Multi-Objective Grey Wolf Optimization Algorithm for Solving Real-World BLDC Motor Design Problem

The first step in the design phase of the Brushless Direct Current (BLDC) motor is the formulation of the mathematical framework and is often used due to its analytical structure. Therefore, the BLDC motor design problem is considered to be an optimization problem. In this paper, the analytical mode...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 70; no. 2; pp. 2435 - 2452
Main Authors: Premkumar, M., Jangir, Pradeep, Santhosh Kumar, B., A. Alqudah, Mohammad, Sooppy Nisar, Kottakkaran
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2022
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The first step in the design phase of the Brushless Direct Current (BLDC) motor is the formulation of the mathematical framework and is often used due to its analytical structure. Therefore, the BLDC motor design problem is considered to be an optimization problem. In this paper, the analytical model of the BLDC motor is presented, and it is considered to be a basis for emphasizing the optimization methods. The analytical model used for the experimentation has 78 non-linear equations, two objective functions, five design variables, and six non-linear constraints, so the BLDC motor design problem is considered as highly non-linear in electromagnetic optimization. Multi-objective optimization becomes the forefront of the current research to obtain the global best solution using metaheuristic techniques. The bio-inspired multi-objective grey wolf optimizer (MOGWO) is presented in this paper, and it is formulated based on Pareto optimality, dominance, and archiving external. The performance of the MOGWO is verified on standard multi-objective unconstraint benchmark functions and applied to the BLDC motor design problem. The results proved that the proposed MOGWO algorithm could handle nonlinear constraints in electromagnetic optimization problems. The performance comparison in terms of Generational Distance, inversion GD, Hypervolume-matrix, scattered-matrix, and coverage metrics proves that the MOGWO algorithm can provide the best solution compared to other selected algorithms. The source code of this paper is backed up with extra online support at and .
AbstractList The first step in the design phase of the Brushless Direct Current (BLDC) motor is the formulation of the mathematical framework and is often used due to its analytical structure. Therefore, the BLDC motor design problem is considered to be an optimization problem. In this paper, the analytical model of the BLDC motor is presented, and it is considered to be a basis for emphasizing the optimization methods. The analytical model used for the experimentation has 78 non-linear equations, two objective functions, five design variables, and six non-linear constraints, so the BLDC motor design problem is considered as highly non-linear in electromagnetic optimization. Multi-objective optimization becomes the forefront of the current research to obtain the global best solution using metaheuristic techniques. The bio-inspired multi-objective grey wolf optimizer (MOGWO) is presented in this paper, and it is formulated based on Pareto optimality, dominance, and archiving external. The performance of the MOGWO is verified on standard multi-objective unconstraint benchmark functions and applied to the BLDC motor design problem. The results proved that the proposed MOGWO algorithm could handle nonlinear constraints in electromagnetic optimization problems. The performance comparison in terms of Generational Distance, inversion GD, Hypervolume-matrix, scattered-matrix, and coverage metrics proves that the MOGWO algorithm can provide the best solution compared to other selected algorithms. The source code of this paper is backed up with extra online support at and .
Author Jangir, Pradeep
Santhosh Kumar, B.
A. Alqudah, Mohammad
Sooppy Nisar, Kottakkaran
Premkumar, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Premkumar
  fullname: Premkumar, M.
– sequence: 2
  givenname: Pradeep
  surname: Jangir
  fullname: Jangir, Pradeep
– sequence: 3
  givenname: B.
  surname: Santhosh Kumar
  fullname: Santhosh Kumar, B.
– sequence: 4
  givenname: Mohammad
  surname: A. Alqudah
  fullname: A. Alqudah, Mohammad
– sequence: 5
  givenname: Kottakkaran
  surname: Sooppy Nisar
  fullname: Sooppy Nisar, Kottakkaran
BookMark eNp1kM1PwzAMxSM0JLbBnWMkzh1J2qbtcWwwkIaG-NCOUZo6I1PajDSbNP56ysYBIXGyJb9nP_8GqNe4BhC6pGQUM06Sa1WrESOMjQjlSZ6foD5NEx4xxnjvV3-GBm27JiTmcUH6SD5ubTDRolyDCmYHeOZhj5fOarzYBFObTxmMa_DYrpw34b3G2nn84uzONCv8DNJGS-dthW_m0wl-dKGbTqE1qwY_eVdaqM_RqZa2hYufOkRvd7evk_tovpg9TMbzSMU0DlFaKUizhAChsiip1gXhFZOg8y56VVZSy0zmNFNcUQWlhCQrWEVJTqGqaK7jIbo67t1497GFNoi12_qmOylYmuWMJ4TwTsWPKuVd23rQQplweDF4aaygRBxwig6n-MYpjjg7I_lj3HhTS7__3_IFoSF61g
CitedBy_id crossref_primary_10_1016_j_ipm_2024_103654
crossref_primary_10_1007_s11269_024_03744_9
crossref_primary_10_1016_j_eswa_2023_122732
crossref_primary_10_1016_j_engappai_2023_107532
crossref_primary_10_1007_s00521_022_07704_5
crossref_primary_10_32604_cmc_2023_028756
crossref_primary_10_1016_j_heliyon_2024_e35921
crossref_primary_10_1007_s12008_024_01960_6
crossref_primary_10_1093_jcde_qwab065
crossref_primary_10_1109_ACCESS_2022_3209996
Cites_doi 10.1109/TMAG.2010.2085034
10.1016/j.eswa.2020.114511
10.1109/TMAG.2007.916173
10.1016/j.isatra.2015.03.005
10.1016/j.swevo.2011.05.005
10.1016/j.knosys.2020.106556
10.1016/j.swevo.2014.10.005
10.1016/B978-155860595-4/50005-X
10.1080/09720502.2016.1258838
10.1108/03321640510612952
10.1109/TASC.2004.830928
10.1007/s00366-019-00846-6
10.24247/ijmperdfeb2018146
10.1016/j.advengsoft.2017.07.002
10.1109/ACCESS.2020.3047936
10.32604/cmc.2021.015565
10.1016/j.swevo.2011.02.002
10.1109/TMAG.2004.827183
10.1007/s10489-016-0825-8
10.1007/s10489-017-1019-8
10.1109/TMAG.2010.2044145
10.1016/j.eswa.2019.01.068
10.1109/TMAG.2015.2483060
10.1109/TMAG.2006.892260
10.1016/j.advengsoft.2013.12.007
10.1016/j.knosys.2021.106856
10.1109/TMAG.2011.2176108
10.1016/j.cpc.2014.06.013
10.1016/j.eswa.2015.10.039
10.1109/20.767345
10.1162/106365600568202
10.1109/20.877611
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.016488
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2452
ExternalDocumentID 10_32604_cmc_2022_016488
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-5dce5740e01a9b1ff906d2aef8154dbdafa7a817c6c1cebae4792d1081edd18f3
IEDL.DBID BENPR
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705060700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 06:20:26 EST 2025
Tue Nov 18 21:53:00 EST 2025
Sat Nov 29 03:13:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-5dce5740e01a9b1ff906d2aef8154dbdafa7a817c6c1cebae4792d1081edd18f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2578264006?pq-origsite=%requestingapplication%
PQID 2578264006
PQPubID 2048737
PageCount 18
ParticipantIDs proquest_journals_2578264006
crossref_citationtrail_10_32604_cmc_2022_016488
crossref_primary_10_32604_cmc_2022_016488
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Mirjalili (ref21) 2016; 47
Kumar (ref31) 2021; 169
ref36
Ayala (ref14) 2016; 52
Mirjalili (ref20) 2014; 69
Das (ref8) 2011; 1
Back (ref7) 1997; F1
Sarikhani (ref6) 2011; 47
Yang (ref12) 2000; 36
Kumar (ref29) 2021; 212
Premkumar (ref33) 2021; 218
Kennedy (ref9) 2001
Chun (ref17) 2004; 14
Yang (ref11) 2010
Kumar (ref30) 2020
Shin (ref18) 2007; 43
Fitan (ref5) 2004; 40
Derrac (ref39) 2011; 1
Premkumar (ref34) 2021; 67
Brisset (ref35) 2005; 24
Mirjalili (ref37) 2015; 21
Shabanian (ref4) 2015; 57
Bora (ref13) 2012; 48
Premkumar (ref32) 2021; 9
Premkumar (ref2) 2018; 8
Arshi (ref23) 2014; 185
Mirjalili (ref25) 2017; 48
Mirjalili (ref26) 2017; 114
Rama Rao (ref3) 2007
Engelbrecht (ref10) 2006
Le Besnerais (ref22) 2008; 44
Han (ref19) 2006; 36
Santos Coelho (ref15) 2010; 46
Fanni (ref16) 1999; 35
Tejani (ref27) 2021; 37
Mirjalili (ref24) 2016; 46
Zitzler (ref38) 2000; 8
Tejani (ref28) 2019; 125
Jui-Hung (ref1) 2017; 20
References_xml – volume: 47
  start-page: 1266
  year: 2011
  ident: ref6
  article-title: Multiobjective design optimization of coupled PM synchronous motor-drive using physics-based modeling approach
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2010.2085034
– volume: 169
  start-page: 114511
  year: 2021
  ident: ref31
  article-title: Multi-objective passing vehicle search algorithm for structure optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114511
– start-page: 45
  year: 2010
  ident: ref11
  publication-title: Engineering Optimization: An Introduction with Metaheuristic Applications
– volume: 44
  start-page: 1102
  year: 2008
  ident: ref22
  article-title: Multiobjective optimization of induction machines including mixed variables and noise minimization
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2007.916173
– start-page: 450
  year: 2006
  ident: ref10
  publication-title: Fundamentals of Computational Swarm Intelligence
– volume: 57
  start-page: 311
  year: 2015
  ident: ref4
  article-title: Optimization of brushless direct current motor design using an intelligent technique
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2015.03.005
– volume: 1
  start-page: 71
  year: 2011
  ident: ref8
  article-title: Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.05.005
– volume: 212
  start-page: 106556
  year: 2021
  ident: ref29
  article-title: Hybrid heat transfer search and passing vehicle search optimizer for multi-objective structural optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106556
– volume: 36
  start-page: 1927
  year: 2006
  ident: ref19
  article-title: Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm
  publication-title: IEEE Transactions on Magnetics
– volume: 21
  start-page: 1
  year: 2015
  ident: ref37
  article-title: Novel performance metrics for robust multi-objective optimization algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2014.10.005
– start-page: 187
  year: 2001
  ident: ref9
  publication-title: Swarm Intelligence
  doi: 10.1016/B978-155860595-4/50005-X
– volume: 20
  start-page: 777
  year: 2017
  ident: ref1
  article-title: Simulation and design optimization of permanent magnet brushless DC motors
  publication-title: Journal of Interdisciplinary Mathematics
  doi: 10.1080/09720502.2016.1258838
– volume: 24
  start-page: 829
  year: 2005
  ident: ref35
  article-title: Analytical model for the optimal design of a brushless DC wheel motor
  publication-title: COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
  doi: 10.1108/03321640510612952
– volume: 14
  start-page: 1910
  year: 2004
  ident: ref17
  article-title: Multiobjective design optimization of brushless permanent magnet motor using 3D equivalent magnetic circuit network method
  publication-title: IEEE Transactions on Applied Superconductivity
  doi: 10.1109/TASC.2004.830928
– volume: 37
  start-page: 641
  year: 2021
  ident: ref27
  article-title: Multi-objective heat transfer search algorithm for truss optimization
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00846-6
– volume: 8
  start-page: 1255
  year: 2018
  ident: ref2
  article-title: Design, analysis and fabrication of solar PV powered BLDC hub motor driven electric car
  publication-title: International Journal of Mechanical and Production Engineering Research and Development
  doi: 10.24247/ijmperdfeb2018146
– volume: 114
  start-page: 163
  year: 2017
  ident: ref26
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 9
  start-page: 3229
  year: 2021
  ident: ref32
  article-title: MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047936
– volume: 67
  start-page: 2227
  year: 2021
  ident: ref34
  article-title: A new metaheuristic optimization algorithms for brushless direct current wheel motor design problem
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.015565
– volume: 1
  start-page: 3
  year: 2011
  ident: ref39
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 40
  start-page: 1579
  year: 2004
  ident: ref5
  article-title: The electromagnetic actuator design problem: A general and rational approach
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2004.827183
– volume: 46
  start-page: 79
  year: 2016
  ident: ref24
  article-title: Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0825-8
– volume: 48
  start-page: 805
  year: 2017
  ident: ref25
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-017-1019-8
– ident: ref36
– volume: 46
  start-page: 2994
  year: 2010
  ident: ref15
  article-title: Multiobjective particle swarm approach for the design of a brushless dc wheel motor
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2010.2044145
– volume: 125
  start-page: 425
  year: 2019
  ident: ref28
  article-title: Structural optimization using multi-objective modified adaptive symbiotic organisms search
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.068
– volume: 52
  start-page: 1
  year: 2016
  ident: ref14
  article-title: Multiobjective krill herd algorithm for electromagnetic optimization
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2015.2483060
– volume: 43
  start-page: 1653
  year: 2007
  ident: ref18
  article-title: Shape optimization of large-scale BLDC motor using an adaptive RSM utilizing design sensitivity analysis
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2006.892260
– start-page: 854
  year: 2007
  ident: ref3
  article-title: Design optimization of a BLDC motor by Genetic Algorithm and Simulated Annealing
– volume: 69
  start-page: 41
  year: 2014
  ident: ref20
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 218
  start-page: 106856
  year: 2021
  ident: ref33
  article-title: MOGBO: A new multiobjective gradient-based optimizer for real-world structural optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106856
– start-page: 1
  year: 2020
  ident: ref30
  article-title: Multi-objective modified heat transfer search for truss optimization
  publication-title: Engineering with Computers
– volume: 48
  start-page: 947
  year: 2012
  ident: ref13
  article-title: Bat-inspired optimization approach for the brushless dc wheel motor problem
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2011.2176108
– volume: 185
  start-page: 2622
  year: 2014
  ident: ref23
  article-title: A multi-objective shuffled frog leaping algorithm for in-core fuel management optimization
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2014.06.013
– volume: 47
  start-page: 106
  year: 2016
  ident: ref21
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– volume: F1
  start-page: F1.2:1
  year: 1997
  ident: ref7
  publication-title: Handbook of Evolutionary Computation
– volume: 35
  start-page: 1694
  year: 1999
  ident: ref16
  article-title: Tabu search metaheuristics for electromagnetic problems optimization continuous domains
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/20.767345
– volume: 8
  start-page: 173
  year: 2000
  ident: ref38
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 36
  start-page: 1004
  year: 2000
  ident: ref12
  article-title: A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/20.877611
SSID ssj0036390
Score 2.369386
Snippet The first step in the design phase of the Brushless Direct Current (BLDC) motor is the formulation of the mathematical framework and is often used due to its...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2435
SubjectTerms Algorithms
Brushless motors
D C motors
Direct current
Experimentation
Heuristic methods
Mathematical models
Multiple objective analysis
Nonlinear equations
Optimization
Pareto optimization
Source code
Title Multi-Objective Grey Wolf Optimization Algorithm for Solving Real-World BLDC Motor Design Problem
URI https://www.proquest.com/docview/2578264006
Volume 70
WOSCitedRecordID wos000705060700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25UsMwENVAoKAhnMM9KmgoRCzZju2KCUeAGQieAEOoPNbFMUkMSeD7WckyR5OGyoXP0Vu_Xa1W-xDa58BxMfUkERCLGwkzRTgzxTQCvLcOkkBE2opNRJ1O3OslqUu4jV1ZZcWJlqhlIUyOvGFMC5w3GMnR2zsxqlFmddVJaMyiOdOpDOx87visk3YrLvbB_9otkWHQJAy8WblQCSGLFzTEwLQwZOzQdJmyyiu_HNNfXrbOpl3_72cuoUUXZuJWaRfLaEYNV1C9knDA7o9eRbndgEtu-GtJfPgcoMUPRV_jGyCTgduliVv9J3jL5HmAIcjFt0Xf5CFwF6JMYstx8PHV6Qm-LmAGj09tUQhOS6maNXTfPrs7uSBOdYEIn_oTEkqhwijwlEfzhFOtE68pWa50DKMoucx1HuUxjURTUKF4roIoYZJCaKGkpLH211FtWAzVBsJShCxhXFMewqyTae7rSAbNkHGaaKnoJmpUQ54J15LcKGP0M5iaWJAyACkzIGUlSJvo4PuOt7Idx5RrdyqIMvdjjrMffLamn95GC-ZZZbZlB9Umow-1i-bF5-RlPNpzdgbH9PI6ffwCzYfdLA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3RUKlcgBYQXy17aA89bONd27F9QBUlUCKSEBUq0pPr_eJDSQzEBfGn-I2dXdu0vXDj0PPaK6399N7s7sw8gPcCOS5mnqISY3FrYaap4DaZRqJ6myAJZGSc2UTU78fDYTKYgYe6FsamVdac6Iha5dKekTcttFC8ESSfr66pdY2yt6u1hUYJi0N9f4dbtul2p43_9wPn-3snuwe0chWg0md-QUMldRgFnvZYlghmTOK1FM-0iTGaUEJlJouymEWyJZnUItNBlHDFUDq1Uiw2Ps77AmYDC_YGzA46vcGPmvt91HtXghkGLcpRPcuLUQyRvKApx7ZlIuefbFcr5_TylxD-qwNO3PYX_rfPsgjzVRhNdkrcv4YZPXkDC7VFBakYawkyV2BMj8RlSezkK0KXnOYjQ46QLMdVFSrZGZ3hqorzMcEgnhznI3vOQr5hFE1duhH50m3vkl5e4GjbJb2QQWnFswzfn2WhK9CY5BO9CkTJkCdcGCZC3FVzI3wTqaAVcsESozRbg2b9i1NZtVy3zh-jFLdeDhQpgiK1oEhLUKzBx8c3rsp2I088u1lDIq2IZ5r-wcP608Nb8OrgpNdNu53-4QbM2XnLk6VNaBQ3v_RbeClvi4vpzbsK4wR-Pjd-fgPstDwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Grey+Wolf+Optimization+Algorithm+for+Solving+Real-World+BLDC+Motor+Design+Problem&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Premkumar%2C+M.&rft.au=Jangir%2C+Pradeep&rft.au=Santhosh+Kumar%2C+B.&rft.au=A.+Alqudah%2C+Mohammad&rft.date=2022&rft.issn=1546-2226&rft.volume=70&rft.issue=2&rft.spage=2435&rft.epage=2452&rft_id=info:doi/10.32604%2Fcmc.2022.016488&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_016488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon