167&rft.epage=4181&rft_id=info:doi/10.32604%2Fcmc.2022.023295&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_023295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon