Optimization of Nonanalog Monte Carlo Games Using Differential Operator Sampling

The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nuclear science and engineering Ročník 124; číslo 2; s. 291 - 308
Hlavní autori: Sarkar, P. K., Rief, Herbert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: La Grange Park, IL Taylor & Francis 01.10.1996
American Nuclear Society
Predmet:
ISSN:0029-5639, 1943-748X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes.
AbstractList The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes.
Author Rief, Herbert
Sarkar, P. K.
Author_xml – sequence: 1
  givenname: P. K.
  surname: Sarkar
  fullname: Sarkar, P. K.
  organization: Commission of the European Communities
– sequence: 2
  givenname: Herbert
  surname: Rief
  fullname: Rief, Herbert
  organization: Commission of the European Communities
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2481456$$DView record in Pascal Francis
BookMark eNp1UE1LAzEUDFLBtnr0noPX1c0m-5FjqbUKtRVawdvymiYlkk2WJCD117t27UX09Hi8mXkzM0ID66xE6Jqkt4SSKrtbrme8SCZZlZf8DA0JZzQpWfU2QMM0zXiSF5RfoFEI791aMJ4P0cuqjbrRnxC1s9gpvHQWLBi3x8_ORomn4I3Dc2hkwK9B2z2-10pJL23UYPCqlR6i83gNTWu68yU6V2CCvPqZY7R5mG2mj8liNX-aThaJoITGpGCdGZYpJmUJO74rlCAqzRnbioqlZSooyKoqdpRImWfAGclLJlRaFJzlW07H6KaXbSEIMMqDFTrUrdcN-EOdsYp8fxgj2sOEdyF4qWqh4zFr9KBNTdL6WF19rK7uq-tYyS_WSfc_fNXjtVXON_DhvNnVEQ7G-ZMz-jf1CzNnhH4
CODEN NSENAO
CitedBy_id crossref_primary_10_1016_S0149_1970_99_00024_4
crossref_primary_10_1006_jcph_1998_6039
crossref_primary_10_13182_NSE98_A2006
crossref_primary_10_1016_S0969_8043_00_00233_5
Cites_doi 10.13182/NSE79-A18922
10.1016/0029-5493(85)90069-X
10.13182/NSE79-A20404
10.1080/00207729208949448
10.13182/NSE83-A15460
10.1016/0306-4549(94)90073-6
10.13182/NSE83-A18212
10.13182/NSE79-A20146
10.1016/0306-4549(92)90020-C
10.13182/NSE84-A17708
10.1016/0306-4549(84)90064-1
10.13182/NSE80-A18947
10.13182/NSE82-A21413
10.1137/0708052
10.1006/jcph.1994.1041
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC 1996
1997 INIST-CNRS
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC 1996
– notice: 1997 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.13182/NSE96-A28579
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1943-748X
EndPage 308
ExternalDocumentID 2481456
10_13182_NSE96_A28579
11856340
Genre Article
GroupedDBID -~X
123
85S
8WZ
A6W
AATVF
ABEFU
ABJNI
ABZIJ
ACBEA
ACKDS
ACNCT
AENEX
AEYOC
AFGMD
AKOOK
ALMA_UNASSIGNED_HOLDINGS
AQTUD
BVUPT
F5P
H13
JHRKR
M4Z
NUSFT
RBQ
S10
TCJPB
TDBHL
TFL
TFT
TFW
ZCG
.GJ
0BK
30N
6TJ
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AANMX
AAPUL
AAQRR
AAYXX
ABCES
ABGQB
ABLIJ
ABPAQ
ABXUL
ABXYU
ACLZH
ACTIO
ADGTB
ADPDO
AEISY
AFDUV
AFFNX
AFRVT
AGDLA
AHDZW
AHWVO
AIJEM
AIPZZ
AIYEW
AKBVH
ALQZU
AQRUH
AWYRJ
BLEHA
CCCUG
CITATION
DGEBU
DWNMW
EBKLY
EBS
EJD
IPNFZ
KYCEM
LJTGL
O9-
RIG
RNANH
ROSJB
RTWRZ
TASJS
TBQAZ
TCY
TEN
TEX
TTHFI
TUROJ
WHG
YYP
ZGOLN
ADYSH
IQODW
ID FETCH-LOGICAL-c313t-6456342f4ee7ad9d6fc1f0544bc84070c3ae886d31ee52a941574cf066945b93
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_13182_NSE96_A28579&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5639
IngestDate Mon Jul 21 09:17:23 EDT 2025
Tue Nov 18 22:32:52 EST 2025
Sat Nov 29 06:13:32 EST 2025
Mon Oct 20 23:46:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Monte Carlo method
Algorithms
Sampling theory
Random walk
Differential operator
Computerized simulation
Optimization
Neutron transport
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-6456342f4ee7ad9d6fc1f0544bc84070c3ae886d31ee52a941574cf066945b93
PageCount 18
ParticipantIDs pascalfrancis_primary_2481456
crossref_primary_10_13182_NSE96_A28579
crossref_citationtrail_10_13182_NSE96_A28579
informaworld_taylorfrancis_310_13182_NSE96_A28579
PublicationCentury 1900
PublicationDate 1996-10-01
PublicationDateYYYYMMDD 1996-10-01
PublicationDate_xml – month: 10
  year: 1996
  text: 1996-10-01
  day: 01
PublicationDecade 1990
PublicationPlace La Grange Park, IL
PublicationPlace_xml – name: La Grange Park, IL
PublicationTitle Nuclear science and engineering
PublicationYear 1996
Publisher Taylor & Francis
American Nuclear Society
Publisher_xml – name: Taylor & Francis
– name: American Nuclear Society
References SARKAR P. K. (CIT0001) 1979; 70
BOOTH T. E. (CIT0008) 1979; 71
DUBI A. (CIT0013) 1979; 70
BOOTH T. E. (CIT0009) 1982; 41
CIT0020
RIEF H. (CIT0018) 1996; 23
SARKAR P. K. (CIT0002) 1980; 74
LUX I. (CIT0007) 1983; 84
RIEF H. (CIT0015) 1994; 111
SARKAR P. K. (CIT0003) 1984; 87
SARKAR P. K. (CIT0004) 1992; 19
BOOTH T. E. (CIT0010) 1985; 89
RIEF H. (CIT0016) 1984; 11
LUX I. (CIT0006) 1991
RIEF H. (CIT0017) 1988
SARKAR P. K. (CIT0005) 1994; 21
DWIVEDI S. R. (CIT0011) 1982; 80
GUPTA H. C. (CIT0012) 1983; 83
RUBINSTEIN R. Y. (CIT0019) 1986
SPANIER J. (CIT0014) 1971; 8
References_xml – volume: 70
  start-page: 1
  year: 1979
  ident: CIT0013
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE79-A18922
– volume: 89
  start-page: 305
  year: 1985
  ident: CIT0010
  publication-title: Nucl. Sci. Eng.
  doi: 10.1016/0029-5493(85)90069-X
– volume-title: Monte Carlo Particle Transport Methods: Neutron and Photon Calculations
  year: 1991
  ident: CIT0006
– volume: 71
  start-page: 128
  year: 1979
  ident: CIT0008
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE79-A20404
– ident: CIT0020
  doi: 10.1080/00207729208949448
– volume: 84
  start-page: 388
  year: 1983
  ident: CIT0007
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE83-A15460
– volume: 21
  start-page: 641
  year: 1994
  ident: CIT0005
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(94)90073-6
– volume: 83
  start-page: 187
  year: 1983
  ident: CIT0012
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE83-A18212
– volume-title: CRC Handbook on Uncertainty Analysis
  year: 1988
  ident: CIT0017
– volume: 70
  start-page: 243
  year: 1979
  ident: CIT0001
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE79-A20146
– volume: 19
  start-page: 253
  year: 1992
  ident: CIT0004
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(92)90020-C
– volume: 87
  start-page: 136
  year: 1984
  ident: CIT0003
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE84-A17708
– volume: 11
  start-page: 455
  year: 1984
  ident: CIT0016
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(84)90064-1
– volume: 74
  start-page: 52
  year: 1980
  ident: CIT0002
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE80-A18947
– volume: 80
  start-page: 172
  year: 1982
  ident: CIT0011
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE82-A21413
– volume: 8
  start-page: 548
  year: 1971
  ident: CIT0014
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0708052
– volume: 111
  start-page: 33
  year: 1994
  ident: CIT0015
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1041
– volume-title: Monte Carlo Optimization, Simulation and Sensitivity of Queing Networks
  year: 1986
  ident: CIT0019
– volume: 41
  start-page: 308
  year: 1982
  ident: CIT0009
  publication-title: Trans. Am. Nucl. Soc.
– volume: 23
  year: 1996
  ident: CIT0018
  publication-title: Adv. Nucl. Sci. Technol.
SSID ssj0026495
Score 1.4560312
Snippet The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms Computational techniques
Exact sciences and technology
Mathematical methods in physics
Monte carlo and statistical methods
Neutron physics
Neutron transport: diffusion and moderation
Nuclear engineering and nuclear power studies
Nuclear physics
Numerical approximation and analysis
Numerical optimization
Physics
Title Optimization of Nonanalog Monte Carlo Games Using Differential Operator Sampling
URI https://www.tandfonline.com/doi/abs/10.13182/NSE96-A28579
Volume 124
WOSCitedRecordID wos10_13182_NSE96_A28579&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1943-748X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026495
  issn: 0029-5639
  databaseCode: TFW
  dateStart: 19560301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA4yFLz4W5w6yUE8WVybNG2OY256sRts4G4lSRMRZje26t_vS5qNDfGi96QtL6_vfS_58j6EbknCYxWJKBC0LQOLoAMJmSwwBQ-5KJTQXmwiybJ0MuHDDakvS6u0NbSpG0W4WG1_biFrBRJwweghG_U4CzpRGif26h4geuvb4_7rutRilMcrckcMSdh31_wxeysbbfUqtSRJsQQ7mVrgYiPr9A__8b1H6MBDTdypfeMY7ejyBO05yqdanqLhAKLFh7-GiWcGZwDKS7uXg19syyrcFYvpDD9ZGi12zAL86NVUICpM8WCu3RE9HgnLSi_fztC43xt3nwOvrxAoEpIqYACeCI0M1ToRBS-YUaEBCEelgrIvaSsidJqygoRax5HgkOsTqgyAFE5jyck5apSzUl8gDKgFhiYApwyjTKQyJoxIRUPNWCGZbqL7lZlz5XuPWwmMae4O1MBGubNRXtuoie7Ww-d1043fBoaba5ZXbpfDr1hOfpnT2lrY9RsimoZgkcs_PPMK7Ts2tyP5XaNGtfjULbSrvqr35eLGueY3dSjkNg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54Ci68EeOZA-JExdqkaXNEsDHE1k3aJHar0jRBSKObtsHvx0mzaRPiAnenrezU_ux8sRG6JhEPZSACT9Bq5hkE7WUQyTydc5-LXArlhk1ESRL3-7zjWJUTR6s0ObQuG0VYX21-blOMLsc0ACC-S7o1zrz7IA4jvorWQ4ixhs7Xq7_Oky1GeTijd4QQhl1_zR_Ll-LRUrdSQ5MUE9CULkdcLMSd-u5_vngP7Ti0ie_L7bGPVlRxgDYt61NODlGnDQ7jw93ExEONE8DlhSnn4JbpWoUfxHgwxE-GSYstuQA_uoEq4BgGuD1S9pQed4UhphdvR6hXr_UeGp4bseBJ4pOpxwA_ERpoqlQkcp4zLX0NKI5mEjK_qCqJUHHMcuIrFQaCQ7iPqNSAUzgNM06O0VoxLNQJwgBcQDQCRKUZZSLOQsJIJqmvGMszpirodqbnVLr242YKxiC1Z2qgo9TqKC11VEE3c_FR2XfjN0F_0Wjp1BY6nMlS8suaiyXLzt8Q0NgHjZz-4ZlXaKvRazXT5nPycoa2Lbnbcv7O0dp0_Kku0Ib8mr5Pxpd2n34DyWHoVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06P_DFb3HqNA_ik8W1SdPmcexDRe0GG7i3kqaJCLMbW_X3e5N2Y0N80fekLTe3uSfJyTkIXZOA-9ITniNoPXEMgnYSqGSOTrnLRSqFKs0mgigKh0PeW7L6MrRKs4bWhVCEnavNzz1JdeHSAHj4Luq3OXMaXugHfB1tWFEsSOVB53Wx1mKU-3N2hw9VuJTX_NF9pRytiJUalqSYQaB04XCxVHY6e__44H20W2JN3CiS4wCtqewQbVnOp5wdoV4XpouP8h4mHmscASrPzGYOfjGaVbgppqMxvjc8WmypBbhV2qnAtDDC3YmyZ_S4LwwtPXs7RoNOe9B8cEqDBUcSl-QOA_REqKepUoFIecq0dDVgOJpIWPcFdUmECkOWElcp3xMcin1ApQaUwqmfcHKCKtk4U6cIA2yBpgHgKc0oE2HiE0YSSV3FWJowVUW38zDHshQfNx4Yo9ieqEGMYhujuIhRFd0smk8K1Y3fGrrLYxbndpujHLGY_NKntjKwizd4NHQhImd_eOYV2u61OvHzY_R0jnYss9sS_i5QJZ9-qhralF_5-2x6abP0GwVP5vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Nonanalog+Monte+Carlo+Games+Using+Differential+Operator+Sampling&rft.jtitle=Nuclear+science+and+engineering&rft.au=Sarkar%2C+P.+K.&rft.au=Rief%2C+Herbert&rft.date=1996-10-01&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=124&rft.issue=2&rft.spage=291&rft.epage=308&rft_id=info:doi/10.13182%2FNSE96-A28579&rft.externalDocID=11856340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon