A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN)...
Saved in:
| Published in: | Computers, materials & continua Vol. 79; no. 1; pp. 19 - 46 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Henderson
Tech Science Press
2024
|
| Subjects: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian mutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm. The probability update strategy helps to improve the exploitability and adaptability of the algorithm. Within the AFLA-SCNN model, AFLA is employed to optimize two hyperparameters in the SCNN model, namely, “numEpochs” and “miniBatchSize”, to attain their optimal values. AFLA’s performance is initially validated across 28 functions in 10D, 30D, and 50D for CEC2013 and 29 functions in 10D, 30D, and 50D for CEC2017. Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms. Subsequently, the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm (FLA-SCNN), Spectral Convolutional Neural Network model based on Harris Hawks Optimization (HHO-SCNN), Spectral Convolutional Neural Network model based on Differential Evolution (DE-SCNN), Spectral Convolutional Neural Network (SCNN) model, and Support Vector Machines (SVM) model using the Indian Pines dataset and Pavia University dataset. The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy, Precision, Recall, and F1-score on Indian Pines and Pavia University. Among them, the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%, and the Accuracy on Pavia University reached 98.022%. In conclusion, our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. |
|---|---|
| AbstractList | Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian mutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm. The probability update strategy helps to improve the exploitability and adaptability of the algorithm. Within the AFLA-SCNN model, AFLA is employed to optimize two hyperparameters in the SCNN model, namely, “numEpochs” and “miniBatchSize”, to attain their optimal values. AFLA’s performance is initially validated across 28 functions in 10D, 30D, and 50D for CEC2013 and 29 functions in 10D, 30D, and 50D for CEC2017. Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms. Subsequently, the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm (FLA-SCNN), Spectral Convolutional Neural Network model based on Harris Hawks Optimization (HHO-SCNN), Spectral Convolutional Neural Network model based on Differential Evolution (DE-SCNN), Spectral Convolutional Neural Network (SCNN) model, and Support Vector Machines (SVM) model using the Indian Pines dataset and Pavia University dataset. The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy, Precision, Recall, and F1-score on Indian Pines and Pavia University. Among them, the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%, and the Accuracy on Pavia University reached 98.022%. In conclusion, our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. |
| Author | Chen, Chien-Ming Kumari, Saru Li, Haonan Wu, Tsu-Yang |
| Author_xml | – sequence: 1 givenname: Tsu-Yang surname: Wu fullname: Wu, Tsu-Yang – sequence: 2 givenname: Haonan surname: Li fullname: Li, Haonan – sequence: 3 givenname: Saru surname: Kumari fullname: Kumari, Saru – sequence: 4 givenname: Chien-Ming surname: Chen fullname: Chen, Chien-Ming |
| BookMark | eNp1UE1Lw0AUXKSCbfXuccFz6mZfskmONVhbqHpQz2GzH7Jtmo27aUtv_g3_nr_EtFUQwcNj3oOZ4c0MUK-2tULoMiQjoIxE12IlRpTQaESiFKLkBPXDOGIBpZT1fu1naOD9ghBgkJE-8mP81CjROl7h3NYbW61bY-vuelBrd4B2a90S31upKnzDvZLY1ngsedOajcITI5af7x8ez_kWa-vwdNco5388Zyv-qnBece-NNoLvzc_RqeaVVxffOEQvk9vnfBrMH-9m-XgeCAihDVJGSyI0pVozVfKEgIi6yUqlgCdKZjFkCS2lJBrKtIRQaR1nkEop45DJFIbo6ujbOPu2Vr4tFnbtumy-gDDLUqAQ71nsyBLOeu-ULoRpD392AUxVhKQ4FFx0BRf7gotjwZ2Q_BE2zqy42_0v-QIMGYKJ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0308789 crossref_primary_10_1007_s00521_025_11216_3 |
| Cites_doi | 10.3390/app13063526 10.3390/math11091977 10.1016/j.advengsoft.2016.01.008 10.3390/rs15030848 10.1515/mt-2023-0235 10.1016/j.swevo.2018.08.005 10.1109/LGRS.2016.2600244 10.1109/LGRS.2008.915934 10.1007/s11227-020-03492-8 10.1016/j.future.2019.02.028 10.1109/LGRS.2014.2337320 10.1111/1541-4337.12314 10.3390/math11102339 10.1016/j.patcog.2020.107298 10.1016/j.knosys.2022.110146 10.1016/j.eswa.2023.120496 10.1109/TMM.2021.3065580 10.1371/journal.pone.0275346 10.1109/TNNLS.2022.3182715 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2022.109657 10.1109/TGRS.2020.2964288 10.3390/rs12162659 10.1007/s00034-022-02130-3 10.1109/TGRS.2016.2636241 10.1016/j.aca.2020.03.055 10.1016/j.ins.2009.03.004 10.1016/j.isprsjprs.2017.11.021 10.1109/TGRS.2012.2205263 10.3390/math10163019 10.1007/s11356-020-09876-w 10.1016/j.addma.2017.11.012 10.3390/sym15010124 10.1109/TGRS.2019.2907932 10.1007/978-3-319-93025-1_4 10.1016/j.cie.2021.107408 10.1016/j.knosys.2020.106425 10.1155/2016/7954154 10.1109/ACCESS.2018.2812999 10.1016/j.knosys.2015.07.006 10.1109/TGRS.2018.2815613 10.1109/TGRS.2020.3015157 10.1631/jzus.A2000384 10.53106/160792642023122407003 10.1109/JSTARS.2021.3099118 10.3390/rs14246279 |
| ContentType | Journal Article |
| Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
| DOI | 10.32604/cmc.2024.048347 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 46 |
| ExternalDocumentID | 10_32604_cmc_2024_048347 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c313t-862b0cf22ff6eba703c403c9bee3a7ed953972bdd0f3b8b31eff5938ddd516d83 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225035600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Mon Jun 30 11:16:56 EDT 2025 Sat Nov 29 08:17:49 EST 2025 Tue Nov 18 22:08:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-862b0cf22ff6eba703c403c9bee3a7ed953972bdd0f3b8b31eff5938ddd516d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3199832358?pq-origsite=%requestingapplication% |
| PQID | 3199832358 |
| PQPubID | 2048737 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3199832358 crossref_citationtrail_10_32604_cmc_2024_048347 crossref_primary_10_32604_cmc_2024_048347 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2024 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Kristiani (ref36) 2021; 77 Alghamdi (ref26) 2023; 13 Maučec (ref39) 2019; 50 Paoletti (ref53) 2018; 145 Mirjalili (ref44) 2016; 95 Khan (ref4) 2018; 6 Pan (ref18) 2023; 24 Mirjalili (ref48) 2019; 780 Liu (ref35) 2021; 23 Wu (ref19) 2023; 11 Zare (ref51) 2008; 5 Li (ref28) 2023 Agushaka (ref40) 2022; 17 Wu (ref16) 2023; 11 Bhatti (ref2) 2023; 77 Rashedi (ref45) 2009; 179 Abdollahzadeh (ref46) 2021; 158 Ghaderizadeh (ref13) 2021; 14 Mehta (ref27) 2023; 65 Mei (ref30) 2020; 58 Hashim (ref25) 2023; 260 Ghamisi (ref54) 2016; 13 Okwuashi (ref10) 2020; 103 Hong (ref12) 2020; 59 Lee (ref37) 2019 Chen (ref20) 2023; 15 Mirjalili (ref42) 2015; 89 Mou (ref8) 2017; 55 Zhang (ref33) 2022; 130 Ghamisi (ref52) 2014; 12 Gazagnadou (ref38) 2019 Heidari (ref41) 2019; 97 Song (ref34) 2021; 215 Yang (ref6) 2018; 56 Liu (ref17) 2023; 8 Li (ref3) 2019; 57 Li (ref9) 2012; 51 Shevchik (ref32) 2018; 21 Jia (ref14) Jan. 2024; 35 Liang (ref49) 2013; 201212 Price (ref47) Wu (ref50) 2017 Nikbakht (ref22) 2021; 22 Fan (ref23) 2022; 10 Banadkooki (ref21) 2020; 27 Zhang (ref29) 2020; 1119 Mirjalili (ref43) 2016; 96 Zhang (ref7) 2016; 2016 Falahzadeh (ref24) 2023; 42 Shaik (ref11) 2022; 14 Lu (ref31) 2020; 12 Su (ref5) 2018; 17 Ge (ref15) 2023; 15 Bhatti (ref1) 2023; 229 |
| References_xml | – start-page: 456 year: 2023 ident: ref28 article-title: Fick’s law algorithm with Gaussian mutation: Design and analysis – volume: 13 start-page: 3526 year: 2023 ident: ref26 article-title: Energy hub optimal scheduling and management in the day-ahead market considering renewable energy sources, CHP, electric vehicles, and storage systems using improved Fick’s law algorithm publication-title: Appl. Sci. doi: 10.3390/app13063526 – volume: 11 start-page: 1977 year: 2023 ident: ref16 article-title: CPPE: An improved phasmatodea population evolution algorithm with chaotic maps publication-title: Math. doi: 10.3390/math11091977 – start-page: 830 year: 2019 ident: ref37 article-title: Improving scalability of parallel CNN training by adjusting mini-batch size at run-time – volume: 95 start-page: 51 year: 2016 ident: ref44 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 15 start-page: 848 year: 2023 ident: ref15 article-title: Two-branch convolutional neural network with polarized full attention for hyperspectral image classification publication-title: Remote Sens. doi: 10.3390/rs15030848 – volume: 65 start-page: 1817 year: 2023 ident: ref27 article-title: A novel hybrid Fick’s law algorithm-quasi oppositional-based learning algorithm for solving constrained mechanical design problems publication-title: Mater. Test. doi: 10.1515/mt-2023-0235 – volume: 8 start-page: 35 year: 2023 ident: ref17 article-title: Location and capacity determination of energy storage system based on improved whale optimization algorithm publication-title: J. Netw. Intell. – volume: 50 start-page: 100428 year: 2019 ident: ref39 article-title: A review of the recent use of differential evolution for large-scale global optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.005 – volume: 13 start-page: 1641 year: 2016 ident: ref54 article-title: Hyperspectral data classification using extended extinction profiles publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2600244 – volume: 5 start-page: 256 year: 2008 ident: ref51 article-title: Hyperspectral band selection and endmember detection using sparsity promoting priors publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.915934 – volume: 77 start-page: 5586 year: 2021 ident: ref36 article-title: Air quality monitoring and analysis with dynamic training using deep learning publication-title: J. Supercomput. doi: 10.1007/s11227-020-03492-8 – volume: 97 start-page: 849 year: 2019 ident: ref41 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 12 start-page: 309 year: 2014 ident: ref52 article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2337320 – volume: 17 start-page: 104 year: 2018 ident: ref5 article-title: Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12314 – volume: 11 start-page: 2339 year: 2023 ident: ref19 article-title: CTOA: Toward a chaotic-based tumbleweed optimization algorithm publication-title: Math. doi: 10.3390/math11102339 – start-page: 2142 year: 2019 ident: ref38 article-title: Optimal mini-batch and step sizes for saga – volume: 103 start-page: 107298 year: 2020 ident: ref10 article-title: Deep support vector machine for hyperspectral image classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107298 – volume: 260 start-page: 110146 year: 2023 ident: ref25 article-title: Fick’s law algorithm: A physical law-based algorithm for numerical optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110146 – volume: 229 start-page: 120496 year: 2023 ident: ref1 article-title: MFFCG–Multi feature fusion for hyperspectral image classification using graph attention network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120496 – volume: 23 start-page: 2188 year: 2021 ident: ref35 article-title: Human memory update strategy: A multi-layer template update mechanism for remote visual monitoring publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3065580 – volume: 17 start-page: e0275346 year: 2022 ident: ref40 article-title: Advanced dwarf mongoose optimization for solving CEC, 2011 and CEC, 2017 benchmark problems publication-title: PLoS One doi: 10.1371/journal.pone.0275346 – volume: 35 start-page: 1157 year: Jan. 2024 ident: ref14 article-title: Graph-in-graph convolutional network for hyperspectral image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3182715 – volume: 96 start-page: 120 year: 2016 ident: ref43 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – year: 2017 ident: ref50 article-title: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization publication-title: Technic. Report – volume: 130 start-page: 109657 year: 2022 ident: ref33 article-title: Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned aerial vehicles publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109657 – volume: 58 start-page: 4590 year: 2020 ident: ref30 article-title: Spatial and spectral joint super-resolution using convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2964288 – volume: 12 start-page: 2659 year: 2020 ident: ref31 article-title: Recent advances of hyperspectral imaging technology and applications in agriculture publication-title: Remote Sens. doi: 10.3390/rs12162659 – volume: 42 start-page: 449 year: 2023 ident: ref24 article-title: Deep convolutional neural network and gray wolf optimization algorithm for speech emotion recognition publication-title: Circ., Syst. Signal Process. doi: 10.1007/s00034-022-02130-3 – volume: 55 start-page: 3639 year: 2017 ident: ref8 article-title: Deep recurrent neural networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2636241 – volume: 1119 start-page: 41 year: 2020 ident: ref29 article-title: Understanding the learning mechanism of convolutional neural networks in spectral analysis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.03.055 – volume: 77 start-page: 681 year: 2023 ident: ref2 article-title: Deep learning-based trees disease recognition and classification using hyperspectral data publication-title: Comput., Mater. Contin. – volume: 179 start-page: 2232 year: 2009 ident: ref45 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 201212 start-page: 281 year: 2013 ident: ref49 article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization publication-title: Technic. Report – volume: 145 start-page: 120 year: 2018 ident: ref53 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.021 – volume: 51 start-page: 844 year: 2012 ident: ref9 article-title: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2205263 – volume: 10 start-page: 3019 year: 2022 ident: ref23 article-title: A hybrid sparrow search algorithm of the hyperparameter optimization in deep learning publication-title: Math. doi: 10.3390/math10163019 – volume: 27 start-page: 38094 year: 2020 ident: ref21 article-title: Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09876-w – volume: 21 start-page: 598 year: 2018 ident: ref32 article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks publication-title: Addit. Manufact. doi: 10.1016/j.addma.2017.11.012 – start-page: 187 ident: ref47 publication-title: Handbook of Optimization: From Classical to Modern Approach – volume: 15 start-page: 124 year: 2023 ident: ref20 article-title: A genetic algorithm for the waitable time-varying multi-depot green vehicle routing problem publication-title: Symmetry doi: 10.3390/sym15010124 – volume: 57 start-page: 6690 year: 2019 ident: ref3 article-title: Deep learning for hyperspectral image classification: An overview publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2907932 – volume: 780 start-page: 43 year: 2019 ident: ref48 article-title: Genetic algorithm publication-title: Evol. Algo. Neural Netw.: Theory Appl. doi: 10.1007/978-3-319-93025-1_4 – volume: 158 start-page: 107408 year: 2021 ident: ref46 article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 215 start-page: 106425 year: 2021 ident: ref34 article-title: Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106425 – volume: 2016 start-page: 7954154 year: 2016 ident: ref7 article-title: Deep learning for remote sensing image understanding publication-title: J. Sens. doi: 10.1155/2016/7954154 – volume: 6 start-page: 14118 year: 2018 ident: ref4 article-title: Modern trends in hyperspectral image analysis: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812999 – volume: 89 start-page: 228 year: 2015 ident: ref42 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 56 start-page: 5408 year: 2018 ident: ref6 article-title: Hyperspectral image classification with deep learning models publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2815613 – volume: 59 start-page: 5966 year: 2020 ident: ref12 article-title: Graph convolutional networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3015157 – volume: 22 start-page: 407 year: 2021 ident: ref22 article-title: Optimizing the neural network hyperparameters utilizing genetic algorithm publication-title: J. Zhejiang Univ.-Sci. A doi: 10.1631/jzus.A2000384 – volume: 24 start-page: 1415 year: 2023 ident: ref18 article-title: Martial art learning optimization: A novel metaheuristic algorithm for night image enhancement publication-title: J. Internet Technol. doi: 10.53106/160792642023122407003 – volume: 14 start-page: 7570 year: 2021 ident: ref13 article-title: Hyperspectral image classification using a hybrid 3D-2D convolutional neural networks publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3099118 – volume: 14 start-page: 6279 year: 2022 ident: ref11 article-title: Gaussian mutation-spider monkey optimization (GM-SMO) model for remote sensing scene classification publication-title: Remote Sens. doi: 10.3390/rs14246279 |
| SSID | ssj0036390 |
| Score | 2.5499594 |
| Snippet | Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 19 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Datasets Evolutionary computation Heuristic methods Hyperspectral imaging Image classification Mutation Neural networks Optimization Performance enhancement Remote sensing Support vector machines |
| Title | A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification |
| URI | https://www.proquest.com/docview/3199832358 |
| Volume | 79 |
| WOSCitedRecordID | wos001225035600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnuJRkAcWBtM0dppkQgVRgQRVhUCCKYpfEqKkhRRY-Rv8PX4Jd47DY2FhiKwocRTpzt897LuPkL1IQmScdjQDW54woW3KkkhppgMVaKm7aSqUI5uIB4Pk5iYd-oRb6Y9V1pjogFqPFebI2xyLwTgWdh5OHhmyRuHuqqfQmCVz2KlMNMjc0clgeFljMQf760oiI9FlIVizaqMSXJZAtNUDtjAMxQF2VUd6lZ-G6TcuO2PTb_73N5fIonczaa_Si2UyY4oV0qwpHKhf0auk7FFkoMd0Bz0eFy9eEeEOu3a4wR0Tp8iZNqJHYPM0HRe0p_MJAiXt36n7j7f3kp7nrxQcYHoKgW1Vv4nTzx4Ar6hj3sQzSU4N1sh1_-Tq-JR5HgameIdPGQQ9MlA2DK3tGpkDRigBVyqN4XlsdBqBUxNKrQPLZSJ5x1gbpTzRWkedrk74OmkU48JsEBoHeRjYSEJQqISKLXw6tCKKlUlc0e4maddCyJRvUo5cGaMMghUntgzElqHYskpsm2T_a8akatDxx7utWmiZX6pl9i2xrb8fb5MF_FaVf2mRxvTp2eyQefUyvSufdr3mwTg8uxjefgI8XuTV |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkulKfoA9gDHDgscXbXsX1AKBSiRE2jSBSpnIz3JVW0ThqHVr3xN_on-qP4JcysbR6X3nrgYFmW1yvZ-3m-md2d-QBexhoj46xnOXJ5ypX1GU9jY7mNTGS17WeZMkFsIplO08PDbLYGV20uDG2rbG1iMNR2bmiOvCspGUxSYue7xSkn1ShaXW0lNGpY7LmLcwzZqrfjDzi-r4QYfjzYHfFGVYAb2ZMrji68jowXwvu-0wUi3ig8Mu2cLBJnsxgpWmhrIy91qmXPeR9nMrXWxr2-TSX2ewvWFYI97cD6bLw_-9Lafol8H1IwY9XnAtmzXhhFFylSXXNCJROFekNV3EnO5W8i_JcHArkNN_63z3If7jVuNBvUuH8Aa658CButRAVrLNYjqAbsE-WSLrHx7rw8a340vKKqJOEUtsEz0oQ7Zu-R0y2bl2xgiwURARsemW8_f1xWbFKcM3Tw2QgD9zo_lR4fn6A9ZkFZlPZcBZg_hs838upPoFPOS_cUWBIVIvKxxqDXKJN47Fp4FSfGpSEpeRO67aDnpinCTlogxzkGYwEmOcIkJ5jkNUw24fXvJxZ1AZJr2u60IMkbU1TlfxCydf3tF3BndLA_ySfj6d423KV-67mmHeislt_dM7htzlZH1fJ5g3oGX28aUb8A0WxC2g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Convolutional+Neural+Network+Model+Based+on+Adaptive+Fick%E2%80%99s+Law+for+Hyperspectral+Image+Classification&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wu%2C+Tsu-Yang&rft.au=Li%2C+Haonan&rft.au=Kumari%2C+Saru&rft.au=Chen%2C+Chien-Ming&rft.date=2024&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=79&rft.issue=1&rft.spage=19&rft.epage=46&rft_id=info:doi/10.32604%2Fcmc.2024.048347&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2024_048347 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |