Identifying strong lenses with unsupervised machine learning using convolutional autoencoder

ABSTRACT In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering algorithm consisting of a Bayesian Gaussian mixture model. We apply this technique to visual band space-based simulated imaging data from t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monthly notices of the Royal Astronomical Society Ročník 494; číslo 3; s. 3750 - 3765
Hlavní autoři: Cheng, Ting-Yun, Li, Nan, Conselice, Christopher J, Aragón-Salamanca, Alfonso, Dye, Simon, Metcalf, Robert B
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford University Press 21.05.2020
Témata:
ISSN:0035-8711, 1365-2966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering algorithm consisting of a Bayesian Gaussian mixture model. We apply this technique to visual band space-based simulated imaging data from the Euclid Space Telescope using data from the strong gravitational lenses finding challenge. Our technique promisingly captures a variety of lensing features such as Einstein rings with different radii, distorted arc structures, etc., without using predefined labels. After the clustering process, we obtain several classification clusters separated by different visual features which are seen in the images. Our method successfully picks up ∼63 per cent of lensing images from all lenses in the training set. With the assumed probability proposed in this study, this technique reaches an accuracy of 77.25 ± 0.48 per cent in binary classification using the training set. Additionally, our unsupervised clustering process can be used as the preliminary classification for future surveys of lenses to efficiently select targets and to speed up the labelling process. As the starting point of the astronomical application using this technique, we not only explore the application to gravitationally lensed systems, but also discuss the limitations and potential future uses of this technique.
AbstractList ABSTRACT In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering algorithm consisting of a Bayesian Gaussian mixture model. We apply this technique to visual band space-based simulated imaging data from the Euclid Space Telescope using data from the strong gravitational lenses finding challenge. Our technique promisingly captures a variety of lensing features such as Einstein rings with different radii, distorted arc structures, etc., without using predefined labels. After the clustering process, we obtain several classification clusters separated by different visual features which are seen in the images. Our method successfully picks up ∼63 per cent of lensing images from all lenses in the training set. With the assumed probability proposed in this study, this technique reaches an accuracy of 77.25 ± 0.48 per cent in binary classification using the training set. Additionally, our unsupervised clustering process can be used as the preliminary classification for future surveys of lenses to efficiently select targets and to speed up the labelling process. As the starting point of the astronomical application using this technique, we not only explore the application to gravitationally lensed systems, but also discuss the limitations and potential future uses of this technique.
In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering algorithm consisting of a Bayesian Gaussian mixture model. We apply this technique to visual band space-based simulated imaging data from the Euclid Space Telescope using data from the strong gravitational lenses finding challenge. Our technique promisingly captures a variety of lensing features such as Einstein rings with different radii, distorted arc structures, etc., without using predefined labels. After the clustering process, we obtain several classification clusters separated by different visual features which are seen in the images. Our method successfully picks up ∼63 per cent of lensing images from all lenses in the training set. With the assumed probability proposed in this study, this technique reaches an accuracy of 77.25 ± 0.48 per cent in binary classification using the training set. Additionally, our unsupervised clustering process can be used as the preliminary classification for future surveys of lenses to efficiently select targets and to speed up the labelling process. As the starting point of the astronomical application using this technique, we not only explore the application to gravitationally lensed systems, but also discuss the limitations and potential future uses of this technique.
Author Metcalf, Robert B
Li, Nan
Conselice, Christopher J
Aragón-Salamanca, Alfonso
Dye, Simon
Cheng, Ting-Yun
Author_xml – sequence: 1
  givenname: Ting-Yun
  orcidid: 0000-0001-8670-4495
  surname: Cheng
  fullname: Cheng, Ting-Yun
  email: ting-yun.cheng@nottingham.ac.uk
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 2
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 3
  givenname: Christopher J
  surname: Conselice
  fullname: Conselice, Christopher J
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 4
  givenname: Alfonso
  orcidid: 0000-0001-8215-1256
  surname: Aragón-Salamanca
  fullname: Aragón-Salamanca, Alfonso
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 5
  givenname: Simon
  surname: Dye
  fullname: Dye, Simon
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 6
  givenname: Robert B
  surname: Metcalf
  fullname: Metcalf, Robert B
  organization: Dipartimento di Fisica & Astronomia, Universitá di Bologna, Via Gobetti 93/2, I-40129 Bologna, Italy
BookMark eNqFkD1PwzAQhi1UJNrCypyVIa3Pdr5GVPFRqRILbEiR7VyoUWpXtlPUf09CYUFCLPcu97yne2ZkYp1FQq6BLoBWfLmzXoZliFICheyMTIHnWcqqPJ-QKaU8S8sC4ILMQninlArO8il5XTdoo2mPxr4lIXo3RIc2YEg-TNwmvQ39Hv3BBGySndRbY3FYkN6OQB_GqZ09uK6PxlnZJbKPDq12DfpLct7KLuDVd87Jy_3d8-ox3Tw9rFe3m1Rz4DHNypI1DJADQtEwqQRALgSrkOsqqxCE0hXjZdYqVWJTMCWkKjKpc1VSlld8ThanXu1dCB7beu_NTvpjDbQe3dRfbuofNwMgfgHaRDk-EL003d_YzQlz_f6_E5_Jjn7X
CitedBy_id crossref_primary_10_1051_0004_6361_202347072
crossref_primary_10_1007_s10509_024_04357_9
crossref_primary_10_1051_0004_6361_202141758
crossref_primary_10_1051_0004_6361_202038219
crossref_primary_10_3847_1538_4365_ad66ca
crossref_primary_10_1088_1538_3873_aca04e
crossref_primary_10_1093_mnras_stac2631
crossref_primary_10_1093_mnras_stac562
crossref_primary_10_1093_mnras_stad1272
crossref_primary_10_1093_mnras_stad3099
crossref_primary_10_1093_mnras_stab1981
crossref_primary_10_1093_mnras_stac925
crossref_primary_10_1017_pasa_2022_55
crossref_primary_10_1007_s00521_023_08766_9
crossref_primary_10_1051_0004_6361_202451734
crossref_primary_10_1093_mnras_staa3670
crossref_primary_10_1093_mnras_stab1547
crossref_primary_10_1016_j_compeleceng_2024_109871
crossref_primary_10_1093_mnras_staa2741
crossref_primary_10_1088_1538_3873_ace851
crossref_primary_10_1088_1674_4527_adf712
crossref_primary_10_1093_mnras_stac2078
crossref_primary_10_1093_mnras_stab387
crossref_primary_10_3847_1538_4357_ade2ce
crossref_primary_10_1093_mnras_stab2142
crossref_primary_10_3847_2041_8213_ac8f4b
crossref_primary_10_3390_universe11030092
crossref_primary_10_1007_s11214_024_01042_9
crossref_primary_10_1093_mnras_stac838
crossref_primary_10_3847_1538_4357_ac6d63
crossref_primary_10_3847_1538_4357_ad8888
crossref_primary_10_3847_1538_3881_aca1a6
crossref_primary_10_1016_j_ascom_2024_100851
crossref_primary_10_1093_mnras_stad2852
crossref_primary_10_1016_j_cjph_2020_03_008
crossref_primary_10_1093_mnras_stab3386
crossref_primary_10_1093_mnras_stab294
crossref_primary_10_3847_1538_3881_ac4245
crossref_primary_10_3847_2041_8213_abf2c7
crossref_primary_10_1093_mnras_stac3228
crossref_primary_10_1051_0004_6361_202347332
crossref_primary_10_1088_1538_3873_ade400
crossref_primary_10_1088_2632_2153_ade360
crossref_primary_10_1093_mnras_staa2524
crossref_primary_10_1093_mnras_stab734
crossref_primary_10_1016_j_ascom_2020_100437
crossref_primary_10_1051_0004_6361_202452129
crossref_primary_10_3847_1538_4357_adae85
crossref_primary_10_1088_1674_4527_ac7386
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_3847_1538_4357_ad17b8
crossref_primary_10_3847_1538_4365_ace69e
crossref_primary_10_1093_mnras_stac3336
crossref_primary_10_1051_0004_6361_202451096
crossref_primary_10_3847_1538_4357_adee16
crossref_primary_10_1007_s12036_022_09871_2
crossref_primary_10_1051_0004_6361_202348714
crossref_primary_10_1016_j_ascom_2021_100527
crossref_primary_10_1051_0004_6361_202452813
crossref_primary_10_1093_mnras_stac2047
Cites_doi 10.3847/1538-4357/833/2/264
10.1088/2041-8205/788/2/L35
10.1088/0004-637X/800/2/94
10.1051/0004-6361/201832797
10.1093/mnras/stx1492
10.1086/378348
10.1093/mnras/stv1442
10.1088/0067-0049/221/1/8
10.1088/0004-637X/813/1/69
10.1093/mnras/sty458
10.1088/1674-4527/14/9/002
10.1093/mnras/sty338
10.1088/1475-7516/2017/07/010
10.1093/mnras/staa501
10.3847/2041-8213/aa831a
10.1051/0004-6361/201527971
10.1093/mnras/stx2609
10.1109/TPAMI.2006.79
10.1093/mnras/stu2178
10.1038/333537a0
10.1111/j.2517-6161.1977.tb01600.x
10.1086/306026
10.1093/pasj/psx062
10.1016/j.eswa.2014.09.054
10.3847/0067-0049/225/2/31
10.1093/mnras/sty2261
10.1016/j.patrec.2005.10.010
10.1093/mnras/stv688
10.1038/nature23463
10.1007/978-0-387-84858-7
10.1093/mnras/stx1665
10.1007/s11214-013-9981-x
10.1093/mnras/stx2715
10.1103/PhysRevD.72.023516
10.4249/scholarpedia.32440
10.1051/0004-6361:20079119
10.1088/0004-637X/765/1/25
10.1016/S0031-3203(96)00142-2
10.1093/mnras/stz3006
10.1093/mnras/stx2082
10.3847/2041-8213/aa6d09
10.1093/mnras/stx168
10.1088/0004-637X/811/1/20
10.1093/mnras/stw2930
10.1051/0004-6361/201321445
10.1093/mnras/sty653
10.3847/1538-3881/aabad2
10.1093/mnras/stx483
10.1051/0004-6361/201629159
10.1086/423123
10.1088/0004-637X/755/2/92
10.1016/j.newast.2016.09.002
10.1051/0004-6361/201832784
10.1046/j.1365-8711.2000.03851.x
10.1146/annurev-astro-081817-051928
10.1038/279381a0
10.1088/0004-637X/694/2/924
10.1093/mnras/stz1750
10.2307/2527783
10.1103/PhysRevD.86.023001
10.1093/mnras/sty909
10.1007/978-3-642-97966-8
10.1086/664796
10.1093/mnras/stu1190
10.1214/aoms/1177729694
10.1109/ICCV.2017.612
10.1088/1674-4527/12/8/005
10.1111/j.1365-2966.2009.15191.x
10.1093/mnras/stu943
10.1088/0004-637X/779/1/52
10.1103/PhysRevD.98.043528
10.1142/S0218271815300207
10.1088/0004-637X/785/2/144
10.1093/mnras/sty886
10.3847/0004-637X/824/2/77
10.1051/0004-6361/201423365
10.1093/mnras/stw2958
10.1093/mnras/stv632
10.1093/mnras/stt2456
10.1093/mnras/stw2832
10.1093/mnras/stx2052
10.1088/0004-637X/762/1/32
10.1103/PhysRevD.78.043002
10.1088/0004-637X/800/1/11
10.1093/mnras/sty513
10.1093/mnras/stx2351
10.3847/0004-637X/823/1/37
10.1111/j.1365-2966.2011.19913.x
10.1088/1538-3873/128/968/104502
10.3847/0004-637X/820/1/43
10.3847/1538-4357/ab16d9
10.1093/mnras/stx1733
10.1086/340096
10.1088/0004-637X/766/2/70
10.1093/mnras/stx3012
ContentType Journal Article
Copyright 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020
Copyright_xml – notice: 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020
DBID AAYXX
CITATION
DOI 10.1093/mnras/staa1015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3765
ExternalDocumentID 10_1093_mnras_staa1015
10.1093/mnras/staa1015
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c313t-5882d21e31e17d2ab41164429e3c959e14bc92385fbb8ed72b4ab75ac6b802693
IEDL.DBID TOX
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535882100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Tue Nov 18 22:36:46 EST 2025
Sat Nov 29 02:37:59 EST 2025
Wed Aug 28 03:18:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords techniques: image processing
methods: statistical
gravitational lensing: strong
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-5882d21e31e17d2ab41164429e3c959e14bc92385fbb8ed72b4ab75ac6b802693
ORCID 0000-0001-8215-1256
0000-0001-8670-4495
OpenAccessLink http://hdl.handle.net/11585/758348
PageCount 16
ParticipantIDs crossref_primary_10_1093_mnras_staa1015
crossref_citationtrail_10_1093_mnras_staa1015
oup_primary_10_1093_mnras_staa1015
PublicationCentury 2000
PublicationDate 2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-21
  day: 21
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bom (2020043009060175800_bib12) 2017; 597
Ostrovski (2020043009060175800_bib92) 2017; 465
Domínguez Sánchez (2020043009060175800_bib31) 2018; 476
Cheng (2020043009060175800_bib22) 2020; 493
Hamana (2020043009060175800_bib47) 2003; 597
Troxel (2020043009060175800_bib118) 2018; 98
Vegetti (2020043009060175800_bib119) 2014; 442
Avestruz (2020043009060175800_bib3) 2019; 877
Martin (2020043009060175800_bib83) 2020; 491
Dizaji (2020043009060175800_bib30) 2017
Han (2020043009060175800_bib49) 2018; 155
Suyu (2020043009060175800_bib115) 2014; 788
Fawcett (2020043009060175800_bib37) 2006; 27
Rana (2020043009060175800_bib99) 2017; 7
Boylan-Kolchin (2020043009060175800_bib15) 2009; 398
Bishop (2020043009060175800_bib11) 2006
Lanusse (2020043009060175800_bib72) 2018; 473
Gavazzi (2020043009060175800_bib42) 2014; 785
Hartley (2020043009060175800_bib51) 2017; 471
Attias (2020043009060175800_bib2) 2000
Stacey (2020043009060175800_bib112) 2018; 476
Fort (2020043009060175800_bib38) 1988; 200
Suyu (2020043009060175800_bib116) 2017; 468
Borji (2020043009060175800_bib13) 2017
Shvartzvald (2020043009060175800_bib106) 2017; 840
Rahvar (2020043009060175800_bib98) 2015; 24
Han (2020043009060175800_bib48) 2015; 446
Sonnenfeld (2020043009060175800_bib109) 2015; 800
Jones (2020043009060175800_bib64) 2013; 779
Laureijs (2020043009060175800_bib73) 2011
Dye (2020043009060175800_bib35) 2018; 476
Vincent (2020043009060175800_bib120) 2010; 11
Marshall (2020043009060175800_bib82) 2009; 694
Metcalf (2020043009060175800_bib88) 2019; 625
Gilman (2020043009060175800_bib44) 2018; 481
Xie (2020043009060175800_bib123) 2016
Mandelbaum (2020043009060175800_bib80) 2018; 56
Oldham (2020043009060175800_bib91) 2017; 465
Dempster (2020043009060175800_bib27) 1977; 39
Cavuoti (2020043009060175800_bib21) 2017; 465
Bernardeau (2020043009060175800_bib10) 2012; 86
Hewitt (2020043009060175800_bib54) 1988; 333
Collett (2020043009060175800_bib25) 2014; 443
Bruce (2020043009060175800_bib17) 2017; 467
Collett (2020043009060175800_bib24) 2015; 811
Dieleman (2020043009060175800_bib29) 2015; 450
Huertas-Company (2020043009060175800_bib60) 2015; 221
Kohonen (2020043009060175800_bib68) 1997
Bartelmann (2020043009060175800_bib5) 2017; 12
Dundar (2020043009060175800_bib33) 2015
McLachlan (2020043009060175800_bib85) 1997
Hezaveh (2020043009060175800_bib56) 2017; 548
Hsu (2020043009060175800_bib58) 2015
Paraficz (2020043009060175800_bib93) 2016; 592
Suyu (2020043009060175800_bib114) 2013; 766
Magaña (2020043009060175800_bib79) 2015; 813
Dosovitskiy (2020043009060175800_bib32) 2014
Guo (2020043009060175800_bib46) 2017
Abadi (2020043009060175800_bib1) 2015
Jacobs (2020043009060175800_bib61) 2017; 471
Bautista (2020043009060175800_bib7) 2016
Bouguettaya (2020043009060175800_bib14) 2015; 42
Coe (2020043009060175800_bib23) 2013; 762
Joseph (2020043009060175800_bib65) 2014; 566
Bayer (2020043009060175800_bib8) 2018
Castro (2020043009060175800_bib20) 2005; 72
Sadeh (2020043009060175800_bib100) 2016; 128
Ester (2020043009060175800_bib36) 1996
Walsh (2020043009060175800_bib121) 1979; 279
Hershey (2020043009060175800_bib53) 2016
Kingma (2020043009060175800_bib67) 2013
Hudson (2020043009060175800_bib59) 1998; 503
Kummer (2020043009060175800_bib70) 2018; 474
Li (2020043009060175800_bib75) 2017
Petrillo (2020043009060175800_bib96) 2017; 472
Way (2020043009060175800_bib122) 2012; 124
Geach (2020043009060175800_bib43) 2012; 419
Grazian (2020043009060175800_bib45) 2004; 116
D’Abrusco (2020043009060175800_bib26) 2012; 755
Schmidt (2020043009060175800_bib102) 2008; 78
Shu (2020043009060175800_bib105) 2016; 833
Lynds (2020043009060175800_bib78) 1986
Newman (2020043009060175800_bib90) 2013; 765
Pedregosa (2020043009060175800_bib95) 2011; 12
Siudek (2020043009060175800_bib107) 2018
Kilbinger (2020043009060175800_bib66) 2017; 472
Powers (2020043009060175800_bib97) 2011; 2
Shu (2020043009060175800_bib104) 2016; 820
Barvainis (2020043009060175800_bib6) 2002; 571
Bayliss (2020043009060175800_bib9) 2017; 845
Meneghetti (2020043009060175800_bib87) 2013; 177
Hartley (2020043009060175800_bib50) 1958; 14
Samui (2020043009060175800_bib101) 2017; 51
Küng (2020043009060175800_bib71) 2018; 474
Hocking (2020043009060175800_bib57) 2018; 473
Masci (2020043009060175800_bib84) 2011
Diego (2020043009060175800_bib28) 2018; 473
Meneghetti (2020043009060175800_bib86) 2008; 482
Fritzke (2020043009060175800_bib39) 1995
Carrasco Kind (2020043009060175800_bib19) 2014; 438
Stark (2020043009060175800_bib113) 2015; 450
Lochner (2020043009060175800_bib77) 2016; 225
Sonnenfeld (2020043009060175800_bib110) 2018; 70
Bradley (2020043009060175800_bib16) 1997; 30
Hastie (2020043009060175800_bib52) 2009
Mao (2020043009060175800_bib81) 2012; 12
Li (2020043009060175800_bib74) 2006; 28
Fustes (2020043009060175800_bib41) 2013; 559
Kullback (2020043009060175800_bib69) 1951; 22
Jauzac (2020043009060175800_bib62) 2018; 477
Pearson (2020043009060175800_bib94) 2019; 488
Sharda (2020043009060175800_bib103) 2018; 477
Caron (2020043009060175800_bib18) 2018
Bacon (2020043009060175800_bib4) 2000; 318
Fu (2020043009060175800_bib40) 2014; 14
Jee (2020043009060175800_bib63) 2016; 824
Hezaveh (2020043009060175800_bib55) 2016; 823
Soucail (2020043009060175800_bib111) 1987; 172
Dye (2020043009060175800_bib34) 2015; 452
Liao (2020043009060175800_bib76) 2015; 800
Siudek (2020043009060175800_bib108) 2018; 617
Nair (2020043009060175800_bib89) 2010
Talbot (2020043009060175800_bib117) 2018; 477
References_xml – volume: 833
  start-page: 264
  year: 2016
  ident: 2020043009060175800_bib105
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/264
– volume: 788
  start-page: L35
  year: 2014
  ident: 2020043009060175800_bib115
  publication-title: ApJ
  doi: 10.1088/2041-8205/788/2/L35
– volume: 800
  start-page: 94
  year: 2015
  ident: 2020043009060175800_bib109
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/94
– volume: 625
  start-page: A119
  year: 2019
  ident: 2020043009060175800_bib88
  publication-title: A&A
  doi: 10.1051/0004-6361/201832797
– volume: 471
  start-page: 167
  year: 2017
  ident: 2020043009060175800_bib61
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1492
– volume: 597
  start-page: 98
  year: 2003
  ident: 2020043009060175800_bib47
  publication-title: ApJ
  doi: 10.1086/378348
– volume: 452
  start-page: 2258
  year: 2015
  ident: 2020043009060175800_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1442
– volume: 221
  start-page: 8
  year: 2015
  ident: 2020043009060175800_bib60
  publication-title: ApJS
  doi: 10.1088/0067-0049/221/1/8
– volume: 813
  start-page: 69
  year: 2015
  ident: 2020043009060175800_bib79
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/69
– volume: 476
  start-page: 5075
  year: 2018
  ident: 2020043009060175800_bib112
  publication-title: MNRAS
  doi: 10.1093/mnras/sty458
– volume: 14
  start-page: 1061
  year: 2014
  ident: 2020043009060175800_bib40
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/14/9/002
– volume: 476
  start-page: 3661
  year: 2018
  ident: 2020043009060175800_bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/sty338
– volume: 7
  start-page: 010
  year: 2017
  ident: 2020043009060175800_bib99
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/07/010
– volume: 493
  start-page: 4209
  year: 2020
  ident: 2020043009060175800_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/staa501
– volume: 845
  start-page: L14
  year: 2017
  ident: 2020043009060175800_bib9
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa831a
– volume: 592
  start-page: A75
  year: 2016
  ident: 2020043009060175800_bib93
  publication-title: A&A
  doi: 10.1051/0004-6361/201527971
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2020043009060175800_bib95
  publication-title: J. Mach. Learn. Res.
– volume: 473
  start-page: 4279
  year: 2018
  ident: 2020043009060175800_bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2609
– volume: 28
  start-page: 594
  year: 2006
  ident: 2020043009060175800_bib74
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.79
– volume: 446
  start-page: 1356
  year: 2015
  ident: 2020043009060175800_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2178
– volume: 333
  start-page: 537
  year: 1988
  ident: 2020043009060175800_bib54
  publication-title: Nature
  doi: 10.1038/333537a0
– volume: 11
  start-page: 3371
  year: 2010
  ident: 2020043009060175800_bib120
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 1
  year: 1977
  ident: 2020043009060175800_bib27
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume-title: International Conference on Neural Information Processing (ICONIP)
  year: 2017
  ident: 2020043009060175800_bib46
– volume: 503
  start-page: 531
  year: 1998
  ident: 2020043009060175800_bib59
  publication-title: ApJ
  doi: 10.1086/306026
– volume: 70
  start-page: S29
  year: 2018
  ident: 2020043009060175800_bib110
  publication-title: PASJ
  doi: 10.1093/pasj/psx062
– start-page: 478
  volume-title: in Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML
  year: 2016
  ident: 2020043009060175800_bib123
– volume: 42
  start-page: 2785
  year: 2015
  ident: 2020043009060175800_bib14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.054
– volume: 225
  start-page: 31
  year: 2016
  ident: 2020043009060175800_bib77
  publication-title: ApJS
  doi: 10.3847/0067-0049/225/2/31
– volume: 481
  start-page: 819
  year: 2018
  ident: 2020043009060175800_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2261
– volume: 27
  start-page: 861
  year: 2006
  ident: 2020043009060175800_bib37
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 450
  start-page: 1846
  year: 2015
  ident: 2020043009060175800_bib113
  publication-title: MNRAS
  doi: 10.1093/mnras/stv688
– volume: 548
  start-page: 555
  year: 2017
  ident: 2020043009060175800_bib56
  publication-title: Nature
  doi: 10.1038/nature23463
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer Series in Statistics
  year: 2009
  ident: 2020043009060175800_bib52
  doi: 10.1007/978-0-387-84858-7
– volume: 473
  start-page: 3895
  year: 2018
  ident: 2020043009060175800_bib72
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1665
– volume: 177
  start-page: 31
  year: 2013
  ident: 2020043009060175800_bib87
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-013-9981-x
– year: 2011
  ident: 2020043009060175800_bib73
  publication-title: Euclid Definition Study Report
– volume: 474
  start-page: 388
  year: 2018
  ident: 2020043009060175800_bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2715
– year: 2017
  ident: 2020043009060175800_bib75
  article-title: Discriminatively Boosted Image Clustering with Fully Convolutional Auto-Encoders
– volume: 72
  start-page: 023516
  year: 2005
  ident: 2020043009060175800_bib20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.023516
– volume: 12
  start-page: 32440
  year: 2017
  ident: 2020043009060175800_bib5
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.32440
– volume: 482
  start-page: 403
  year: 2008
  ident: 2020043009060175800_bib86
  publication-title: A&A
  doi: 10.1051/0004-6361:20079119
– volume: 765
  start-page: 25
  year: 2013
  ident: 2020043009060175800_bib90
  publication-title: ApJ
  doi: 10.1088/0004-637X/765/1/25
– year: 2015
  ident: 2020043009060175800_bib1
  publication-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– volume: 30
  start-page: 1145
  year: 1997
  ident: 2020043009060175800_bib16
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– start-page: 226
  volume-title: in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96
  year: 1996
  ident: 2020043009060175800_bib36
– volume: 491
  start-page: 1408
  year: 2020
  ident: 2020043009060175800_bib83
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3006
– volume: 472
  start-page: 2126
  year: 2017
  ident: 2020043009060175800_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2082
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2006
  ident: 2020043009060175800_bib11
– volume: 840
  start-page: L3
  year: 2017
  ident: 2020043009060175800_bib106
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa6d09
– volume: 467
  start-page: 1259
  year: 2017
  ident: 2020043009060175800_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stx168
– year: 2015
  ident: 2020043009060175800_bib33
  article-title: Convolutional Clustering for Unsupervised Learning
– volume: 811
  start-page: 20
  year: 2015
  ident: 2020043009060175800_bib24
  publication-title: ApJ
  doi: 10.1088/0004-637X/811/1/20
– volume: 465
  start-page: 1959
  year: 2017
  ident: 2020043009060175800_bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2930
– volume: 559
  start-page: A7
  year: 2013
  ident: 2020043009060175800_bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201321445
– volume: 477
  start-page: 195
  year: 2018
  ident: 2020043009060175800_bib117
  publication-title: MNRAS
  doi: 10.1093/mnras/sty653
– volume: 155
  start-page: 211
  year: 2018
  ident: 2020043009060175800_bib49
  publication-title: AJ
  doi: 10.3847/1538-3881/aabad2
– start-page: 52
  volume-title: in Proceedings of the 21th International Conference on Artificial Neural Networks, Vol. Part I. ICANN’11
  year: 2011
  ident: 2020043009060175800_bib84
– volume: 468
  start-page: 2590
  year: 2017
  ident: 2020043009060175800_bib116
  publication-title: MNRAS
  doi: 10.1093/mnras/stx483
– volume: 597
  start-page: A135
  year: 2017
  ident: 2020043009060175800_bib12
  publication-title: A&A
  doi: 10.1051/0004-6361/201629159
– volume: 116
  start-page: 750
  year: 2004
  ident: 2020043009060175800_bib45
  publication-title: PASP
  doi: 10.1086/423123
– volume: 755
  start-page: 92
  year: 2012
  ident: 2020043009060175800_bib26
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/92
– volume: 51
  start-page: 169
  year: 2017
  ident: 2020043009060175800_bib101
  publication-title: New Astron.
  doi: 10.1016/j.newast.2016.09.002
– volume: 617
  start-page: A70
  year: 2018
  ident: 2020043009060175800_bib108
  publication-title: A&A
  doi: 10.1051/0004-6361/201832784
– volume: 318
  start-page: 625
  year: 2000
  ident: 2020043009060175800_bib4
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03851.x
– volume: 56
  start-page: 393
  year: 2018
  ident: 2020043009060175800_bib80
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081817-051928
– start-page: 209
  year: 2000
  ident: 2020043009060175800_bib2
  publication-title: Advances in Neural Information Processing Systems 12
– volume: 279
  start-page: 381
  year: 1979
  ident: 2020043009060175800_bib121
  publication-title: Nature
  doi: 10.1038/279381a0
– start-page: 625
  volume-title: Advances in Neural Information Processing Systems, Vol. 7
  year: 1995
  ident: 2020043009060175800_bib39
– year: 2015
  ident: 2020043009060175800_bib58
  article-title: Neural network-based clustering using pairwise constraints
– volume: 694
  start-page: 924
  year: 2009
  ident: 2020043009060175800_bib82
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/2/924
– volume: 488
  start-page: 991
  year: 2019
  ident: 2020043009060175800_bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1750
– volume-title: The EM Algorithm and Extensions
  year: 1997
  ident: 2020043009060175800_bib85
– volume: 2
  start-page: 37
  year: 2011
  ident: 2020043009060175800_bib97
  publication-title: J. Mach. Learn. Technol.
– volume: 14
  start-page: 174
  year: 1958
  ident: 2020043009060175800_bib50
  publication-title: Biometrics
  doi: 10.2307/2527783
– volume: 86
  start-page: 023001
  year: 2012
  ident: 2020043009060175800_bib10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.023001
– volume: 477
  start-page: 4046
  year: 2018
  ident: 2020043009060175800_bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/sty909
– volume-title: Self-organizing Maps
  year: 1997
  ident: 2020043009060175800_bib68
  doi: 10.1007/978-3-642-97966-8
– volume: 124
  start-page: 274
  year: 2012
  ident: 2020043009060175800_bib122
  publication-title: PASP
  doi: 10.1086/664796
– volume: 443
  start-page: 969
  year: 2014
  ident: 2020043009060175800_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1190
– volume: 22
  start-page: 79
  year: 1951
  ident: 2020043009060175800_bib69
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729694
– start-page: 3846
  year: 2016
  ident: 2020043009060175800_bib7
  publication-title: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS)
– start-page: 5747
  year: 2017
  ident: 2020043009060175800_bib30
  publication-title: IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2017.612
– year: 2018
  ident: 2020043009060175800_bib18
  publication-title: Proc. ECCV
– volume: 12
  start-page: 947
  year: 2012
  ident: 2020043009060175800_bib81
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/12/8/005
– volume: 398
  start-page: 1150
  year: 2009
  ident: 2020043009060175800_bib15
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15191.x
– start-page: 31
  year: 2016
  ident: 2020043009060175800_bib53
  publication-title: Acoustics, Speech and Signal Processing (ICASSP)
– volume: 442
  start-page: 2017
  year: 2014
  ident: 2020043009060175800_bib119
  publication-title: MNRAS
  doi: 10.1093/mnras/stu943
– start-page: 1014
  volume-title: Bulletin of the American Astronomical Society
  year: 1986
  ident: 2020043009060175800_bib78
– volume: 779
  start-page: 52
  year: 2013
  ident: 2020043009060175800_bib64
  publication-title: ApJ
  doi: 10.1088/0004-637X/779/1/52
– volume: 98
  start-page: 043528
  year: 2018
  ident: 2020043009060175800_bib118
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.043528
– volume: 24
  start-page: 1530020
  year: 2015
  ident: 2020043009060175800_bib98
  publication-title: Int. J. Modern Phys. D
  doi: 10.1142/S0218271815300207
– year: 2017
  ident: 2020043009060175800_bib13
  publication-title: Human-like Clustering with Deep Convolutional Neural Networks
– volume: 785
  start-page: 144
  year: 2014
  ident: 2020043009060175800_bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/785/2/144
– volume: 477
  start-page: 4380
  year: 2018
  ident: 2020043009060175800_bib103
  publication-title: MNRAS
  doi: 10.1093/mnras/sty886
– volume: 824
  start-page: 77
  year: 2016
  ident: 2020043009060175800_bib63
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/2/77
– volume: 566
  start-page: A63
  year: 2014
  ident: 2020043009060175800_bib65
  publication-title: A&A
  doi: 10.1051/0004-6361/201423365
– volume: 465
  start-page: 4325
  year: 2017
  ident: 2020043009060175800_bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2958
– volume: 450
  start-page: 1441
  year: 2015
  ident: 2020043009060175800_bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stv632
– volume: 438
  start-page: 3409
  year: 2014
  ident: 2020043009060175800_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2456
– volume: 200
  start-page: L17
  year: 1988
  ident: 2020043009060175800_bib38
  publication-title: A&A
– volume: 465
  start-page: 3185
  year: 2017
  ident: 2020043009060175800_bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2832
– year: 2018
  ident: 2020043009060175800_bib107
  article-title: The VIMOS Public Extragalactic Redshift Survey (VIPERS). Unsupervised classification with photometric redshifts: a method to accurately classify large galaxy samples without spectroscopic information
– volume: 472
  start-page: 1129
  year: 2017
  ident: 2020043009060175800_bib96
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2052
– volume: 762
  start-page: 32
  year: 2013
  ident: 2020043009060175800_bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/762/1/32
– volume: 78
  start-page: 043002
  year: 2008
  ident: 2020043009060175800_bib102
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.043002
– start-page: 807
  volume-title: in Proceedings of the 27th International Conference on International Conference on Machine Learning. ICML’10
  year: 2010
  ident: 2020043009060175800_bib89
– volume: 800
  start-page: 11
  year: 2015
  ident: 2020043009060175800_bib76
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/1/11
– volume: 476
  start-page: 4383
  year: 2018
  ident: 2020043009060175800_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/sty513
– volume: 473
  start-page: 1108
  year: 2018
  ident: 2020043009060175800_bib57
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2351
– volume: 823
  start-page: 37
  year: 2016
  ident: 2020043009060175800_bib55
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/1/37
– volume: 419
  start-page: 2633
  year: 2012
  ident: 2020043009060175800_bib43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19913.x
– volume: 128
  start-page: 104502
  year: 2016
  ident: 2020043009060175800_bib100
  publication-title: PASP
  doi: 10.1088/1538-3873/128/968/104502
– year: 2013
  ident: 2020043009060175800_bib67
  article-title: Auto-Encoding Variational Bayes
– volume: 820
  start-page: 43
  year: 2016
  ident: 2020043009060175800_bib104
  publication-title: ApJ
  doi: 10.3847/0004-637X/820/1/43
– year: 2018
  ident: 2020043009060175800_bib8
  publication-title: Observational constraints on the sub-galactic matter-power spectrum from galaxy-galaxy strong gravitational lensing
– volume: 877
  start-page: 58
  year: 2019
  ident: 2020043009060175800_bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab16d9
– volume: 471
  start-page: 3378
  year: 2017
  ident: 2020043009060175800_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1733
– volume: 571
  start-page: 712
  year: 2002
  ident: 2020043009060175800_bib6
  publication-title: ApJ
  doi: 10.1086/340096
– year: 2014
  ident: 2020043009060175800_bib32
  publication-title: Advances in Neural Information Processing Systems 27 (NIPS)
– volume: 172
  start-page: L14
  year: 1987
  ident: 2020043009060175800_bib111
  publication-title: A&A
– volume: 766
  start-page: 70
  year: 2013
  ident: 2020043009060175800_bib114
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/2/70
– volume: 474
  start-page: 3700
  year: 2018
  ident: 2020043009060175800_bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3012
SSID ssj0004326
Score 2.6178505
Snippet ABSTRACT In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a...
In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 3750
Title Identifying strong lenses with unsupervised machine learning using convolutional autoencoder
Volume 494
WOSCitedRecordID wos000535882100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yPHjxYyqbXwQRPYU1TbM2xzEcXpweJuwglKTNxmDrRtMK_ve-pN38QFFvLX0pIe-R9_17CF0pbmHeQkGUSBQJZCqIsAlHkB8tZcCsE-KGTYTDYTQei8caLNp8k8IXrLPIcmk6YCtJEB_bTk55ZCV69DB-74BkbrCaA2AEF4Bu4Bm_Lv-kfmxL2wdtMtj7xz720W5tMuJexeMDtKWzJmr1jA1iLxev-Bq75ypGYZqofQ-G8DJ38XL42J_PwCp1b4fouWrMdc1N2P1hikHvGG2wjcjiMjPlyl4fRqd44QotNa4nS0yxLZKfYluoXgssbEuWxdKCYaY6P0JPg9tR_47UAxZIwigrCAfzOvWpBr7QMPWlCih4T6ChNEsEF5oGKgEDMOITpSKdhr4KpAq5TLoqAt9NsGPUyJaZbiFss3HS96X0JnAt6Eh2NXDZ87RQPAUnqY3I-tzjpEYft0Mw5nGVBWexO954fbxtdLOhX1W4Gz9SXgIbfyE6-QvRKdrxrTftceLTM9Qo8lKfo-3kpZiZ_MIJ3Bu5n9fR
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+strong+lenses+with+unsupervised+machine+learning+using+convolutional+autoencoder&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Cheng%2C+Ting-Yun&rft.au=Li%2C+Nan&rft.au=Conselice%2C+Christopher+J&rft.au=Arag%C3%B3n-Salamanca%2C+Alfonso&rft.date=2020-05-21&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=494&rft.issue=3&rft.spage=3750&rft.epage=3765&rft_id=info:doi/10.1093%2Fmnras%2Fstaa1015&rft.externalDocID=10.1093%2Fmnras%2Fstaa1015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon