Feedforward–Feedback Controller Based on a Trained Quaternion Neural Network Using a Generalised HR Calculus with Application to Trajectory Control of a Three-Link Robot Manipulator

This study derives a learning algorithm for a quaternion neural network using the steepest descent method extended to quaternion numbers. This applies the generalised Hamiltonian–Real calculus to obtain derivatives of a real–valued cost function concerning quaternion variables and designs a feedback...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) Vol. 10; no. 5; p. 333
Main Authors: Takahashi, Kazuhiko, Tano, Eri, Hashimoto, Masafumi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.05.2022
Subjects:
ISSN:2075-1702, 2075-1702
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study derives a learning algorithm for a quaternion neural network using the steepest descent method extended to quaternion numbers. This applies the generalised Hamiltonian–Real calculus to obtain derivatives of a real–valued cost function concerning quaternion variables and designs a feedback–feedforward controller as a control system application using such a network. The quaternion neural network is trained in real-time by introducing a feedback error learning framework to the controller. Thus, the quaternion neural network-based controller functions as an adaptive-type controller. The designed controller is applied to the control problem of a three-link robot manipulator, with the control task of making the robot manipulator’s end effector follow a desired trajectory in the Cartesian space. Computational experiments are conducted to investigate the learning capability and the characteristics of the quaternion neural network used in the controller. The experimental results confirm the feasibility of using the derived learning algorithm based on the generalised Hamiltonian–Real calculus to train the quaternion neural network and the availability of such a network for a control systems application.
AbstractList This study derives a learning algorithm for a quaternion neural network using the steepest descent method extended to quaternion numbers. This applies the generalised Hamiltonian–Real calculus to obtain derivatives of a real–valued cost function concerning quaternion variables and designs a feedback–feedforward controller as a control system application using such a network. The quaternion neural network is trained in real-time by introducing a feedback error learning framework to the controller. Thus, the quaternion neural network-based controller functions as an adaptive-type controller. The designed controller is applied to the control problem of a three-link robot manipulator, with the control task of making the robot manipulator’s end effector follow a desired trajectory in the Cartesian space. Computational experiments are conducted to investigate the learning capability and the characteristics of the quaternion neural network used in the controller. The experimental results confirm the feasibility of using the derived learning algorithm based on the generalised Hamiltonian–Real calculus to train the quaternion neural network and the availability of such a network for a control systems application.
Author Hashimoto, Masafumi
Takahashi, Kazuhiko
Tano, Eri
Author_xml – sequence: 1
  givenname: Kazuhiko
  surname: Takahashi
  fullname: Takahashi, Kazuhiko
– sequence: 2
  givenname: Eri
  surname: Tano
  fullname: Tano, Eri
– sequence: 3
  givenname: Masafumi
  surname: Hashimoto
  fullname: Hashimoto, Masafumi
BookMark eNp1kcFu1DAQhi1UJErpnaMlzgE7TtbOsaxoi7SAqNpzNHHGrHddO9iOVr3xDn2Yvg9PgkNBQpWYy4xH_ze_PPOSHPngkZDXnL0VomPvbkFvrcfEGWuZEOIZOa6ZbCsuWX30T_2CnKa0YyU6LlSjjsnDOeJoQjxAHH_-uF9eA-g9XQefY3AOI30PCUcaPAV6HaHYjPTrDBmjt6X5GecIrqR8CHFPb5L134ryAj2Wvl3Qyyu6BqdnNyd6sHlLz6bJWQ154XNYpu5Q5xDv_trSYBa3bUSsNtbv6VUYQqafwNtpdlCkr8hzAy7h6Z98Qm7OP1yvL6vNl4uP67NNpQUXuVJja5QCZjrUDWdSQlMbOTaDaZVSw4rpbqVY0wolDcqODyBlXUvNlWTtoDpxQt48zp1i-D5jyv0uzNEXy75elY0yIQUrqtWjSseQUkTTa5t__y-Xjbmes365U__0TgVkT8Ap2luId_9HfgHWB5zo
CitedBy_id crossref_primary_10_1155_2022_9597075
Cites_doi 10.3233/AIC-130578
10.1007/s10462-019-09752-1
10.1109/TSP.2015.2399865
10.1109/TNNLS.2015.2440473
10.1109/SICE.2008.4655038
10.4018/978-1-60566-214-5
10.1098/rsos.150255
10.1016/j.neucom.2016.06.014
10.1098/rsos.160211
10.1631/FITEE.1900533
10.1109/LSP.2010.2091126
10.1007/s11063-017-9716-1
10.1007/s11831-019-09344-w
10.1109/ACCESS.2021.3097756
10.1007/s10015-021-00687-x
10.1007/BF00364149
10.1002/9781118590072
10.1007/978-3-030-62365-4_43
10.1007/978-81-322-2074-9
10.1109/SII.2017.8279333
10.1109/ANZCC50923.2020.9318414
10.1109/ICAMechS54019.2021.9661487
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.3390/machines10050333
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID 10_3390_machines10050333
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-8d5f88a0f9ec41077a42f7d4bf5888b60c968045387fe791ba77227c18705b893
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1702
IngestDate Fri Jul 25 12:05:33 EDT 2025
Sat Nov 29 07:17:50 EST 2025
Tue Nov 18 21:44:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-8d5f88a0f9ec41077a42f7d4bf5888b60c968045387fe791ba77227c18705b893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2670203730?pq-origsite=%requestingapplication%
PQID 2670203730
PQPubID 2032370
ParticipantIDs proquest_journals_2670203730
crossref_citationtrail_10_3390_machines10050333
crossref_primary_10_3390_machines10050333
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Prieto (ref_3) 2016; 214
Popa (ref_23) 2018; 47
Xu (ref_22) 2016; 27
ref_14
ref_13
ref_11
Takahashi (ref_16) 2021; 26
Dargan (ref_4) 2020; 27
ref_17
ref_15
Xu (ref_21) 2016; 3
Xu (ref_19) 2015; 2
Kawato (ref_25) 1987; 57
Wang (ref_5) 2020; 21
Parcollet (ref_10) 2020; 53
Lu (ref_1) 2019; 6
ref_24
Mandic (ref_18) 2011; 18
Xu (ref_20) 2015; 63
ref_26
ref_9
(ref_12) 2021; 9
ref_8
ref_7
Ingrand (ref_2) 2014; 27
ref_6
References_xml – volume: 27
  start-page: 63
  year: 2014
  ident: ref_2
  article-title: Robotics and artificial intelligence: A perspective on deliberation functions
  publication-title: AI Commun.
  doi: 10.3233/AIC-130578
– volume: 53
  start-page: 2957
  year: 2020
  ident: ref_10
  article-title: A survey of quaternion neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09752-1
– volume: 63
  start-page: 1543
  year: 2015
  ident: ref_20
  article-title: The theory of quaternion matrix derivatives
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2399865
– volume: 27
  start-page: 249
  year: 2016
  ident: ref_22
  article-title: Optimization in quaternion dynamic systems: Gradient, hessian, and learning algorithms
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2440473
– ident: ref_26
  doi: 10.1109/SICE.2008.4655038
– ident: ref_7
  doi: 10.4018/978-1-60566-214-5
– volume: 2
  start-page: 150255
  year: 2015
  ident: ref_19
  article-title: Enabling quaternion derivatives: The generalized HR calculus
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.150255
– volume: 214
  start-page: 242
  year: 2016
  ident: ref_3
  article-title: Neural networks: An overview of early research, current frameworks and new challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.014
– volume: 3
  start-page: 160211
  year: 2016
  ident: ref_21
  article-title: A new proof of the generalized Hamiltonian–Real calculus
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.160211
– volume: 21
  start-page: 1726
  year: 2020
  ident: ref_5
  article-title: Deep reinforcement learning: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900533
– volume: 18
  start-page: 47
  year: 2011
  ident: ref_18
  article-title: A quaternion gradient operator and its applications
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2091126
– volume: 47
  start-page: 949
  year: 2018
  ident: ref_23
  article-title: Learning algorithms for quaternion–valued neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-017-9716-1
– volume: 27
  start-page: 1071
  year: 2020
  ident: ref_4
  article-title: A survey of deep learning and its applications: A new paradigm to machine learning
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– volume: 9
  start-page: 104326
  year: 2021
  ident: ref_12
  article-title: A survey on quaternion algebra and geometric algebra applications in engineering and computer science 1995–2020
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097756
– ident: ref_14
– volume: 26
  start-page: 367
  year: 2021
  ident: ref_16
  article-title: Comparison of high–dimensional neural networks using hypercomplex numbers in a robot manipulator control
  publication-title: Artif. Life Robot.
  doi: 10.1007/s10015-021-00687-x
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Artificial Intelligence: A survey on evolution, models, applications and future trends
  publication-title: J. Manag. Anal.
– volume: 57
  start-page: 169
  year: 1987
  ident: ref_25
  article-title: A hierarchical neural-network model for control and learning of voluntary movement
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00364149
– ident: ref_6
– ident: ref_8
  doi: 10.1002/9781118590072
– ident: ref_11
  doi: 10.1007/978-3-030-62365-4_43
– ident: ref_9
  doi: 10.1007/978-81-322-2074-9
– ident: ref_13
  doi: 10.1109/SII.2017.8279333
– ident: ref_17
– ident: ref_15
  doi: 10.1109/ANZCC50923.2020.9318414
– ident: ref_24
  doi: 10.1109/ICAMechS54019.2021.9661487
SSID ssj0000913848
Score 2.209043
Snippet This study derives a learning algorithm for a quaternion neural network using the steepest descent method extended to quaternion numbers. This applies the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 333
SubjectTerms Adaptive control
Algorithms
Artificial intelligence
Calculus
Cartesian coordinates
Control systems design
Control tasks
Controllers
Cost function
End effectors
Engineering
Feedback control
Feedforward control
Machine learning
Manipulators
Mathematical functions
Neural networks
Quaternions
Robot arms
Robot control
Robotics
Robots
Signal processing
Steepest descent method
Trajectory control
Title Feedforward–Feedback Controller Based on a Trained Quaternion Neural Network Using a Generalised HR Calculus with Application to Trajectory Control of a Three-Link Robot Manipulator
URI https://www.proquest.com/docview/2670203730
Volume 10
WOSCitedRecordID wos000802447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN-JZeWBhiNo0L2dCULWCgaoUkGCKbNeWCiWBJEViQfwHfgz_h1_CnZNSYGBhiWTZjiPd-Z5f7gjZdxWodS90LS4813I9m1tM-BKuO7aF1VLJhjTNJoJul11fh70y4JaVsMqJTDSCepBIjJHXm36ASTNgyMOHRwu7RmF2tWyhMUuqWCXBNtC9i68YC9a8ZC4rspMOePf1e4NQVJlt6qA4zk9t9FMYGw3TWfrvty2TxdK2pEcFM6yQGRWvkoVvFQfXyHsHtBXYqYiV_Xh9w5Hg8o62CsT6SKX0GPTagCYx5fQS-0fA4HzMMW4IJKRYzAPO6BbocWoQB7CyrF49xK0nfdriIwwrZhTDvPRomiSneYJvvTW5gufJsTTReBqwlbLQOab9RCQ5PePx0LQXS9J1ctVpX7ZOrLJ3gyUd28ktNvA0Y7yhQyVdcDED7jZ1MHCF9sDnFn5Dhj4Dc9JhgVZBaAsOZn4zkDbID0-AEbVBKnESq01ChQani9nKZwrsCdivG5r5jvQdJcFbUlukPqFhJMvC5thfYxSBg4NUj35TfYscfO14KIp6_LF2d0LzqLzeWTQl-Pbf0ztkvon_SxiE5C6p5OlY7ZE5-ZQPs7RGqsftbq9fM4GAmuFdfL60YaZ3eta7-QTO3f4H
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQk48F9RaMEHeuAQbRLnxzmgqt2y2qrtqpRF6i3YXltaWJKySal64x14D659nz5JZ5ykpRx664GjlTiWnM_z-3kG4G1kUK3HWeRJFUdeFAfSEyrReNypLazVRvvaNZtIRyNxeJjtL8Cf7i4M0So7megE9aTUFCPvhUlKSTME5PrRD4-6RlF2tWuh0cBix5yeoMtWvd_ewv-7FoaDD-P-0Gu7CniaB7z2xCS2QkjfZkZH6PykMgptOomUjdEbVImvs0SgocNFak2aBUqiARqmOkBkx0pQ8SUU-XfQjAgzRxX8dBnToRqbIhJNNpTzzO99d4xIUwWu7grn17XfdeHvNNrg0f-2F4_hYWs7s40G7E9gwRRP4cFfFRWfwdkAtTHa4cQFPv_1m0ZK6m-s3zDyZ2bONlFvT1hZMMnG1B8DBx-PJcVFEaKMipXgGqOGHc8cowLfbKtzT2nq8ID15YzCphWjMDbbuCIBsLqkr351uZDTbllWWloNj43xyPlnB6Uqa7Yni6lrn1bOn8PnW9m5JVgsysK8AKYsOpUiMIkwaC_hfOtbkXCdcKPRGzTL0Oswk-u2cDv1D5nl6MARyvJ_UbYM7y5nHDVFS254d6XDWN6Kryq_AtjLmx-_gXvD8d5uvrs92nkF90O6G-LYoCuwWM-PzSrc1T_raTV_7U4Kgy-3DccLcghS8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW4Togf-KQgEf4MAh2iR2EueAUNmy6qp0tVRFKqdge21p6TZpNymoN96Bh6nUx-FJmMlPSzn01gNHK3EsOd94_j7PALwSFtV6lApP6Uh4IgqUJ3VsUNypLawz1vimbjaRjMdyfz-dLMF5dxeGaJXdmVgf1NPCUIy8H8YJJc0QkH3X0iImm8N3R8cedZCiTGvXTqOByLY9_YHuW_l2tIn_-nUYDj_sDba8tsOAZ3jAK09OIyel8l1qjUBHKFEidMlUaBehZ6hj36SxRKOHy8TZJA20QmM0TEyAKI-0pEJMePwvo0kuwh4sT0Y7ky8XER6quCmFbHKjnKd-_7DmR9oyqKuwcH5VF15VBbV-G977n3fmPtxtrWq20YjBA1iy-UNY-avW4iM4G6KeRgudWMK_f_6ikVbmgA0arv7cLth71OhTVuRMsT3qnIGDTyeKIqYIXkZlTHCNccObZzXXAt9s63bPaOrWLhuoOQVUS0YBbrZxSQ9gVUFf_VZnSU67ZVnhaDUUKOtRWIDtFrqo2I7KZ3VjtWLxGD7fyM6tQi8vcvsEmHbobsrAxtKiJYXzne9kzE3MrUE_0a5Bv8NPZtqS7tRZZJ6ha0eIy_5F3Bq8uZhx1JQzuebd9Q5vWXuwldkl2J5e__gl3EYUZh9H4-1ncCekSyM1TXQdetXixD6HW-Z7NSsXL1qxYfD1pvH4B0lMXSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedforward%E2%80%93Feedback+Controller+Based+on+a+Trained+Quaternion+Neural+Network+Using+a+Generalised+HR+Calculus+with+Application+to+Trajectory+Control+of+a+Three-Link+Robot+Manipulator&rft.jtitle=Machines+%28Basel%29&rft.au=Takahashi%2C+Kazuhiko&rft.au=Tano%2C+Eri&rft.au=Hashimoto%2C+Masafumi&rft.date=2022-05-01&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=10&rft.issue=5&rft.spage=333&rft_id=info:doi/10.3390%2Fmachines10050333&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_machines10050333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon