Optimization of Nonanalog Monte Carlo Games Using Differential Operator Sampling
The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate t...
Uložené v:
| Vydané v: | Nuclear science and engineering Ročník 124; číslo 2; s. 291 - 308 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
La Grange Park, IL
Taylor & Francis
01.10.1996
American Nuclear Society |
| Predmet: | |
| ISSN: | 0029-5639, 1943-748X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes. |
|---|---|
| AbstractList | The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes. |
| Author | Rief, Herbert Sarkar, P. K. |
| Author_xml | – sequence: 1 givenname: P. K. surname: Sarkar fullname: Sarkar, P. K. organization: Commission of the European Communities – sequence: 2 givenname: Herbert surname: Rief fullname: Rief, Herbert organization: Commission of the European Communities |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2481456$$DView record in Pascal Francis |
| BookMark | eNp1UE1LAzEUDFLBtnr0noPX1c0m-5FjqbUKtRVawdvymiYlkk2WJCD117t27UX09Hi8mXkzM0ID66xE6Jqkt4SSKrtbrme8SCZZlZf8DA0JZzQpWfU2QMM0zXiSF5RfoFEI791aMJ4P0cuqjbrRnxC1s9gpvHQWLBi3x8_ORomn4I3Dc2hkwK9B2z2-10pJL23UYPCqlR6i83gNTWu68yU6V2CCvPqZY7R5mG2mj8liNX-aThaJoITGpGCdGZYpJmUJO74rlCAqzRnbioqlZSooyKoqdpRImWfAGclLJlRaFJzlW07H6KaXbSEIMMqDFTrUrdcN-EOdsYp8fxgj2sOEdyF4qWqh4zFr9KBNTdL6WF19rK7uq-tYyS_WSfc_fNXjtVXON_DhvNnVEQ7G-ZMz-jf1CzNnhH4 |
| CODEN | NSENAO |
| CitedBy_id | crossref_primary_10_1016_S0149_1970_99_00024_4 crossref_primary_10_1006_jcph_1998_6039 crossref_primary_10_13182_NSE98_A2006 crossref_primary_10_1016_S0969_8043_00_00233_5 |
| Cites_doi | 10.13182/NSE79-A18922 10.1016/0029-5493(85)90069-X 10.13182/NSE79-A20404 10.1080/00207729208949448 10.13182/NSE83-A15460 10.1016/0306-4549(94)90073-6 10.13182/NSE83-A18212 10.13182/NSE79-A20146 10.1016/0306-4549(92)90020-C 10.13182/NSE84-A17708 10.1016/0306-4549(84)90064-1 10.13182/NSE80-A18947 10.13182/NSE82-A21413 10.1137/0708052 10.1006/jcph.1994.1041 |
| ContentType | Journal Article |
| Copyright | Copyright © Taylor & Francis Group, LLC 1996 1997 INIST-CNRS |
| Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC 1996 – notice: 1997 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.13182/NSE96-A28579 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1943-748X |
| EndPage | 308 |
| ExternalDocumentID | 2481456 10_13182_NSE96_A28579 11856340 |
| Genre | Article |
| GroupedDBID | -~X 123 85S 8WZ A6W AATVF ABEFU ABJNI ABZIJ ACBEA ACKDS ACNCT AENEX AEYOC AFGMD AKOOK ALMA_UNASSIGNED_HOLDINGS AQTUD BVUPT F5P H13 JHRKR M4Z NUSFT RBQ S10 TCJPB TDBHL TFL TFT TFW ZCG .GJ 0BK 30N 6TJ AAGDL AAHIA AAJMT AALDU AAMIU AANMX AAPUL AAQRR AAYXX ABCES ABGQB ABLIJ ABPAQ ABXUL ABXYU ACLZH ACTIO ADGTB ADPDO AEISY AFDUV AFFNX AFRVT AGDLA AHDZW AHWVO AIJEM AIPZZ AIYEW AKBVH ALQZU AQRUH AWYRJ BLEHA CCCUG CITATION DGEBU DWNMW EBKLY EBS EJD IPNFZ KYCEM LJTGL O9- RIG RNANH ROSJB RTWRZ TASJS TBQAZ TCY TEN TEX TTHFI TUROJ WHG YYP ZGOLN ADYSH IQODW |
| ID | FETCH-LOGICAL-c313t-6456342f4ee7ad9d6fc1f0544bc84070c3ae886d31ee52a941574cf066945b93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_13182_NSE96_A28579&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5639 |
| IngestDate | Mon Jul 21 09:17:23 EDT 2025 Tue Nov 18 22:32:52 EST 2025 Sat Nov 29 06:13:32 EST 2025 Mon Oct 20 23:46:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Monte Carlo method Algorithms Sampling theory Random walk Differential operator Computerized simulation Optimization Neutron transport |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-6456342f4ee7ad9d6fc1f0544bc84070c3ae886d31ee52a941574cf066945b93 |
| PageCount | 18 |
| ParticipantIDs | pascalfrancis_primary_2481456 crossref_primary_10_13182_NSE96_A28579 crossref_citationtrail_10_13182_NSE96_A28579 informaworld_taylorfrancis_310_13182_NSE96_A28579 |
| PublicationCentury | 1900 |
| PublicationDate | 1996-10-01 |
| PublicationDateYYYYMMDD | 1996-10-01 |
| PublicationDate_xml | – month: 10 year: 1996 text: 1996-10-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | La Grange Park, IL |
| PublicationPlace_xml | – name: La Grange Park, IL |
| PublicationTitle | Nuclear science and engineering |
| PublicationYear | 1996 |
| Publisher | Taylor & Francis American Nuclear Society |
| Publisher_xml | – name: Taylor & Francis – name: American Nuclear Society |
| References | SARKAR P. K. (CIT0001) 1979; 70 BOOTH T. E. (CIT0008) 1979; 71 DUBI A. (CIT0013) 1979; 70 BOOTH T. E. (CIT0009) 1982; 41 CIT0020 RIEF H. (CIT0018) 1996; 23 SARKAR P. K. (CIT0002) 1980; 74 LUX I. (CIT0007) 1983; 84 RIEF H. (CIT0015) 1994; 111 SARKAR P. K. (CIT0003) 1984; 87 SARKAR P. K. (CIT0004) 1992; 19 BOOTH T. E. (CIT0010) 1985; 89 RIEF H. (CIT0016) 1984; 11 LUX I. (CIT0006) 1991 RIEF H. (CIT0017) 1988 SARKAR P. K. (CIT0005) 1994; 21 DWIVEDI S. R. (CIT0011) 1982; 80 GUPTA H. C. (CIT0012) 1983; 83 RUBINSTEIN R. Y. (CIT0019) 1986 SPANIER J. (CIT0014) 1971; 8 |
| References_xml | – volume: 70 start-page: 1 year: 1979 ident: CIT0013 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE79-A18922 – volume: 89 start-page: 305 year: 1985 ident: CIT0010 publication-title: Nucl. Sci. Eng. doi: 10.1016/0029-5493(85)90069-X – volume-title: Monte Carlo Particle Transport Methods: Neutron and Photon Calculations year: 1991 ident: CIT0006 – volume: 71 start-page: 128 year: 1979 ident: CIT0008 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE79-A20404 – ident: CIT0020 doi: 10.1080/00207729208949448 – volume: 84 start-page: 388 year: 1983 ident: CIT0007 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE83-A15460 – volume: 21 start-page: 641 year: 1994 ident: CIT0005 publication-title: Ann. Nucl. Energy doi: 10.1016/0306-4549(94)90073-6 – volume: 83 start-page: 187 year: 1983 ident: CIT0012 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE83-A18212 – volume-title: CRC Handbook on Uncertainty Analysis year: 1988 ident: CIT0017 – volume: 70 start-page: 243 year: 1979 ident: CIT0001 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE79-A20146 – volume: 19 start-page: 253 year: 1992 ident: CIT0004 publication-title: Ann. Nucl. Energy doi: 10.1016/0306-4549(92)90020-C – volume: 87 start-page: 136 year: 1984 ident: CIT0003 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE84-A17708 – volume: 11 start-page: 455 year: 1984 ident: CIT0016 publication-title: Ann. Nucl. Energy doi: 10.1016/0306-4549(84)90064-1 – volume: 74 start-page: 52 year: 1980 ident: CIT0002 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE80-A18947 – volume: 80 start-page: 172 year: 1982 ident: CIT0011 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE82-A21413 – volume: 8 start-page: 548 year: 1971 ident: CIT0014 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0708052 – volume: 111 start-page: 33 year: 1994 ident: CIT0015 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1041 – volume-title: Monte Carlo Optimization, Simulation and Sensitivity of Queing Networks year: 1986 ident: CIT0019 – volume: 41 start-page: 308 year: 1982 ident: CIT0009 publication-title: Trans. Am. Nucl. Soc. – volume: 23 year: 1996 ident: CIT0018 publication-title: Adv. Nucl. Sci. Technol. |
| SSID | ssj0026495 |
| Score | 1.4560312 |
| Snippet | The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important... |
| SourceID | pascalfrancis crossref informaworld |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 291 |
| SubjectTerms | Computational techniques Exact sciences and technology Mathematical methods in physics Monte carlo and statistical methods Neutron physics Neutron transport: diffusion and moderation Nuclear engineering and nuclear power studies Nuclear physics Numerical approximation and analysis Numerical optimization Physics |
| Title | Optimization of Nonanalog Monte Carlo Games Using Differential Operator Sampling |
| URI | https://www.tandfonline.com/doi/abs/10.13182/NSE96-A28579 |
| Volume | 124 |
| WOSCitedRecordID | wos10_13182_NSE96_A28579&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1943-748X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026495 issn: 0029-5639 databaseCode: TFW dateStart: 19560301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA4yFLz4W5w6yUE8WVybNG2OY256sRts4G4lSRMRZje26t_vS5qNDfGi96QtL6_vfS_58j6EbknCYxWJKBC0LQOLoAMJmSwwBQ-5KJTQXmwiybJ0MuHDDakvS6u0NbSpG0W4WG1_biFrBRJwweghG_U4CzpRGif26h4geuvb4_7rutRilMcrckcMSdh31_wxeysbbfUqtSRJsQQ7mVrgYiPr9A__8b1H6MBDTdypfeMY7ejyBO05yqdanqLhAKLFh7-GiWcGZwDKS7uXg19syyrcFYvpDD9ZGi12zAL86NVUICpM8WCu3RE9HgnLSi_fztC43xt3nwOvrxAoEpIqYACeCI0M1ToRBS-YUaEBCEelgrIvaSsidJqygoRax5HgkOsTqgyAFE5jyck5apSzUl8gDKgFhiYApwyjTKQyJoxIRUPNWCGZbqL7lZlz5XuPWwmMae4O1MBGubNRXtuoie7Ww-d1043fBoaba5ZXbpfDr1hOfpnT2lrY9RsimoZgkcs_PPMK7Ts2tyP5XaNGtfjULbSrvqr35eLGueY3dSjkNg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54Ci68EeOZA-JExdqkaXNEsDHE1k3aJHar0jRBSKObtsHvx0mzaRPiAnenrezU_ux8sRG6JhEPZSACT9Bq5hkE7WUQyTydc5-LXArlhk1ESRL3-7zjWJUTR6s0ObQuG0VYX21-blOMLsc0ACC-S7o1zrz7IA4jvorWQ4ixhs7Xq7_Oky1GeTijd4QQhl1_zR_Ll-LRUrdSQ5MUE9CULkdcLMSd-u5_vngP7Ti0ie_L7bGPVlRxgDYt61NODlGnDQ7jw93ExEONE8DlhSnn4JbpWoUfxHgwxE-GSYstuQA_uoEq4BgGuD1S9pQed4UhphdvR6hXr_UeGp4bseBJ4pOpxwA_ERpoqlQkcp4zLX0NKI5mEjK_qCqJUHHMcuIrFQaCQ7iPqNSAUzgNM06O0VoxLNQJwgBcQDQCRKUZZSLOQsJIJqmvGMszpirodqbnVLr242YKxiC1Z2qgo9TqKC11VEE3c_FR2XfjN0F_0Wjp1BY6nMlS8suaiyXLzt8Q0NgHjZz-4ZlXaKvRazXT5nPycoa2Lbnbcv7O0dp0_Kku0Ib8mr5Pxpd2n34DyWHoVw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06P_DFb3HqNA_ik8W1SdPmcexDRe0GG7i3kqaJCLMbW_X3e5N2Y0N80fekLTe3uSfJyTkIXZOA-9ITniNoPXEMgnYSqGSOTrnLRSqFKs0mgigKh0PeW7L6MrRKs4bWhVCEnavNzz1JdeHSAHj4Luq3OXMaXugHfB1tWFEsSOVB53Wx1mKU-3N2hw9VuJTX_NF9pRytiJUalqSYQaB04XCxVHY6e__44H20W2JN3CiS4wCtqewQbVnOp5wdoV4XpouP8h4mHmscASrPzGYOfjGaVbgppqMxvjc8WmypBbhV2qnAtDDC3YmyZ_S4LwwtPXs7RoNOe9B8cEqDBUcSl-QOA_REqKepUoFIecq0dDVgOJpIWPcFdUmECkOWElcp3xMcin1ApQaUwqmfcHKCKtk4U6cIA2yBpgHgKc0oE2HiE0YSSV3FWJowVUW38zDHshQfNx4Yo9ieqEGMYhujuIhRFd0smk8K1Y3fGrrLYxbndpujHLGY_NKntjKwizd4NHQhImd_eOYV2u61OvHzY_R0jnYss9sS_i5QJZ9-qhralF_5-2x6abP0GwVP5vs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Nonanalog+Monte+Carlo+Games+Using+Differential+Operator+Sampling&rft.jtitle=Nuclear+science+and+engineering&rft.au=Sarkar%2C+P.+K.&rft.au=Rief%2C+Herbert&rft.date=1996-10-01&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=124&rft.issue=2&rft.spage=291&rft.epage=308&rft_id=info:doi/10.13182%2FNSE96-A28579&rft.externalDocID=11856340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon |