Complement system component 3 deficiency modulates the phenotypic profile of murine macrophages
[Display omitted] •The lack of C3 causes morphological alterations in peritoneal macrophages.•The lack of C3 increases the levels of CD11c in macrophages.•The lack of C3 affects the phagocytosis of iC3b-opsonized particles.•The lack of C3 reduces ROS production in TPA-treated macrophages.•The lack o...
Uloženo v:
| Vydáno v: | Cellular immunology Ročník 405-406; s. 104886 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Inc
01.11.2024
|
| Témata: | |
| ISSN: | 0008-8749, 1090-2163, 1090-2163 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•The lack of C3 causes morphological alterations in peritoneal macrophages.•The lack of C3 increases the levels of CD11c in macrophages.•The lack of C3 affects the phagocytosis of iC3b-opsonized particles.•The lack of C3 reduces ROS production in TPA-treated macrophages.•The lack of C3 reduces MAPK activation in TPA-treated macrophages.
The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are more susceptible to recurrent and severe infections. Several studies have demonstrated the importance of C3 in controlling infections. However, its role in leukocyte biology is still poorly understood. This study aimed to evaluate several cellular parameters in macrophages from C3-deficient mice and compare them to similar cells from wild-type counterparts. We observed that in the absence of C3, the population of F4/80low macrophages in the peritoneal cavity of thioglycolate-treated mice is diminished, probably due to the lack of chemotactic factors like C3a and low levels of C5a. Using fluorescence microscopy analysis, we observed that macrophages from C3-deficient mice exhibited morphological alterations when compared to similar cells from wild-type mice. We observed a significant increase in the expression of CD11c, which is part of CR4 (CD11c/CD18), in macrophages from C3-deficient compared to cells from wild-type mice. Treatment with 12-o-tetradecanoylphorbol-13-acetate, stimulated ROS production and MAPK activation by macrophages. However, these parameters were lower in macrophages from C3-deficient mice when compared to wild-type counterparts. In addition, the phagocytosis of iC3b-opsonized Zymosan particles was diminished in macrophages from C3-deficient mice. Our results suggest that C3 deficiency in C57Black/6 mice may influence specific morphological and functional parameters of macrophages, cells of fundamental importance for both the innate and acquired immune responses. |
|---|---|
| AbstractList | The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are more susceptible to recurrent and severe infections. Several studies have demonstrated the importance of C3 in controlling infections. However, its role in leukocyte biology is still poorly understood. This study aimed to evaluate several cellular parameters in macrophages from C3-deficient mice and compare them to similar cells from wild-type counterparts. We observed that in the absence of C3, the population of F4/80low macrophages in the peritoneal cavity of thioglycolate-treated mice is diminished, probably due to the lack of chemotactic factors like C3a and low levels of C5a. Using fluorescence microscopy analysis, we observed that macrophages from C3-deficient mice exhibited morphological alterations when compared to similar cells from wild-type mice. We observed a significant increase in the expression of CD11c, which is part of CR4 (CD11c/CD18), in macrophages from C3-deficient compared to cells from wild-type mice. Treatment with 12-o-tetradecanoylphorbol-13-acetate, stimulated ROS production and MAPK activation by macrophages. However, these parameters were lower in macrophages from C3-deficient mice when compared to wild-type counterparts. In addition, the phagocytosis of iC3b-opsonized Zymosan particles was diminished in macrophages from C3-deficient mice. Our results suggest that C3 deficiency in C57Black/6 mice may influence specific morphological and functional parameters of macrophages, cells of fundamental importance for both the innate and acquired immune responses.The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are more susceptible to recurrent and severe infections. Several studies have demonstrated the importance of C3 in controlling infections. However, its role in leukocyte biology is still poorly understood. This study aimed to evaluate several cellular parameters in macrophages from C3-deficient mice and compare them to similar cells from wild-type counterparts. We observed that in the absence of C3, the population of F4/80low macrophages in the peritoneal cavity of thioglycolate-treated mice is diminished, probably due to the lack of chemotactic factors like C3a and low levels of C5a. Using fluorescence microscopy analysis, we observed that macrophages from C3-deficient mice exhibited morphological alterations when compared to similar cells from wild-type mice. We observed a significant increase in the expression of CD11c, which is part of CR4 (CD11c/CD18), in macrophages from C3-deficient compared to cells from wild-type mice. Treatment with 12-o-tetradecanoylphorbol-13-acetate, stimulated ROS production and MAPK activation by macrophages. However, these parameters were lower in macrophages from C3-deficient mice when compared to wild-type counterparts. In addition, the phagocytosis of iC3b-opsonized Zymosan particles was diminished in macrophages from C3-deficient mice. Our results suggest that C3 deficiency in C57Black/6 mice may influence specific morphological and functional parameters of macrophages, cells of fundamental importance for both the innate and acquired immune responses. [Display omitted] •The lack of C3 causes morphological alterations in peritoneal macrophages.•The lack of C3 increases the levels of CD11c in macrophages.•The lack of C3 affects the phagocytosis of iC3b-opsonized particles.•The lack of C3 reduces ROS production in TPA-treated macrophages.•The lack of C3 reduces MAPK activation in TPA-treated macrophages. The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are more susceptible to recurrent and severe infections. Several studies have demonstrated the importance of C3 in controlling infections. However, its role in leukocyte biology is still poorly understood. This study aimed to evaluate several cellular parameters in macrophages from C3-deficient mice and compare them to similar cells from wild-type counterparts. We observed that in the absence of C3, the population of F4/80low macrophages in the peritoneal cavity of thioglycolate-treated mice is diminished, probably due to the lack of chemotactic factors like C3a and low levels of C5a. Using fluorescence microscopy analysis, we observed that macrophages from C3-deficient mice exhibited morphological alterations when compared to similar cells from wild-type mice. We observed a significant increase in the expression of CD11c, which is part of CR4 (CD11c/CD18), in macrophages from C3-deficient compared to cells from wild-type mice. Treatment with 12-o-tetradecanoylphorbol-13-acetate, stimulated ROS production and MAPK activation by macrophages. However, these parameters were lower in macrophages from C3-deficient mice when compared to wild-type counterparts. In addition, the phagocytosis of iC3b-opsonized Zymosan particles was diminished in macrophages from C3-deficient mice. Our results suggest that C3 deficiency in C57Black/6 mice may influence specific morphological and functional parameters of macrophages, cells of fundamental importance for both the innate and acquired immune responses. The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are more susceptible to recurrent and severe infections. Several studies have demonstrated the importance of C3 in controlling infections. However, its role in leukocyte biology is still poorly understood. This study aimed to evaluate several cellular parameters in macrophages from C3-deficient mice and compare them to similar cells from wild-type counterparts. We observed that in the absence of C3, the population of F4/80 macrophages in the peritoneal cavity of thioglycolate-treated mice is diminished, probably due to the lack of chemotactic factors like C3a and low levels of C5a. Using fluorescence microscopy analysis, we observed that macrophages from C3-deficient mice exhibited morphological alterations when compared to similar cells from wild-type mice. We observed a significant increase in the expression of CD11c, which is part of CR4 (CD11c/CD18), in macrophages from C3-deficient compared to cells from wild-type mice. Treatment with 12-o-tetradecanoylphorbol-13-acetate, stimulated ROS production and MAPK activation by macrophages. However, these parameters were lower in macrophages from C3-deficient mice when compared to wild-type counterparts. In addition, the phagocytosis of iC3b-opsonized Zymosan particles was diminished in macrophages from C3-deficient mice. Our results suggest that C3 deficiency in C57Black/6 mice may influence specific morphological and functional parameters of macrophages, cells of fundamental importance for both the innate and acquired immune responses. |
| ArticleNumber | 104886 |
| Author | Francisco da Silva, Tiago Cordeiro Valadão, Iuri Carvalho Carneiro, Milena Morais Freitas, Vanessa Akemi Amamura, Thaís Paula Lepique, Ana Isaac, Lourdes |
| Author_xml | – sequence: 1 givenname: Tiago surname: Francisco da Silva fullname: Francisco da Silva, Tiago organization: Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 2 givenname: Thaís surname: Akemi Amamura fullname: Akemi Amamura, Thaís organization: Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 3 givenname: Iuri surname: Cordeiro Valadão fullname: Cordeiro Valadão, Iuri organization: Tumor Microenvironment Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 4 givenname: Milena surname: Carvalho Carneiro fullname: Carvalho Carneiro, Milena organization: Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 5 givenname: Vanessa surname: Morais Freitas fullname: Morais Freitas, Vanessa organization: Tumor Microenvironment Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 6 givenname: Ana surname: Paula Lepique fullname: Paula Lepique, Ana organization: Laboratory of Immunomodulation, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil – sequence: 7 givenname: Lourdes surname: Isaac fullname: Isaac, Lourdes email: louisaac@icb.usp.br organization: Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39503081$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtv1DAURi1URKctPwHkJZsM14848QqhUWmRKrGhayuxrxmP4jjECdL8ezzMtFtWV_p07uvckKsxjUjIBwZbBkx9PmwtDkOIccuBy5LJtlVvyIaBhoozJa7IBgDaqm2kviY3OR8AGJMa3pFroWsQ0LINMbsUpwEjjgvNx7xgpLYkZVcJBHXogw042iONya1Dt2Cmyx7ptMcxLccpWDrNyYcBafI0rnMYkcbOzmnad78w35G3vhsyvr_UW_L87f7n7rF6-vHwfff1qbKCiaUSGluNtun7WnHJrYPGWie17FjdaKc189wJUMJqp8Br22Ld9-iVk8CVZ-KWfDrPLdf8XjEvJoZ8MtSNmNZsBONSad6wuqAfL-jaR3RmmkPs5qN5kVKA-gyUL3Ke0b8iDMxJvjmYi3xzkm_O8kvfl3Mflkf_BJxN_ucOXZjRLsal8J8JfwERLJCZ |
| Cites_doi | 10.1556/EuJMI.2.2012.2.2 10.1186/s12950-017-0151-x 10.1038/s41598-020-73074-4 10.1074/jbc.C113.497446 10.1016/j.molimm.2007.10.031 10.1038/nri978 10.1182/blood-2006-12-063636 10.1056/NEJM200104053441406 10.1371/journal.pone.0163120 10.1016/0014-4827(91)90546-7 10.1084/jem.20030374 10.1038/sj.onc.1209954 10.3389/fimmu.2019.02249 10.1126/science.1219179 10.1083/jcb.120.4.1031 10.1146/annurev.immunol.16.1.545 10.1182/blood-2005-09-3616 10.1016/j.freeradbiomed.2005.08.046 10.1002/eji.201444948 10.1155/2013/931562 10.1038/s41556-019-0414-2 10.1038/ni.2705 10.1038/nri1733 10.1038/s41598-022-05708-8 10.12703/P6-13 10.1111/imr.12500 10.1111/j.1365-3083.2006.01729.x 10.4049/jimmunol.1200524 10.1038/ni0605-544 10.1128/MCB.18.2.790 10.1128/IAI.00644-16 10.1007/s12035-023-03393-w 10.1038/nature12034 10.1172/JCI112249 10.3389/fimmu.2019.03049 10.1038/nri2448 10.1073/pnas.78.12.7722 10.4049/jimmunol.170.2.788 10.1101/cshperspect.a011254 10.1016/j.cellimm.2018.01.001 10.1007/s42977-020-00063-z 10.1056/NEJM200104123441506 10.1182/blood-2005-08-3144 10.1177/1753425908096856 10.1038/srep34581 10.1002/jlb.51.2.109 10.3389/fimmu.2019.00493 10.1073/pnas.92.25.11490 10.1128/IAI.71.8.4432-4440.2003 10.1016/j.molimm.2004.04.007 10.1023/A:1015830306839 10.1186/s12885-015-1546-9 10.1016/j.imbio.2012.07.031 10.4049/jimmunol.156.3.1235 10.1038/nri2423 10.1084/jem.20021890 10.1016/j.imlet.2015.08.009 10.1016/j.imlet.2017.05.014 10.1073/pnas.0915000107 10.18632/oncotarget.24788 10.1016/j.immuni.2008.02.001 10.1002/jcb.23330 10.1038/emm.2013.135 10.4049/jimmunol.0801191 10.1038/sigtrans.2017.23 10.1128/microbiolspec.MCHD-0034-2016 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cellimm.2024.104886 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1090-2163 |
| ExternalDocumentID | 39503081 10_1016_j_cellimm_2024_104886 S0008874924000893 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1KJ 1RT 1~. 1~5 29B 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXKI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACNCT ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HX~ HZ~ IHE J1W J5H K-O KOM L7B LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SIN SPCBC SSI SSU SSZ T5K UNMZH WH7 WUQ X7M XOL XPP Y6R YYP ZGI ZMT ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c313t-39e89ec7bb56242cd07ccd494a1579d991f2d3063c9d60f9c8e5bbef6d4026f13 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346742100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-8749 1090-2163 |
| IngestDate | Sun Sep 28 00:08:44 EDT 2025 Thu Apr 03 06:58:52 EDT 2025 Sat Nov 29 03:04:06 EST 2025 Wed Dec 04 16:49:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | C3 Complement system C3 deficiency Macrophages |
| Language | English |
| License | Copyright © 2024 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c313t-39e89ec7bb56242cd07ccd494a1579d991f2d3063c9d60f9c8e5bbef6d4026f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39503081 |
| PQID | 3124692715 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3124692715 pubmed_primary_39503081 crossref_primary_10_1016_j_cellimm_2024_104886 elsevier_sciencedirect_doi_10_1016_j_cellimm_2024_104886 |
| PublicationCentury | 2000 |
| PublicationDate | November-December 2024 2024-11-00 2024 Nov-Dec 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November-December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Cellular immunology |
| PublicationTitleAlternate | Cell Immunol |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – sequence: 0 name: Elsevier Inc |
| References | Shi, Tohyama, Kadono, He, Shahjahan Miah, Hazama, Tanaka, Tohyama, Yamamura (b0270) 2006 Bajtay (b0275) 2021; 72 Ricklin, Reis, Mastellos, Gros, Lambris (b0075) 2016; 274 Bohanakashtan (b0185) 2004; 41 Gordon, Taylor (b0050) 2005; 5 Walport (b0015) 2001; 344 Scieszka, Maggiora, Wright, Cho (b0025) 1991; 8 Hoeffel, Ginhoux (b0035) 2018; 330 Liu, Zhang, Joo, Sun (b0305) 2017; 2 Nakayama, Kim, Kim, Lambris, Sandor, Suresh (b0120) 2009; 183 Uotila, Aatonen, Gahmberg (b0250) 2013; 288 Svoboda, Schneider, Sándor, Lermann, Staib, Kremlitzka, Bajtay, Barz, Erdei, Józsi (b0345) 2015; 168 Wynn, Chawla, Pollard (b0040) 2013; 496 Brzóska, Wróbel, Grabowska, Moraczewski (b0280) 2004; 9 Lawrenz, Wooten, Zachary, Drouin, Weis, Wetsel, Norris (b0095) 2003; 71 Dustin (b0090) 2016; 4 Shinji, Kaiho, Nakano, Yoshida (b0160) 1991; 193 Strey, Markiewski, Mastellos, Tudoran, Spruce, Greenbaum, Lambris (b0180) 2003; 198 Zhou, Patel, Li, Peng, Villiers, Sacks (b0070) 2006; 107 Trevelin, dos Santos, Ferreira, de Sá Lima, Silva, Scavone, Curi, Alves-Filho, Cunha, Roxo-Júnior, Cervi, Laurindo, Hothersall, Cobb, Zhang, Ivetic, Shah, Lopes, Cunha (b0175) 2016; 6 Mosser, Edwards (b0210) 2008; 8 Gilmore (b0300) 2006; 25 Gordon (b0045) 2003; 3 Thornton, Vĕtvicka, Pitman, Goldman, Ross (b0330) 1996; 156 Diamond, Garcia-Aguilar, Bickford, Corbi, Springer (b0255) 1993; 120 Weischenfeldt, Porse (b0135) 2008; 3 Radaszkiewicz, Beckerová, Woloszczuková, Radaszkiewicz, Lesáková, Blanářová, Kubala, Humpolíček, Pachernik (b0235) 2020; 10 Nesargikar, Spiller, Chavez (b0005) 2012; 2 Reis, Falcão, Isaac (b0100) 2006; 63 Jawhara, Pluskota, Verbovetskiy, Skomorovska-Prokvolit, Plow, Soloviev (b0340) 2012; 189 Godowski (b0225) 2005; 6 Acharya, Li, Heineman, Harrison (b0085) 2020; 10 Choi, Kim, Lee, Gong, Jin, Lee, Hwang (b0195) 2022; 12 Ross, Reed, Dalzell, Becker, Hogg (b0240) 1992; 51 Kremlitzka, Nowacka, Mohlin, Bompada, De Marinis, Blom (b0290) 2019; 10 Zhou, Chen, Zhao, Tu, Song, Wang, Wang, Feng, Hong (b0105) 2023; 60 Brown, Herre, Williams, Willment, Marshall, Gordon (b0325) 2003; 197 Cho, Kim, Jeong, Jeong, Jeong, Yoon, Kim, Ahn (b0065) 2014; 46 Strainic, Liu, Huang, An, Lalli, Muqim, Shapiro, Dubyak, Heeger, Medof (b0125) 2008; 28 Sándor, Lukácsi, Ungai-Salánki, Orgován, Szabó, Horváth, Erdei, Bajtay (b0260) 2016; 11 Davies, Jenkins, Allen, Taylor (b0155) 2013; 14 C. Schulz, E.G. Perdiguero, L. Chorro, H. Szabo-Rogers, N. Cagnard, K. Kierdorf, M. Prinz, B. Wu, S.E.W. Jacobsen, J.W. Pollard, J. Frampton, K.J. Liu, F. Geissmann, A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells, Science (80-.). 336 (2012) 86–90. https://doi.org/10.1126/science.1219179. Pekkarinen, Heikkilä, Kisand, Peterson, Botto, Daha, Drouet, Isaac, Helminen, Haahtela, Meri, Jarva, Arstila (b0110) 2015; 45 Lukácsi, Nagy-Baló, Erdei, Sándor, Bajtay (b0020) 2017; 189 Jawhara, Pluskota, Cao, Plow, Soloviev (b0265) 2017; 85 Genin, Clement, Fattaccioli, Raes, Michiels (b0320) 2015; 15 Wessels, Butko, Ma, Warren, Lage, Carroll (b0080) 1995; 92 Walport (b0010) 2001; 344 Gavin, Meinke, Heldring, Heck, Achour, Iacobaeus, Höglund, Le Blanc, Kadri (b0205) 2019; 10 Morrison (b0200) 2012; 4 Suresh, Molina, Salvato, Mastellos, Lambris, Sandor (b0130) 2003; 170 Zhang, Kimura, Fang, Zhou, Sfyroera, Lambris, Wetsel, Miwa, Song (b0190) 2007; 110 Carroll (b0030) 1998; 16 Reis, Barbuto, Köhl, Isaac (b0295) 2008; 45 Sándor, Kristóf, Paréj, Pap, Erdei, Bajtay (b0245) 2013; 218 Ghosn, Cassado, Govoni, Fukuhara, Yang, Monack, Bortoluci, Almeida, Herzenberg, Herzenberg (b0145) 2010; 107 Jaumouillé, Cartagena-Rivera, Waterman (b0285) 2019; 21 Kleveta, Borzęcka, Zdioruk, Czerkies, Kuberczyk, Sybirna, Sobota, Kwiatkowska (b0170) 2012; 113 Lam, Harris, Qin (b0215) 2013; 2013 Pavlou, Wang, Xu, Chen (b0220) 2017; 14 Saqib, Sarkar, Suk, Mohammad, Baig, Savai (b0060) 2018; 9 Dempsey, Allison, Fearon, Goodnow, Akkaraju (b0115) 1996 Fürstenberger, Berry, Sorg, Marks (b0315) 1981; 78 Schönwasser, Marais, Marshall, Parker (b0230) 1998; 18 Eswarappa, Pareek, Chakravortty (b0165) 2008; 14 Ezekowitz, Sim, MacPherson, Gordon (b0335) 1985; 76 Martinez, Gordon (b0055) 2014; 6 Landar, Oh, Giles, Isom, Kirk, Barnes, Darley-Usmar (b0140) 2006; 40 Ghosh, Hayden (b0310) 2008; 8 Brzóska (10.1016/j.cellimm.2024.104886_b0280) 2004; 9 Reis (10.1016/j.cellimm.2024.104886_b0100) 2006; 63 Lawrenz (10.1016/j.cellimm.2024.104886_b0095) 2003; 71 10.1016/j.cellimm.2024.104886_b0150 Bohanakashtan (10.1016/j.cellimm.2024.104886_b0185) 2004; 41 Wynn (10.1016/j.cellimm.2024.104886_b0040) 2013; 496 Bajtay (10.1016/j.cellimm.2024.104886_b0275) 2021; 72 Walport (10.1016/j.cellimm.2024.104886_b0010) 2001; 344 Choi (10.1016/j.cellimm.2024.104886_b0195) 2022; 12 Dustin (10.1016/j.cellimm.2024.104886_b0090) 2016; 4 Trevelin (10.1016/j.cellimm.2024.104886_b0175) 2016; 6 Jawhara (10.1016/j.cellimm.2024.104886_b0340) 2012; 189 Scieszka (10.1016/j.cellimm.2024.104886_b0025) 1991; 8 Acharya (10.1016/j.cellimm.2024.104886_b0085) 2020; 10 Cho (10.1016/j.cellimm.2024.104886_b0065) 2014; 46 Nakayama (10.1016/j.cellimm.2024.104886_b0120) 2009; 183 Landar (10.1016/j.cellimm.2024.104886_b0140) 2006; 40 Hoeffel (10.1016/j.cellimm.2024.104886_b0035) 2018; 330 Liu (10.1016/j.cellimm.2024.104886_b0305) 2017; 2 Thornton (10.1016/j.cellimm.2024.104886_b0330) 1996; 156 Zhang (10.1016/j.cellimm.2024.104886_b0190) 2007; 110 Radaszkiewicz (10.1016/j.cellimm.2024.104886_b0235) 2020; 10 Gilmore (10.1016/j.cellimm.2024.104886_b0300) 2006; 25 Kleveta (10.1016/j.cellimm.2024.104886_b0170) 2012; 113 Carroll (10.1016/j.cellimm.2024.104886_b0030) 1998; 16 Morrison (10.1016/j.cellimm.2024.104886_b0200) 2012; 4 Wessels (10.1016/j.cellimm.2024.104886_b0080) 1995; 92 Davies (10.1016/j.cellimm.2024.104886_b0155) 2013; 14 Reis (10.1016/j.cellimm.2024.104886_b0295) 2008; 45 Gordon (10.1016/j.cellimm.2024.104886_b0050) 2005; 5 Ross (10.1016/j.cellimm.2024.104886_b0240) 1992; 51 Pekkarinen (10.1016/j.cellimm.2024.104886_b0110) 2015; 45 Shinji (10.1016/j.cellimm.2024.104886_b0160) 1991; 193 Saqib (10.1016/j.cellimm.2024.104886_b0060) 2018; 9 Svoboda (10.1016/j.cellimm.2024.104886_b0345) 2015; 168 Genin (10.1016/j.cellimm.2024.104886_b0320) 2015; 15 Gordon (10.1016/j.cellimm.2024.104886_b0045) 2003; 3 Gavin (10.1016/j.cellimm.2024.104886_b0205) 2019; 10 Kremlitzka (10.1016/j.cellimm.2024.104886_b0290) 2019; 10 Pavlou (10.1016/j.cellimm.2024.104886_b0220) 2017; 14 Dempsey (10.1016/j.cellimm.2024.104886_b0115) 1996 Weischenfeldt (10.1016/j.cellimm.2024.104886_b0135) 2008; 3 Shi (10.1016/j.cellimm.2024.104886_b0270) 2006 Ghosn (10.1016/j.cellimm.2024.104886_b0145) 2010; 107 Sándor (10.1016/j.cellimm.2024.104886_b0245) 2013; 218 Zhou (10.1016/j.cellimm.2024.104886_b0070) 2006; 107 Mosser (10.1016/j.cellimm.2024.104886_b0210) 2008; 8 Suresh (10.1016/j.cellimm.2024.104886_b0130) 2003; 170 Strainic (10.1016/j.cellimm.2024.104886_b0125) 2008; 28 Ezekowitz (10.1016/j.cellimm.2024.104886_b0335) 1985; 76 Nesargikar (10.1016/j.cellimm.2024.104886_b0005) 2012; 2 Brown (10.1016/j.cellimm.2024.104886_b0325) 2003; 197 Godowski (10.1016/j.cellimm.2024.104886_b0225) 2005; 6 Jaumouillé (10.1016/j.cellimm.2024.104886_b0285) 2019; 21 Zhou (10.1016/j.cellimm.2024.104886_b0105) 2023; 60 Martinez (10.1016/j.cellimm.2024.104886_b0055) 2014; 6 Sándor (10.1016/j.cellimm.2024.104886_b0260) 2016; 11 Lam (10.1016/j.cellimm.2024.104886_b0215) 2013; 2013 Walport (10.1016/j.cellimm.2024.104886_b0015) 2001; 344 Schönwasser (10.1016/j.cellimm.2024.104886_b0230) 1998; 18 Jawhara (10.1016/j.cellimm.2024.104886_b0265) 2017; 85 Uotila (10.1016/j.cellimm.2024.104886_b0250) 2013; 288 Strey (10.1016/j.cellimm.2024.104886_b0180) 2003; 198 Diamond (10.1016/j.cellimm.2024.104886_b0255) 1993; 120 Ghosh (10.1016/j.cellimm.2024.104886_b0310) 2008; 8 Lukácsi (10.1016/j.cellimm.2024.104886_b0020) 2017; 189 Ricklin (10.1016/j.cellimm.2024.104886_b0075) 2016; 274 Eswarappa (10.1016/j.cellimm.2024.104886_b0165) 2008; 14 Fürstenberger (10.1016/j.cellimm.2024.104886_b0315) 1981; 78 |
| References_xml | – volume: 60 start-page: 5167 year: 2023 end-page: 5183 ident: b0105 article-title: Complement C3 Enhances LPS-Elicited Neuroinflammation and Neurodegeneration Via the Mac1/NOX2 Pathway publication-title: Mol. Neurobiol. – volume: 218 start-page: 652 year: 2013 end-page: 663 ident: b0245 article-title: CR3 is the dominant phagocytotic complement receptor on human dendritic cells publication-title: Immunobiology – volume: 496 start-page: 445 year: 2013 end-page: 455 ident: b0040 article-title: Macrophage biology in development, homeostasis and disease publication-title: Nature – volume: 9 year: 2018 ident: b0060 article-title: Phytochemicals as modulators of M1–M2 macrophages in inflammation publication-title: Oncotarget – volume: 107 year: 2006 ident: b0070 article-title: Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells publication-title: Blood – volume: 120 year: 1993 ident: b0255 article-title: The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands publication-title: J. Cell Biol. – volume: 330 year: 2018 ident: b0035 article-title: Fetal monocytes and the origins of tissue-resident macrophages publication-title: Cell. Immunol. – volume: 113 start-page: 80 year: 2012 end-page: 92 ident: b0170 article-title: LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility publication-title: J Cell Biochem. – volume: 16 start-page: 545 year: 1998 end-page: 568 ident: b0030 article-title: The role of complement and complement receptors in induction and regulation of immunity publication-title: Annu. Rev. Immunol. – volume: 25 start-page: 6680 year: 2006 end-page: 6684 ident: b0300 article-title: Introduction to NF-κB: players, pathways, perspectives publication-title: Oncogene – volume: 2013 start-page: 1 year: 2013 end-page: 9 ident: b0215 article-title: Inflammatory Mediator Profiling Reveals Immune Properties of Chemotactic Gradients and Macrophage Mediator Production Inhibition during Thioglycollate Elicited Peritoneal Inflammation publication-title: Mediators Inflamm. – volume: 85 year: 2017 ident: b0265 article-title: Distinct Effects of Integrins α X β 2 and α M β 2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses publication-title: Infect. Immun. – volume: 189 start-page: 64 year: 2017 end-page: 72 ident: b0020 article-title: The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes publication-title: Immunol. Lett. – volume: 92 start-page: 11490 year: 1995 end-page: 11494 ident: b0080 article-title: Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity publication-title: Proc. Natl. Acad. Sci. – reference: C. Schulz, E.G. Perdiguero, L. Chorro, H. Szabo-Rogers, N. Cagnard, K. Kierdorf, M. Prinz, B. Wu, S.E.W. Jacobsen, J.W. Pollard, J. Frampton, K.J. Liu, F. Geissmann, A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells, Science (80-.). 336 (2012) 86–90. https://doi.org/10.1126/science.1219179. – volume: 189 start-page: 2468 year: 2012 end-page: 2477 ident: b0340 article-title: Integrin αXβ2 Is a Leukocyte Receptor for Candida albicans and Is Essential for Protection against Fungal Infections publication-title: J. Immunol. – volume: 168 start-page: 13 year: 2015 end-page: 21 ident: b0345 article-title: Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) publication-title: Immunol. Lett. – volume: 21 start-page: 1357 year: 2019 end-page: 1369 ident: b0285 article-title: Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis publication-title: Nat. Cell Biol. – volume: 8 start-page: 65 year: 1991 end-page: 69 ident: b0025 article-title: Role of complements C3 and C5 in the phagocytosis of liposomes by human neutrophils publication-title: Pharm. Res. – volume: 107 start-page: 2568 year: 2010 end-page: 2573 ident: b0145 article-title: Two physically, functionally, and developmentally distinct peritoneal macrophage subsets publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 23 year: 2003 end-page: 35 ident: b0045 article-title: Alternative activation of macrophages publication-title: Nat. Rev. Immunol. – volume: 9 start-page: 723 year: 2004 end-page: 737 ident: b0280 article-title: Talin distribution during the differentiation of satellite cells isolated from rat skeletal muscle publication-title: Cell. Mol. Biol. Lett. – volume: 10 year: 2019 ident: b0290 article-title: Interaction of Serum-Derived and Internalized C3 With DNA in Human B Cells—A Potential Involvement in Regulation of Gene Transcription publication-title: Front. Immunol. – volume: 10 year: 2020 ident: b0085 article-title: Complement Receptor-Mediated Phagocytosis Induces Proinflammatory Cytokine Production in Murine Macrophages publication-title: Front. Immunol. – volume: 45 year: 2008 ident: b0295 article-title: Impaired dendritic cell differentiation and maturation in the absence of C3 publication-title: Mol. Immunol. – volume: 46 year: 2014 ident: b0065 article-title: Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages publication-title: Exp. Mol. Med. – volume: 4 start-page: a011254 year: 2012 end-page: a ident: b0200 article-title: MAP Kinase Pathways publication-title: Cold Spring Harb. Perspect. Biol. – volume: 71 year: 2003 ident: b0095 article-title: Effect of complement component C3 deficiency on experimental lyme borreliosis in mice publication-title: Infect. Immun. – volume: 197 start-page: 1119 year: 2003 end-page: 1124 ident: b0325 article-title: Dectin-1 Mediates the Biological Effects of β-Glucans publication-title: J. Exp. Med. – volume: 6 start-page: 34581 year: 2016 ident: b0175 article-title: Apocynin and Nox2 regulate NF-κB by modifying thioredoxin-1 redox-state publication-title: Sci. Rep. – volume: 344 start-page: 1058 year: 2001 end-page: 1066 ident: b0010 article-title: Complement publication-title: N. Engl. J. Med. – volume: 110 start-page: 228 year: 2007 end-page: 236 ident: b0190 article-title: Regulation of Toll-like receptor–mediated inflammatory response by complement in vivo publication-title: Blood – volume: 72 start-page: 7 year: 2021 end-page: 13 ident: b0275 article-title: Biologia Futura: stories about the functions of β2-integrins in human phagocytes publication-title: Biol. Futur. – volume: 2 start-page: 103 year: 2012 end-page: 111 ident: b0005 article-title: The complement system: History, pathways, cascade and inhibitors publication-title: Eur. J. Microbiol. Immunol. – volume: 63 start-page: 155 year: 2006 end-page: 168 ident: b0100 article-title: Clinical Aspects and Molecular Basis of Primary Deficiencies of Complement Component C3 and its Regulatory Proteins Factor I and Factor H publication-title: Scand. J. Immunol. – volume: 288 start-page: 33494 year: 2013 end-page: 33499 ident: b0250 article-title: Integrin CD11c/CD18 α-Chain Phosphorylation Is Functionally Important publication-title: J. Biol. Chem. – volume: 14 start-page: 309 year: 2008 end-page: 318 ident: b0165 article-title: Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages publication-title: Innate Immun. – volume: 41 start-page: 583 year: 2004 end-page: 597 ident: b0185 article-title: Cell signals transduced by complement publication-title: Mol. Immunol. – volume: 8 year: 2008 ident: b0210 article-title: Exploring the full spectrum of macrophage activation publication-title: Nat. Rev. Immunol. – volume: 4 year: 2016 ident: b0090 article-title: Complement Receptors in Myeloid Cell Adhesion and Phagocytosis publication-title: Microbiol. Spectr. – volume: 6 start-page: 544 year: 2005 end-page: 546 ident: b0225 article-title: A smooth operator for LPS responses publication-title: Nat. Immunol. – volume: 183 year: 2009 ident: b0120 article-title: C3 Promotes Expansion of CD8 + and CD4 + T Cells in a Listeria monocytogenes Infection publication-title: J. Immunol. – volume: 76 start-page: 2368 year: 1985 end-page: 2376 ident: b0335 article-title: Interaction of human monocytes, macrophages, and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement publication-title: J. Clin. Invest. – volume: 156 start-page: 1235 year: 1996 end-page: 1246 ident: b0330 article-title: Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) publication-title: J. Immunol. – volume: 18 start-page: 790 year: 1998 end-page: 798 ident: b0230 article-title: Activation of the Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway by Conventional, Novel, and Atypical Protein Kinase C Isotypes publication-title: Mol. Cell. Biol. – volume: 40 start-page: 459 year: 2006 end-page: 468 ident: b0140 article-title: A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress publication-title: Free Radic. Biol. Med. – volume: 45 year: 2015 ident: b0110 article-title: Dysregulation of adaptive immune responses in complement C3-deficient patients publication-title: Eur. J. Immunol. – volume: 344 start-page: 1140 year: 2001 end-page: 1144 ident: b0015 article-title: Complement publication-title: N. Engl. J. Med. – volume: 274 year: 2016 ident: b0075 article-title: Complement component C3 – The “Swiss Army Knife” of innate immunity and host defense publication-title: Immunol. Rev. – volume: 5 year: 2005 ident: b0050 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. – volume: 3 year: 2008 ident: b0135 article-title: Bone marrow-derived macrophages (BMM): Isolation and applications publication-title: Cold Spring Harb. Protoc. – volume: 170 start-page: 788 year: 2003 end-page: 794 ident: b0130 article-title: Complement Component 3 Is Required for Optimal Expansion of CD8 T Cells During a Systemic Viral Infection publication-title: J. Immunol. – volume: 78 start-page: 7722 year: 1981 end-page: 7726 ident: b0315 article-title: Skin tumor promotion by phorbol esters is a two-stage process publication-title: Proc. Natl. Acad. Sci. u. s. a. – volume: 10 start-page: 15922 year: 2020 ident: b0235 article-title: 12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling publication-title: Sci. Rep. – volume: 15 start-page: 577 year: 2015 ident: b0320 article-title: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide publication-title: BMC Cancer – start-page: 4554 year: 2006 end-page: 4562 ident: b0270 article-title: Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis publication-title: Blood 107 – volume: 12 start-page: 1700 year: 2022 ident: b0195 article-title: Promotion of the inflammatory response in mid colon of complement component 3 knockout mice publication-title: Sci. Rep. – volume: 10 year: 2019 ident: b0205 article-title: The Complement System Is Essential for the Phagocytosis of Mesenchymal Stromal Cells by Monocytes publication-title: Front. Immunol. – volume: 14 start-page: 986 year: 2013 end-page: 995 ident: b0155 article-title: Tissue-resident macrophages publication-title: Nat. Immunol. – volume: 198 year: 2003 ident: b0180 article-title: The proinflammatory mediators C3a and C5a are essential for liver regeneration publication-title: J. Exp. Med. – volume: 6 year: 2014 ident: b0055 article-title: The M1 and M2 paradigm of macrophage activation: Time for reassessment publication-title: F1000Prime Rep. – volume: 28 year: 2008 ident: b0125 article-title: Locally Produced Complement Fragments C5a and C3a Provide Both Costimulatory and Survival Signals to Naive CD4+ T Cells publication-title: Immunity – volume: 51 start-page: 109 year: 1992 end-page: 117 ident: b0240 article-title: Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes publication-title: J. Leukoc. Biol. – volume: 2 start-page: 17023 year: 2017 ident: b0305 article-title: NF-κB signaling in inflammation publication-title: Signal Transduct. Target. Ther. – volume: 193 start-page: 127 year: 1991 end-page: 133 ident: b0160 article-title: Reorganization of microfilaments in macrophages after LPS stimulation publication-title: Exp Cell Res. – volume: ) start-page: 271 year: 1996 ident: b0115 article-title: C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity publication-title: Science (80-. – volume: 11 start-page: e0163120 year: 2016 ident: b0260 article-title: CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18 publication-title: PLoS One – volume: 14 start-page: 4 year: 2017 ident: b0220 article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells publication-title: J. Inflamm. – volume: 8 start-page: 837 year: 2008 end-page: 848 ident: b0310 article-title: New regulators of NF-κB in inflammation publication-title: Nat. Rev. Immunol. – volume: 2 start-page: 103 year: 2012 ident: 10.1016/j.cellimm.2024.104886_b0005 article-title: The complement system: History, pathways, cascade and inhibitors publication-title: Eur. J. Microbiol. Immunol. doi: 10.1556/EuJMI.2.2012.2.2 – volume: 14 start-page: 4 year: 2017 ident: 10.1016/j.cellimm.2024.104886_b0220 article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells publication-title: J. Inflamm. doi: 10.1186/s12950-017-0151-x – volume: 10 start-page: 15922 year: 2020 ident: 10.1016/j.cellimm.2024.104886_b0235 article-title: 12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling publication-title: Sci. Rep. doi: 10.1038/s41598-020-73074-4 – volume: ) start-page: 271 year: 1996 ident: 10.1016/j.cellimm.2024.104886_b0115 article-title: C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity publication-title: Science (80-. – volume: 288 start-page: 33494 year: 2013 ident: 10.1016/j.cellimm.2024.104886_b0250 article-title: Integrin CD11c/CD18 α-Chain Phosphorylation Is Functionally Important publication-title: J. Biol. Chem. doi: 10.1074/jbc.C113.497446 – volume: 45 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0295 article-title: Impaired dendritic cell differentiation and maturation in the absence of C3 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2007.10.031 – volume: 3 start-page: 23 year: 2003 ident: 10.1016/j.cellimm.2024.104886_b0045 article-title: Alternative activation of macrophages publication-title: Nat. Rev. Immunol. doi: 10.1038/nri978 – volume: 110 start-page: 228 year: 2007 ident: 10.1016/j.cellimm.2024.104886_b0190 article-title: Regulation of Toll-like receptor–mediated inflammatory response by complement in vivo publication-title: Blood doi: 10.1182/blood-2006-12-063636 – volume: 344 start-page: 1058 year: 2001 ident: 10.1016/j.cellimm.2024.104886_b0010 article-title: Complement publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200104053441406 – volume: 11 start-page: e0163120 year: 2016 ident: 10.1016/j.cellimm.2024.104886_b0260 article-title: CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18 publication-title: PLoS One doi: 10.1371/journal.pone.0163120 – volume: 193 start-page: 127 issue: 1 year: 1991 ident: 10.1016/j.cellimm.2024.104886_b0160 article-title: Reorganization of microfilaments in macrophages after LPS stimulation publication-title: Exp Cell Res. doi: 10.1016/0014-4827(91)90546-7 – volume: 198 year: 2003 ident: 10.1016/j.cellimm.2024.104886_b0180 article-title: The proinflammatory mediators C3a and C5a are essential for liver regeneration publication-title: J. Exp. Med. doi: 10.1084/jem.20030374 – volume: 3 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0135 article-title: Bone marrow-derived macrophages (BMM): Isolation and applications publication-title: Cold Spring Harb. Protoc. – volume: 25 start-page: 6680 year: 2006 ident: 10.1016/j.cellimm.2024.104886_b0300 article-title: Introduction to NF-κB: players, pathways, perspectives publication-title: Oncogene doi: 10.1038/sj.onc.1209954 – volume: 10 year: 2019 ident: 10.1016/j.cellimm.2024.104886_b0205 article-title: The Complement System Is Essential for the Phagocytosis of Mesenchymal Stromal Cells by Monocytes publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02249 – ident: 10.1016/j.cellimm.2024.104886_b0150 doi: 10.1126/science.1219179 – volume: 120 year: 1993 ident: 10.1016/j.cellimm.2024.104886_b0255 article-title: The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands publication-title: J. Cell Biol. doi: 10.1083/jcb.120.4.1031 – volume: 16 start-page: 545 year: 1998 ident: 10.1016/j.cellimm.2024.104886_b0030 article-title: The role of complement and complement receptors in induction and regulation of immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.545 – start-page: 4554 year: 2006 ident: 10.1016/j.cellimm.2024.104886_b0270 article-title: Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis publication-title: Blood 107 doi: 10.1182/blood-2005-09-3616 – volume: 40 start-page: 459 year: 2006 ident: 10.1016/j.cellimm.2024.104886_b0140 article-title: A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.08.046 – volume: 45 year: 2015 ident: 10.1016/j.cellimm.2024.104886_b0110 article-title: Dysregulation of adaptive immune responses in complement C3-deficient patients publication-title: Eur. J. Immunol. doi: 10.1002/eji.201444948 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.cellimm.2024.104886_b0215 article-title: Inflammatory Mediator Profiling Reveals Immune Properties of Chemotactic Gradients and Macrophage Mediator Production Inhibition during Thioglycollate Elicited Peritoneal Inflammation publication-title: Mediators Inflamm. doi: 10.1155/2013/931562 – volume: 21 start-page: 1357 year: 2019 ident: 10.1016/j.cellimm.2024.104886_b0285 article-title: Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0414-2 – volume: 14 start-page: 986 year: 2013 ident: 10.1016/j.cellimm.2024.104886_b0155 article-title: Tissue-resident macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2705 – volume: 5 year: 2005 ident: 10.1016/j.cellimm.2024.104886_b0050 article-title: Monocyte and macrophage heterogeneity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1733 – volume: 12 start-page: 1700 year: 2022 ident: 10.1016/j.cellimm.2024.104886_b0195 article-title: Promotion of the inflammatory response in mid colon of complement component 3 knockout mice publication-title: Sci. Rep. doi: 10.1038/s41598-022-05708-8 – volume: 6 year: 2014 ident: 10.1016/j.cellimm.2024.104886_b0055 article-title: The M1 and M2 paradigm of macrophage activation: Time for reassessment publication-title: F1000Prime Rep. doi: 10.12703/P6-13 – volume: 274 year: 2016 ident: 10.1016/j.cellimm.2024.104886_b0075 article-title: Complement component C3 – The “Swiss Army Knife” of innate immunity and host defense publication-title: Immunol. Rev. doi: 10.1111/imr.12500 – volume: 63 start-page: 155 year: 2006 ident: 10.1016/j.cellimm.2024.104886_b0100 article-title: Clinical Aspects and Molecular Basis of Primary Deficiencies of Complement Component C3 and its Regulatory Proteins Factor I and Factor H publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.2006.01729.x – volume: 189 start-page: 2468 year: 2012 ident: 10.1016/j.cellimm.2024.104886_b0340 article-title: Integrin αXβ2 Is a Leukocyte Receptor for Candida albicans and Is Essential for Protection against Fungal Infections publication-title: J. Immunol. doi: 10.4049/jimmunol.1200524 – volume: 6 start-page: 544 year: 2005 ident: 10.1016/j.cellimm.2024.104886_b0225 article-title: A smooth operator for LPS responses publication-title: Nat. Immunol. doi: 10.1038/ni0605-544 – volume: 18 start-page: 790 year: 1998 ident: 10.1016/j.cellimm.2024.104886_b0230 article-title: Activation of the Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway by Conventional, Novel, and Atypical Protein Kinase C Isotypes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.2.790 – volume: 85 year: 2017 ident: 10.1016/j.cellimm.2024.104886_b0265 article-title: Distinct Effects of Integrins α X β 2 and α M β 2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses publication-title: Infect. Immun. doi: 10.1128/IAI.00644-16 – volume: 60 start-page: 5167 year: 2023 ident: 10.1016/j.cellimm.2024.104886_b0105 article-title: Complement C3 Enhances LPS-Elicited Neuroinflammation and Neurodegeneration Via the Mac1/NOX2 Pathway publication-title: Mol. Neurobiol. doi: 10.1007/s12035-023-03393-w – volume: 496 start-page: 445 year: 2013 ident: 10.1016/j.cellimm.2024.104886_b0040 article-title: Macrophage biology in development, homeostasis and disease publication-title: Nature doi: 10.1038/nature12034 – volume: 76 start-page: 2368 year: 1985 ident: 10.1016/j.cellimm.2024.104886_b0335 article-title: Interaction of human monocytes, macrophages, and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement publication-title: J. Clin. Invest. doi: 10.1172/JCI112249 – volume: 9 start-page: 723 year: 2004 ident: 10.1016/j.cellimm.2024.104886_b0280 article-title: Talin distribution during the differentiation of satellite cells isolated from rat skeletal muscle publication-title: Cell. Mol. Biol. Lett. – volume: 10 year: 2020 ident: 10.1016/j.cellimm.2024.104886_b0085 article-title: Complement Receptor-Mediated Phagocytosis Induces Proinflammatory Cytokine Production in Murine Macrophages publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.03049 – volume: 8 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0210 article-title: Exploring the full spectrum of macrophage activation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2448 – volume: 78 start-page: 7722 year: 1981 ident: 10.1016/j.cellimm.2024.104886_b0315 article-title: Skin tumor promotion by phorbol esters is a two-stage process publication-title: Proc. Natl. Acad. Sci. u. s. a. doi: 10.1073/pnas.78.12.7722 – volume: 170 start-page: 788 year: 2003 ident: 10.1016/j.cellimm.2024.104886_b0130 article-title: Complement Component 3 Is Required for Optimal Expansion of CD8 T Cells During a Systemic Viral Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.170.2.788 – volume: 4 start-page: a011254 year: 2012 ident: 10.1016/j.cellimm.2024.104886_b0200 article-title: MAP Kinase Pathways publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011254 – volume: 330 year: 2018 ident: 10.1016/j.cellimm.2024.104886_b0035 article-title: Fetal monocytes and the origins of tissue-resident macrophages publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2018.01.001 – volume: 72 start-page: 7 year: 2021 ident: 10.1016/j.cellimm.2024.104886_b0275 article-title: Biologia Futura: stories about the functions of β2-integrins in human phagocytes publication-title: Biol. Futur. doi: 10.1007/s42977-020-00063-z – volume: 344 start-page: 1140 year: 2001 ident: 10.1016/j.cellimm.2024.104886_b0015 article-title: Complement publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200104123441506 – volume: 107 year: 2006 ident: 10.1016/j.cellimm.2024.104886_b0070 article-title: Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells publication-title: Blood doi: 10.1182/blood-2005-08-3144 – volume: 14 start-page: 309 issue: 5 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0165 article-title: Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages publication-title: Innate Immun. doi: 10.1177/1753425908096856 – volume: 6 start-page: 34581 year: 2016 ident: 10.1016/j.cellimm.2024.104886_b0175 article-title: Apocynin and Nox2 regulate NF-κB by modifying thioredoxin-1 redox-state publication-title: Sci. Rep. doi: 10.1038/srep34581 – volume: 51 start-page: 109 year: 1992 ident: 10.1016/j.cellimm.2024.104886_b0240 article-title: Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.51.2.109 – volume: 10 year: 2019 ident: 10.1016/j.cellimm.2024.104886_b0290 article-title: Interaction of Serum-Derived and Internalized C3 With DNA in Human B Cells—A Potential Involvement in Regulation of Gene Transcription publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00493 – volume: 92 start-page: 11490 year: 1995 ident: 10.1016/j.cellimm.2024.104886_b0080 article-title: Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.25.11490 – volume: 71 year: 2003 ident: 10.1016/j.cellimm.2024.104886_b0095 article-title: Effect of complement component C3 deficiency on experimental lyme borreliosis in mice publication-title: Infect. Immun. doi: 10.1128/IAI.71.8.4432-4440.2003 – volume: 41 start-page: 583 year: 2004 ident: 10.1016/j.cellimm.2024.104886_b0185 article-title: Cell signals transduced by complement publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2004.04.007 – volume: 8 start-page: 65 year: 1991 ident: 10.1016/j.cellimm.2024.104886_b0025 article-title: Role of complements C3 and C5 in the phagocytosis of liposomes by human neutrophils publication-title: Pharm. Res. doi: 10.1023/A:1015830306839 – volume: 15 start-page: 577 year: 2015 ident: 10.1016/j.cellimm.2024.104886_b0320 article-title: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide publication-title: BMC Cancer doi: 10.1186/s12885-015-1546-9 – volume: 218 start-page: 652 year: 2013 ident: 10.1016/j.cellimm.2024.104886_b0245 article-title: CR3 is the dominant phagocytotic complement receptor on human dendritic cells publication-title: Immunobiology doi: 10.1016/j.imbio.2012.07.031 – volume: 156 start-page: 1235 year: 1996 ident: 10.1016/j.cellimm.2024.104886_b0330 article-title: Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) publication-title: J. Immunol. doi: 10.4049/jimmunol.156.3.1235 – volume: 8 start-page: 837 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0310 article-title: New regulators of NF-κB in inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2423 – volume: 197 start-page: 1119 year: 2003 ident: 10.1016/j.cellimm.2024.104886_b0325 article-title: Dectin-1 Mediates the Biological Effects of β-Glucans publication-title: J. Exp. Med. doi: 10.1084/jem.20021890 – volume: 168 start-page: 13 year: 2015 ident: 10.1016/j.cellimm.2024.104886_b0345 article-title: Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2015.08.009 – volume: 189 start-page: 64 year: 2017 ident: 10.1016/j.cellimm.2024.104886_b0020 article-title: The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2017.05.014 – volume: 107 start-page: 2568 year: 2010 ident: 10.1016/j.cellimm.2024.104886_b0145 article-title: Two physically, functionally, and developmentally distinct peritoneal macrophage subsets publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0915000107 – volume: 9 year: 2018 ident: 10.1016/j.cellimm.2024.104886_b0060 article-title: Phytochemicals as modulators of M1–M2 macrophages in inflammation publication-title: Oncotarget doi: 10.18632/oncotarget.24788 – volume: 28 year: 2008 ident: 10.1016/j.cellimm.2024.104886_b0125 article-title: Locally Produced Complement Fragments C5a and C3a Provide Both Costimulatory and Survival Signals to Naive CD4+ T Cells publication-title: Immunity doi: 10.1016/j.immuni.2008.02.001 – volume: 113 start-page: 80 issue: 1 year: 2012 ident: 10.1016/j.cellimm.2024.104886_b0170 article-title: LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility publication-title: J Cell Biochem. doi: 10.1002/jcb.23330 – volume: 46 year: 2014 ident: 10.1016/j.cellimm.2024.104886_b0065 article-title: Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages publication-title: Exp. Mol. Med. doi: 10.1038/emm.2013.135 – volume: 183 year: 2009 ident: 10.1016/j.cellimm.2024.104886_b0120 article-title: C3 Promotes Expansion of CD8 + and CD4 + T Cells in a Listeria monocytogenes Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.0801191 – volume: 2 start-page: 17023 year: 2017 ident: 10.1016/j.cellimm.2024.104886_b0305 article-title: NF-κB signaling in inflammation publication-title: Signal Transduct. Target. Ther. doi: 10.1038/sigtrans.2017.23 – volume: 4 year: 2016 ident: 10.1016/j.cellimm.2024.104886_b0090 article-title: Complement Receptors in Myeloid Cell Adhesion and Phagocytosis publication-title: Microbiol. Spectr. doi: 10.1128/microbiolspec.MCHD-0034-2016 |
| SSID | ssj0011490 |
| Score | 2.4131515 |
| Snippet | [Display omitted]
•The lack of C3 causes morphological alterations in peritoneal macrophages.•The lack of C3 increases the levels of CD11c in macrophages.•The... The Complement System is composed of more than 40 proteins that act in innate and adaptive immunity. C3 is the most abundant one and C3-deficient patients are... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 104886 |
| SubjectTerms | Animals Antigens, Differentiation - immunology Antigens, Differentiation - metabolism C3 deficiency CD11 Antigens CD11c Antigen - metabolism Complement C3 - deficiency Complement C3 - genetics Complement C3 - immunology Complement C3 - metabolism Complement C5a - immunology Complement C5a - metabolism Complement system Macrophages Macrophages - immunology Macrophages - metabolism Macrophages, Peritoneal - immunology Macrophages, Peritoneal - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Phagocytosis Phenotype Reactive Oxygen Species - metabolism Tetradecanoylphorbol Acetate - pharmacology |
| Title | Complement system component 3 deficiency modulates the phenotypic profile of murine macrophages |
| URI | https://dx.doi.org/10.1016/j.cellimm.2024.104886 https://www.ncbi.nlm.nih.gov/pubmed/39503081 https://www.proquest.com/docview/3124692715 |
| Volume | 405-406 |
| WOSCitedRecordID | wos001346742100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011490 issn: 0008-8749 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6Dqa9IBhf5WMyEm9RSmIncfxYlSGGYEJiTH2LHMehGW1StV21_UH8n5xjJyliFfDAS1TZTmz59-v5zr7zIfRaZgEhmfRdkoeRG6SSumBnhS4srornJJV-7VV58ZGdncWTCf_c6_1oYmE2M1aW8fU1X_xXqKEMwNahs_8Ad_tRKIDfADo8AXZ4_hXw-h9ufMLtNc2123hV6gLqZEpfGVHHW86rTOfu0nc86HCpqSqr9c2ikI7N410fvevNeO3jqjN9TUH2rLa12bGazYwbq44y-WWD3ibskJWTCedLMdsIwwzxrWo59l3NC2c0F9CJqZ2K-tz-bavnj_XNoMWyci7EDLioK2m9t3sK4-qOT5Ywf9NKO6-UurUJB4DlVGzvaZDABvfVS5KRwx73XOJb2WcFNeiWYO5ui1tfy5_o1pXAbEpcDvX5B0zCUHcz_L09YLeY10ygPNR39_jdwti6KzZVe2ifsJDHfbQ_Oj2ZfGiPq8DM9LrwsDe39nqIDprv7NKBdtk4ta5zfh_ds0YKHhlyPUA9VR6huyZt6c0ROvhkHTIeoqRjGzZswy3bMMUd23DLNgxswx3bsGUbrnJs2Ia32PYIfX13cj5-79qcHa6kPl27lKuYK8nSNNSRRzLzmAR5wAPhh4xnYI3kJAMzlUqeRV7OZazCNFV5lAUeiXKfPkb9Egb5FGEwtZVHQ-YRJgJPEK7SOMgphZcEi4Q3QMNmFpOFuZolaXwWLxOLQKIRSAwCAxQ3c51Y_dLojQmQ5k-vvmqwSUD-6haiVNXVKqGgIEecMD8coCcGtHY0Dd7PdtY8R4cd_1-g_np5pV6iO3KzLlbLY7THJvGxJdtPhwitZQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complement+system+component+3+deficiency+modulates+the+phenotypic+profile+of+murine+macrophages&rft.jtitle=Cellular+immunology&rft.au=Francisco+da+Silva%2C+Tiago&rft.au=Akemi+Amamura%2C+Tha%C3%ADs&rft.au=Cordeiro+Valad%C3%A3o%2C+Iuri&rft.au=Carvalho+Carneiro%2C+Milena&rft.date=2024-11-01&rft.eissn=1090-2163&rft.volume=405-406&rft.spage=104886&rft_id=info:doi/10.1016%2Fj.cellimm.2024.104886&rft_id=info%3Apmid%2F39503081&rft.externalDocID=39503081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-8749&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-8749&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-8749&client=summon |