Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network

As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 81; číslo 1; s. 549 - 566
Hlavní autoři: Zhao, Yingnan, Ruan, Yuyuan, Peng, Zhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2024
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm, Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature set. Then, it decomposes the feature set using Variational Mode Decomposition (VMD) to eliminate the non-stationarity and obtains Intrinsic Mode Functions (IMFs). Here Whale Optimization Algorithm (WOA) is applied to optimise the key parameters of VMD, namely the number of mode components K and penalty factor a. Finally, incorporating attention mechanism (AM), Squeeze-Excitation Network (SENet), and Bidirectional Gated Recurrent Unit (BiGRU), it constructs the dual-stream network (DSN) for short-term wind power prediction. Comparative experiments demonstrate that the WVMD_DSN model outperforms existing baseline algorithms and exhibits good generalization performance. The relevant code is available at (accessed on 20 August 2024).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2024.056240