An Improved A^ Decoding Algorithm With List Decoding
Comparing with hard decision decoding algorithms, soft decoding has a lower probability of bit error but a higher computational complexity. As a maximum-likelihood soft decoding method, the <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formu...
Uloženo v:
| Vydáno v: | IEEE access Ročník 6; s. 46877 - 46885 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Comparing with hard decision decoding algorithms, soft decoding has a lower probability of bit error but a higher computational complexity. As a maximum-likelihood soft decoding method, the <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formula> algorithm is the most basic and widely used to minimize bit error probability. However, its average computational complexity strongly depends on a seed codeword and a heuristic function utilized during the decoding process. To efficiently reduce the computational complexity while maintaining the decoding accuracy theoretically and practically, this paper proposes an improved <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formula> decoding algorithm consisting of two phases. The first phase applies the greedy list decoding to the linear block code to obtain a seed codeword. According to the seed, the second phase applies the improved <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formula> algorithm to obtain the final decoding output. The heuristic function used in the <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formula> algorithm is modified in two aspects: 1) use more information of partial decoded symbols to improve the accuracy of the function and 2) take advantage of Hamming distance to reduce the search space. Simulations on the <inline-formula> <tex-math notation="LaTeX">RM(5,2) </tex-math></inline-formula> Reed-Muller codes and [128, 64] binary extended BCH code show that this improved <inline-formula> <tex-math notation="LaTeX">A^{\ast } </tex-math></inline-formula> algorithm is more efficient in average decoding complexity than many other algorithms while maintaining the decoding accuracy. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2018.2866396 |