A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN)...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 79; no. 1; pp. 19 - 46
Main Authors: Wu, Tsu-Yang, Li, Haonan, Kumari, Saru, Chen, Chien-Ming
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2024
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian mutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm. The probability update strategy helps to improve the exploitability and adaptability of the algorithm. Within the AFLA-SCNN model, AFLA is employed to optimize two hyperparameters in the SCNN model, namely, “numEpochs” and “miniBatchSize”, to attain their optimal values. AFLA’s performance is initially validated across 28 functions in 10D, 30D, and 50D for CEC2013 and 29 functions in 10D, 30D, and 50D for CEC2017. Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms. Subsequently, the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm (FLA-SCNN), Spectral Convolutional Neural Network model based on Harris Hawks Optimization (HHO-SCNN), Spectral Convolutional Neural Network model based on Differential Evolution (DE-SCNN), Spectral Convolutional Neural Network (SCNN) model, and Support Vector Machines (SVM) model using the Indian Pines dataset and Pavia University dataset. The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy, Precision, Recall, and F1-score on Indian Pines and Pavia University. Among them, the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%, and the Accuracy on Pavia University reached 98.022%. In conclusion, our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
AbstractList Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian mutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm. The probability update strategy helps to improve the exploitability and adaptability of the algorithm. Within the AFLA-SCNN model, AFLA is employed to optimize two hyperparameters in the SCNN model, namely, “numEpochs” and “miniBatchSize”, to attain their optimal values. AFLA’s performance is initially validated across 28 functions in 10D, 30D, and 50D for CEC2013 and 29 functions in 10D, 30D, and 50D for CEC2017. Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms. Subsequently, the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm (FLA-SCNN), Spectral Convolutional Neural Network model based on Harris Hawks Optimization (HHO-SCNN), Spectral Convolutional Neural Network model based on Differential Evolution (DE-SCNN), Spectral Convolutional Neural Network (SCNN) model, and Support Vector Machines (SVM) model using the Indian Pines dataset and Pavia University dataset. The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy, Precision, Recall, and F1-score on Indian Pines and Pavia University. Among them, the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%, and the Accuracy on Pavia University reached 98.022%. In conclusion, our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
Author Chen, Chien-Ming
Kumari, Saru
Li, Haonan
Wu, Tsu-Yang
Author_xml – sequence: 1
  givenname: Tsu-Yang
  surname: Wu
  fullname: Wu, Tsu-Yang
– sequence: 2
  givenname: Haonan
  surname: Li
  fullname: Li, Haonan
– sequence: 3
  givenname: Saru
  surname: Kumari
  fullname: Kumari, Saru
– sequence: 4
  givenname: Chien-Ming
  surname: Chen
  fullname: Chen, Chien-Ming
BookMark eNp1UE1Lw0AUXKSCbfXuccFz6mZfskmONVhbqHpQz2GzH7Jtmo27aUtv_g3_nr_EtFUQwcNj3oOZ4c0MUK-2tULoMiQjoIxE12IlRpTQaESiFKLkBPXDOGIBpZT1fu1naOD9ghBgkJE-8mP81CjROl7h3NYbW61bY-vuelBrd4B2a90S31upKnzDvZLY1ngsedOajcITI5af7x8ez_kWa-vwdNco5388Zyv-qnBece-NNoLvzc_RqeaVVxffOEQvk9vnfBrMH-9m-XgeCAihDVJGSyI0pVozVfKEgIi6yUqlgCdKZjFkCS2lJBrKtIRQaR1nkEop45DJFIbo6ujbOPu2Vr4tFnbtumy-gDDLUqAQ71nsyBLOeu-ULoRpD392AUxVhKQ4FFx0BRf7gotjwZ2Q_BE2zqy42_0v-QIMGYKJ
CitedBy_id crossref_primary_10_1371_journal_pone_0308789
crossref_primary_10_1007_s00521_025_11216_3
Cites_doi 10.3390/app13063526
10.3390/math11091977
10.1016/j.advengsoft.2016.01.008
10.3390/rs15030848
10.1515/mt-2023-0235
10.1016/j.swevo.2018.08.005
10.1109/LGRS.2016.2600244
10.1109/LGRS.2008.915934
10.1007/s11227-020-03492-8
10.1016/j.future.2019.02.028
10.1109/LGRS.2014.2337320
10.1111/1541-4337.12314
10.3390/math11102339
10.1016/j.patcog.2020.107298
10.1016/j.knosys.2022.110146
10.1016/j.eswa.2023.120496
10.1109/TMM.2021.3065580
10.1371/journal.pone.0275346
10.1109/TNNLS.2022.3182715
10.1016/j.knosys.2015.12.022
10.1016/j.asoc.2022.109657
10.1109/TGRS.2020.2964288
10.3390/rs12162659
10.1007/s00034-022-02130-3
10.1109/TGRS.2016.2636241
10.1016/j.aca.2020.03.055
10.1016/j.ins.2009.03.004
10.1016/j.isprsjprs.2017.11.021
10.1109/TGRS.2012.2205263
10.3390/math10163019
10.1007/s11356-020-09876-w
10.1016/j.addma.2017.11.012
10.3390/sym15010124
10.1109/TGRS.2019.2907932
10.1007/978-3-319-93025-1_4
10.1016/j.cie.2021.107408
10.1016/j.knosys.2020.106425
10.1155/2016/7954154
10.1109/ACCESS.2018.2812999
10.1016/j.knosys.2015.07.006
10.1109/TGRS.2018.2815613
10.1109/TGRS.2020.3015157
10.1631/jzus.A2000384
10.53106/160792642023122407003
10.1109/JSTARS.2021.3099118
10.3390/rs14246279
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.32604/cmc.2024.048347
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 46
ExternalDocumentID 10_32604_cmc_2024_048347
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-862b0cf22ff6eba703c403c9bee3a7ed953972bdd0f3b8b31eff5938ddd516d83
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225035600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:16:56 EDT 2025
Sat Nov 29 08:17:49 EST 2025
Tue Nov 18 22:08:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-862b0cf22ff6eba703c403c9bee3a7ed953972bdd0f3b8b31eff5938ddd516d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199832358?pq-origsite=%requestingapplication%
PQID 3199832358
PQPubID 2048737
PageCount 28
ParticipantIDs proquest_journals_3199832358
crossref_citationtrail_10_32604_cmc_2024_048347
crossref_primary_10_32604_cmc_2024_048347
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Kristiani (ref36) 2021; 77
Alghamdi (ref26) 2023; 13
Maučec (ref39) 2019; 50
Paoletti (ref53) 2018; 145
Mirjalili (ref44) 2016; 95
Khan (ref4) 2018; 6
Pan (ref18) 2023; 24
Mirjalili (ref48) 2019; 780
Liu (ref35) 2021; 23
Wu (ref19) 2023; 11
Zare (ref51) 2008; 5
Li (ref28) 2023
Agushaka (ref40) 2022; 17
Wu (ref16) 2023; 11
Bhatti (ref2) 2023; 77
Rashedi (ref45) 2009; 179
Abdollahzadeh (ref46) 2021; 158
Ghaderizadeh (ref13) 2021; 14
Mehta (ref27) 2023; 65
Mei (ref30) 2020; 58
Hashim (ref25) 2023; 260
Ghamisi (ref54) 2016; 13
Okwuashi (ref10) 2020; 103
Hong (ref12) 2020; 59
Lee (ref37) 2019
Chen (ref20) 2023; 15
Mirjalili (ref42) 2015; 89
Mou (ref8) 2017; 55
Zhang (ref33) 2022; 130
Ghamisi (ref52) 2014; 12
Gazagnadou (ref38) 2019
Heidari (ref41) 2019; 97
Song (ref34) 2021; 215
Yang (ref6) 2018; 56
Liu (ref17) 2023; 8
Li (ref3) 2019; 57
Li (ref9) 2012; 51
Shevchik (ref32) 2018; 21
Jia (ref14) Jan. 2024; 35
Liang (ref49) 2013; 201212
Price (ref47)
Wu (ref50) 2017
Nikbakht (ref22) 2021; 22
Fan (ref23) 2022; 10
Banadkooki (ref21) 2020; 27
Zhang (ref29) 2020; 1119
Mirjalili (ref43) 2016; 96
Zhang (ref7) 2016; 2016
Falahzadeh (ref24) 2023; 42
Shaik (ref11) 2022; 14
Lu (ref31) 2020; 12
Su (ref5) 2018; 17
Ge (ref15) 2023; 15
Bhatti (ref1) 2023; 229
References_xml – start-page: 456
  year: 2023
  ident: ref28
  article-title: Fick’s law algorithm with Gaussian mutation: Design and analysis
– volume: 13
  start-page: 3526
  year: 2023
  ident: ref26
  article-title: Energy hub optimal scheduling and management in the day-ahead market considering renewable energy sources, CHP, electric vehicles, and storage systems using improved Fick’s law algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app13063526
– volume: 11
  start-page: 1977
  year: 2023
  ident: ref16
  article-title: CPPE: An improved phasmatodea population evolution algorithm with chaotic maps
  publication-title: Math.
  doi: 10.3390/math11091977
– start-page: 830
  year: 2019
  ident: ref37
  article-title: Improving scalability of parallel CNN training by adjusting mini-batch size at run-time
– volume: 95
  start-page: 51
  year: 2016
  ident: ref44
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 15
  start-page: 848
  year: 2023
  ident: ref15
  article-title: Two-branch convolutional neural network with polarized full attention for hyperspectral image classification
  publication-title: Remote Sens.
  doi: 10.3390/rs15030848
– volume: 65
  start-page: 1817
  year: 2023
  ident: ref27
  article-title: A novel hybrid Fick’s law algorithm-quasi oppositional-based learning algorithm for solving constrained mechanical design problems
  publication-title: Mater. Test.
  doi: 10.1515/mt-2023-0235
– volume: 8
  start-page: 35
  year: 2023
  ident: ref17
  article-title: Location and capacity determination of energy storage system based on improved whale optimization algorithm
  publication-title: J. Netw. Intell.
– volume: 50
  start-page: 100428
  year: 2019
  ident: ref39
  article-title: A review of the recent use of differential evolution for large-scale global optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.005
– volume: 13
  start-page: 1641
  year: 2016
  ident: ref54
  article-title: Hyperspectral data classification using extended extinction profiles
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2600244
– volume: 5
  start-page: 256
  year: 2008
  ident: ref51
  article-title: Hyperspectral band selection and endmember detection using sparsity promoting priors
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.915934
– volume: 77
  start-page: 5586
  year: 2021
  ident: ref36
  article-title: Air quality monitoring and analysis with dynamic training using deep learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03492-8
– volume: 97
  start-page: 849
  year: 2019
  ident: ref41
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 12
  start-page: 309
  year: 2014
  ident: ref52
  article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2337320
– volume: 17
  start-page: 104
  year: 2018
  ident: ref5
  article-title: Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12314
– volume: 11
  start-page: 2339
  year: 2023
  ident: ref19
  article-title: CTOA: Toward a chaotic-based tumbleweed optimization algorithm
  publication-title: Math.
  doi: 10.3390/math11102339
– start-page: 2142
  year: 2019
  ident: ref38
  article-title: Optimal mini-batch and step sizes for saga
– volume: 103
  start-page: 107298
  year: 2020
  ident: ref10
  article-title: Deep support vector machine for hyperspectral image classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107298
– volume: 260
  start-page: 110146
  year: 2023
  ident: ref25
  article-title: Fick’s law algorithm: A physical law-based algorithm for numerical optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110146
– volume: 229
  start-page: 120496
  year: 2023
  ident: ref1
  article-title: MFFCG–Multi feature fusion for hyperspectral image classification using graph attention network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120496
– volume: 23
  start-page: 2188
  year: 2021
  ident: ref35
  article-title: Human memory update strategy: A multi-layer template update mechanism for remote visual monitoring
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3065580
– volume: 17
  start-page: e0275346
  year: 2022
  ident: ref40
  article-title: Advanced dwarf mongoose optimization for solving CEC, 2011 and CEC, 2017 benchmark problems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0275346
– volume: 35
  start-page: 1157
  year: Jan. 2024
  ident: ref14
  article-title: Graph-in-graph convolutional network for hyperspectral image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3182715
– volume: 96
  start-page: 120
  year: 2016
  ident: ref43
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– year: 2017
  ident: ref50
  article-title: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization
  publication-title: Technic. Report
– volume: 130
  start-page: 109657
  year: 2022
  ident: ref33
  article-title: Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned aerial vehicles
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109657
– volume: 58
  start-page: 4590
  year: 2020
  ident: ref30
  article-title: Spatial and spectral joint super-resolution using convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2964288
– volume: 12
  start-page: 2659
  year: 2020
  ident: ref31
  article-title: Recent advances of hyperspectral imaging technology and applications in agriculture
  publication-title: Remote Sens.
  doi: 10.3390/rs12162659
– volume: 42
  start-page: 449
  year: 2023
  ident: ref24
  article-title: Deep convolutional neural network and gray wolf optimization algorithm for speech emotion recognition
  publication-title: Circ., Syst. Signal Process.
  doi: 10.1007/s00034-022-02130-3
– volume: 55
  start-page: 3639
  year: 2017
  ident: ref8
  article-title: Deep recurrent neural networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2636241
– volume: 1119
  start-page: 41
  year: 2020
  ident: ref29
  article-title: Understanding the learning mechanism of convolutional neural networks in spectral analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.03.055
– volume: 77
  start-page: 681
  year: 2023
  ident: ref2
  article-title: Deep learning-based trees disease recognition and classification using hyperspectral data
  publication-title: Comput., Mater. Contin.
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref45
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 201212
  start-page: 281
  year: 2013
  ident: ref49
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization
  publication-title: Technic. Report
– volume: 145
  start-page: 120
  year: 2018
  ident: ref53
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume: 51
  start-page: 844
  year: 2012
  ident: ref9
  article-title: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2205263
– volume: 10
  start-page: 3019
  year: 2022
  ident: ref23
  article-title: A hybrid sparrow search algorithm of the hyperparameter optimization in deep learning
  publication-title: Math.
  doi: 10.3390/math10163019
– volume: 27
  start-page: 38094
  year: 2020
  ident: ref21
  article-title: Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09876-w
– volume: 21
  start-page: 598
  year: 2018
  ident: ref32
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit. Manufact.
  doi: 10.1016/j.addma.2017.11.012
– start-page: 187
  ident: ref47
  publication-title: Handbook of Optimization: From Classical to Modern Approach
– volume: 15
  start-page: 124
  year: 2023
  ident: ref20
  article-title: A genetic algorithm for the waitable time-varying multi-depot green vehicle routing problem
  publication-title: Symmetry
  doi: 10.3390/sym15010124
– volume: 57
  start-page: 6690
  year: 2019
  ident: ref3
  article-title: Deep learning for hyperspectral image classification: An overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2907932
– volume: 780
  start-page: 43
  year: 2019
  ident: ref48
  article-title: Genetic algorithm
  publication-title: Evol. Algo. Neural Netw.: Theory Appl.
  doi: 10.1007/978-3-319-93025-1_4
– volume: 158
  start-page: 107408
  year: 2021
  ident: ref46
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 215
  start-page: 106425
  year: 2021
  ident: ref34
  article-title: Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106425
– volume: 2016
  start-page: 7954154
  year: 2016
  ident: ref7
  article-title: Deep learning for remote sensing image understanding
  publication-title: J. Sens.
  doi: 10.1155/2016/7954154
– volume: 6
  start-page: 14118
  year: 2018
  ident: ref4
  article-title: Modern trends in hyperspectral image analysis: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812999
– volume: 89
  start-page: 228
  year: 2015
  ident: ref42
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 56
  start-page: 5408
  year: 2018
  ident: ref6
  article-title: Hyperspectral image classification with deep learning models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2815613
– volume: 59
  start-page: 5966
  year: 2020
  ident: ref12
  article-title: Graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3015157
– volume: 22
  start-page: 407
  year: 2021
  ident: ref22
  article-title: Optimizing the neural network hyperparameters utilizing genetic algorithm
  publication-title: J. Zhejiang Univ.-Sci. A
  doi: 10.1631/jzus.A2000384
– volume: 24
  start-page: 1415
  year: 2023
  ident: ref18
  article-title: Martial art learning optimization: A novel metaheuristic algorithm for night image enhancement
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642023122407003
– volume: 14
  start-page: 7570
  year: 2021
  ident: ref13
  article-title: Hyperspectral image classification using a hybrid 3D-2D convolutional neural networks
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3099118
– volume: 14
  start-page: 6279
  year: 2022
  ident: ref11
  article-title: Gaussian mutation-spider monkey optimization (GM-SMO) model for remote sensing scene classification
  publication-title: Remote Sens.
  doi: 10.3390/rs14246279
SSID ssj0036390
Score 2.5499594
Snippet Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 19
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Datasets
Evolutionary computation
Heuristic methods
Hyperspectral imaging
Image classification
Mutation
Neural networks
Optimization
Performance enhancement
Remote sensing
Support vector machines
Title A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
URI https://www.proquest.com/docview/3199832358
Volume 79
WOSCitedRecordID wos001225035600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnuJRkAcWBtM0dppkQgVRgQRVhUCCKYpfEqKkhRRY-Rv8PX4Jd47DY2FhiKwocRTpzt897LuPkL1IQmScdjQDW54woW3KkkhppgMVaKm7aSqUI5uIB4Pk5iYd-oRb6Y9V1pjogFqPFebI2xyLwTgWdh5OHhmyRuHuqqfQmCVz2KlMNMjc0clgeFljMQf760oiI9FlIVizaqMSXJZAtNUDtjAMxQF2VUd6lZ-G6TcuO2PTb_73N5fIonczaa_Si2UyY4oV0qwpHKhf0auk7FFkoMd0Bz0eFy9eEeEOu3a4wR0Tp8iZNqJHYPM0HRe0p_MJAiXt36n7j7f3kp7nrxQcYHoKgW1Vv4nTzx4Ar6hj3sQzSU4N1sh1_-Tq-JR5HgameIdPGQQ9MlA2DK3tGpkDRigBVyqN4XlsdBqBUxNKrQPLZSJ5x1gbpTzRWkedrk74OmkU48JsEBoHeRjYSEJQqISKLXw6tCKKlUlc0e4maddCyJRvUo5cGaMMghUntgzElqHYskpsm2T_a8akatDxx7utWmiZX6pl9i2xrb8fb5MF_FaVf2mRxvTp2eyQefUyvSufdr3mwTg8uxjefgI8XuTV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkulKfoA9gDHDgscXbXsX1AKBSiRE2jSBSpnIz3JVW0ThqHVr3xN_on-qP4JcysbR6X3nrgYFmW1yvZ-3m-md2d-QBexhoj46xnOXJ5ypX1GU9jY7mNTGS17WeZMkFsIplO08PDbLYGV20uDG2rbG1iMNR2bmiOvCspGUxSYue7xSkn1ShaXW0lNGpY7LmLcwzZqrfjDzi-r4QYfjzYHfFGVYAb2ZMrji68jowXwvu-0wUi3ig8Mu2cLBJnsxgpWmhrIy91qmXPeR9nMrXWxr2-TSX2ewvWFYI97cD6bLw_-9Lafol8H1IwY9XnAtmzXhhFFylSXXNCJROFekNV3EnO5W8i_JcHArkNN_63z3If7jVuNBvUuH8Aa658CButRAVrLNYjqAbsE-WSLrHx7rw8a340vKKqJOEUtsEz0oQ7Zu-R0y2bl2xgiwURARsemW8_f1xWbFKcM3Tw2QgD9zo_lR4fn6A9ZkFZlPZcBZg_hs838upPoFPOS_cUWBIVIvKxxqDXKJN47Fp4FSfGpSEpeRO67aDnpinCTlogxzkGYwEmOcIkJ5jkNUw24fXvJxZ1AZJr2u60IMkbU1TlfxCydf3tF3BndLA_ySfj6d423KV-67mmHeislt_dM7htzlZH1fJ5g3oGX28aUb8A0WxC2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Convolutional+Neural+Network+Model+Based+on+Adaptive+Fick%E2%80%99s+Law+for+Hyperspectral+Image+Classification&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wu%2C+Tsu-Yang&rft.au=Li%2C+Haonan&rft.au=Kumari%2C+Saru&rft.au=Chen%2C+Chien-Ming&rft.date=2024&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=79&rft.issue=1&rft.spage=19&rft.epage=46&rft_id=info:doi/10.32604%2Fcmc.2024.048347&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2024_048347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon