A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder
Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in t...
Saved in:
| Published in: | Computers, materials & continua Vol. 68; no. 3; pp. 3915 - 3929 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Henderson
Tech Science Press
2021
|
| Subjects: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To resolve this issue, an intrusion detection system (IDS) can be designed to protect CPSs. When the IDS detects an anomaly, it instantly takes the necessary actions to avoid harming the system. In this study, we introduce a new parameter-tuned deep-stacked autoencoder based on deep learning (DL), called PT-DSAE, for the IDS in CPSs. The proposed model involves preprocessing, feature extraction, parameter tuning, and classification. First, data preprocessing takes place to eliminate the noise present in the data. Next, a DL-based DSAE model is applied to detect anomalies in the CPS. In addition, hyperparameter tuning of the DSAE takes place using a search-and-rescue optimization algorithm to tune the parameters of the DSAE, such as the number of hidden layers, batch size, epoch count, and learning rate. To assess the experimental outcomes of the PT-DSAE model, a series of experiments were performed using data from a sensor-based CPS. Moreover, a detailed comparative analysis was performed to ensure the effective detection outcome of the PT-DSAE technique. The experimental results obtained verified the superior performance on the applied data over the compared methods. |
|---|---|
| AbstractList | Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To resolve this issue, an intrusion detection system (IDS) can be designed to protect CPSs. When the IDS detects an anomaly, it instantly takes the necessary actions to avoid harming the system. In this study, we introduce a new parameter-tuned deep-stacked autoencoder based on deep learning (DL), called PT-DSAE, for the IDS in CPSs. The proposed model involves preprocessing, feature extraction, parameter tuning, and classification. First, data preprocessing takes place to eliminate the noise present in the data. Next, a DL-based DSAE model is applied to detect anomalies in the CPS. In addition, hyperparameter tuning of the DSAE takes place using a search-and-rescue optimization algorithm to tune the parameters of the DSAE, such as the number of hidden layers, batch size, epoch count, and learning rate. To assess the experimental outcomes of the PT-DSAE model, a series of experiments were performed using data from a sensor-based CPS. Moreover, a detailed comparative analysis was performed to ensure the effective detection outcome of the PT-DSAE technique. The experimental results obtained verified the superior performance on the applied data over the compared methods. |
| Author | O. Aljehane, Nojood |
| Author_xml | – sequence: 1 givenname: Nojood surname: Aljehane middlename: O fullname: Aljehane, Nojood O |
| BookMark | eNp1kM1rwkAQxZdioWp77zHQc-x-ZNfsUeyXILSgnpfNZGxjzcbubg757xurh1Load4M772B34gMXOOQkFtGJ4Irmt1DDRNOOZtQNtVUXpAhk5lKOedq8EtfkVEIO0qFEpoOST1LVgitx2Thom9D1bjkASNCPKpVFyLWSeWSeVegP3x0oQK7P99DsgmVe09s8ma9rfuUT9etw7JvwEO6ihY--2XWxgYdNCX6a3K5tfuAN-c5Jpunx_X8JV2-Pi_ms2UKgomYSswsVZkoFGbAmdWlzHUx1QXm2iIALXMtJC3BcqEht1ZOtxmzktOiUKBBjMndqffgm68WQzS7pvWuf2m4FFJxmuWsd9GTC3wTgsetOfiqtr4zjJofqKaHao5QzQlqH1F_IlBFe2QVva32_we_AWAdfyQ |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_026187 crossref_primary_10_1016_j_measurement_2021_110145 crossref_primary_10_1002_adc2_208 crossref_primary_10_32604_cmc_2022_023571 crossref_primary_10_32604_cmc_2022_026556 |
| Cites_doi | 10.1080/01431161.2016.1246775 10.1016/j.future.2017.08.043 10.1016/j.automatica.2018.03.024 10.1145/974043.974078 10.1145/3011018 10.1155/2019/2482543 10.1109/JIOT.2018.2883344 10.1007/s11045-018-0575-3 10.1109/ACCESS.2019.2891933 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2021.017905 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 3929 |
| ExternalDocumentID | 10_32604_cmc_2021_017905 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-5e4a0643b6e4c21a9d589b79be89aecc0d89350dca239c8aa57f41a520bb6c9c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648908000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Nov 09 08:19:05 EST 2025 Sat Nov 29 03:13:17 EST 2025 Tue Nov 18 22:33:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-5e4a0643b6e4c21a9d589b79be89aecc0d89350dca239c8aa57f41a520bb6c9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2535620481?pq-origsite=%requestingapplication% |
| PQID | 2535620481 |
| PQPubID | 2048737 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2535620481 crossref_primary_10_32604_cmc_2021_017905 crossref_citationtrail_10_32604_cmc_2021_017905 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2021 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Abbes (ref1) 2004; 1 Yang (ref19) 2019; 9 ref14 Shabani (ref16) 2019; 2019 Li (ref15) 2016; 37 Kosek (ref5) 2016 Diro (ref18) 2018; 82 Krishnamurthy (ref6) 2014 Urbina (ref10) 2016 Djenouri (ref20) 2019; 7 Antonatos (ref2) 2004; 29 Li (ref17) 2018; 6 Goh (ref4) 2017 Kong (ref8) 2017; 62 Kshirsagar (ref3) 2012; 2231 Jones (ref7) 2014 Chibani (ref9) 2018; 93 Lu (ref12) 2008 Mansour (ref21) 2019; 30 Kleinmann (ref11) 2017; 8 Zygouras (ref13) 2015 |
| References_xml | – volume: 37 start-page: 5632 year: 2016 ident: ref15 article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2016.1246775 – volume: 82 start-page: 761 year: 2018 ident: ref18 article-title: Distributed attack detection scheme using deep learning approach for internet of things publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.08.043 – volume: 9 start-page: 23844 year: 2019 ident: ref19 article-title: Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks publication-title: Appl. Sci. – volume: 1 start-page: 404 year: 2004 ident: ref1 article-title: Protocol analysis in intrusion detection using decision tree – volume: 93 start-page: 42 year: 2018 ident: ref9 article-title: Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications publication-title: Automatica doi: 10.1016/j.automatica.2018.03.024 – start-page: 1092 year: 2016 ident: ref10 article-title: Limiting the impact of stealthy attacks on industrial control systems – start-page: 1 year: 2016 ident: ref5 article-title: Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model – start-page: 848 year: 2014 ident: ref7 article-title: Anomaly detection in cyber-physical systems: A formal methods approach – start-page: V002T26A006 year: 2014 ident: ref6 article-title: Scalable anomaly detection and isolation in cyber-physical systems using bayesian networks – volume: 29 start-page: 207 year: 2004 ident: ref2 publication-title: ACM SIGSOFT Software Engineering Notes doi: 10.1145/974043.974078 – volume: 8 start-page: 1 year: 2017 ident: ref11 article-title: Automatic construction of statechart-based anomaly detection models for multi-threaded industrial control systems publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3011018 – volume: 2019 start-page: 1 year: 2019 ident: ref16 article-title: A new optimization algorithm based on search and rescue operations publication-title: Mathematical Problems in Engineering doi: 10.1155/2019/2482543 – volume: 6 start-page: 2093 year: 2018 ident: ref17 article-title: AI-based two-stage intrusion detection for software defined IoT networks publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2018.2883344 – start-page: 140 year: 2017 ident: ref4 article-title: Anomaly detection in cyber physical systems using recurrent neural networks – volume: 30 start-page: 791 year: 2019 ident: ref21 article-title: An evolutionary computing enriched RS attack resilient medical image steganography model for telemedicine applications publication-title: Multidim. Syst. Sign Process doi: 10.1007/s11045-018-0575-3 – start-page: 16 year: 2008 ident: ref12 article-title: Faulty loop data analysis/correction and loop fault detection – start-page: 53 year: 2015 ident: ref13 article-title: Towards detection of faulty traffic sensors in real-time – volume: 62 start-page: 1210 year: 2017 ident: ref8 article-title: Temporal logics for learning and detection of anomalous behavior publication-title: IEEE Trans – volume: 7 start-page: 10015 year: 2019 ident: ref20 article-title: Adapted k-nearest neighbors for detecting anomalies on spatio-temporal traffic flow publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891933 – volume: 2231 start-page: 5292 year: 2012 ident: ref3 article-title: Intrusion detection system using genetic algorithm and data mining: An overview publication-title: International Journal of Computer Science and Informatics ISSN (PRINT) – ident: ref14 |
| SSID | ssj0036390 |
| Score | 2.2554626 |
| Snippet | Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3915 |
| SubjectTerms | Actuators Algorithms Anomalies Communications systems Cyber-physical systems Electronic devices Feature extraction Feedback loops Intrusion detection systems Machine learning Mathematical models Optimization Parameters Preprocessing Tuning |
| Title | A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder |
| URI | https://www.proquest.com/docview/2535620481 |
| Volume | 68 |
| WOSCitedRecordID | wos000648908000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa4NALj9KKZ-UDlx7cje04jk9oeQmksooQVHCKHGcirQTZZXdB4t8zdhwQFy49RUqcUeRvPDMZj78h5IA7kyrQFRM5AEut1MxAopkVxkrpkkaFhP6_v3o0ym9vTRETbvNYVtnbxGCo64nzOfKBUFJ57vScH04fme8a5XdXYwuNr2TZM5Whni8fnY6Kq94WS_S_4UikSjMm0Jt1G5UYsiTpwD14CkPB_ySBpeqjY_pol4OzOVv7389cJ6sxzKTDTi82yBdov5O1voUDjSt6kzwMaci4A71o_fELRImewCLUZ7W0ozOn45Yev1Qwm0ZM4_05DfUG1NLC-hIvFMyun9BsowSYMgxj0ULUdPi0mHi2zBpmP8jN2en18TmLHRiYk1wumILU-pilyiB1gltTq9xU2lSQG4vgJzWGOyqpnRXSuNxapZuUWyWSqsqccfInWWonLWwRmgvnhMXpzjikjaxtkwmtwems4ZpXapsM-ukvXaQn910y7kv8TQmAlQhY6QErO8C2ye-3N6YdNccnY_d6uMq4SOflO1Y7nz_eJd-8rC7zskeWEA_YJyvueTGez35FncNrcXFZ3L0CSV3hhg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKF8VhQI-wIGD2diO4_iA0Kql6qrb1R4WVE7BcSZSJZpddreg_il-I2MnAfXSWw9ck3gkZ57m-WPmDcAb4W2q0ZRc5og8dcpwi4nhTlqnlE9qHQ_0v0zMdJqfndnZFvzua2FCWmUfE2OgrhY-nJEPpVY6aKfn4uPyBw9do8Ltat9Co4XFCV79oi3b-sP4kPz7VsqjT_ODY951FeBeCbXhGlMXeLjMMPVSOFvp3JbGlphbRxNKKqJwnVTeSWV97pw2dSqclklZZt56RXbvwHYawD6A7dn4dPa1j_2K-D6WYOo045LYs70YpSVSkg79RZBMlOJ9ElWxrhPhdR6I5Ha087_9lofwoFtGs1GL-0ewhc1j2OlbVLAuYj2BixGLNwrIxk0oLyEUskPcxPyzhrVy7ey8YQdXJa6WHWa752sW8ymYYzMXUtjIMJ9fEi2RBVxyWqZTBKzY6HKzCGqgFa6ewudbmfQuDJpFg8-A5dJ76ci9mcC0VpWrM2kMepPVwohS78Gwd3fhO_n10AXke0HbsAiQggBSBIAULUD24N3fEctWeuSGb_d7eBRdEFoX_7Dx_ObXr-He8fx0UkzG05MXcD_YbU-Z9mFAvsGXcNf_3JyvV686vDP4dttY-gMkbD5T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Secure+Intrusion+Detection+System+in+Cyberphysical+Systems+Using+a+Parameter-Tuned+Deep-Stacked+Autoencoder&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=O.+Aljehane%2C+Nojood&rft.date=2021&rft.issn=1546-2226&rft.volume=68&rft.issue=3&rft.spage=3915&rft.epage=3929&rft_id=info:doi/10.32604%2Fcmc.2021.017905&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_017905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |