An AI-based Approach for Grading Students' Collaboration

Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this paper. The ped...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on learning technologies Ročník 16; číslo 3; s. 1 - 15
Hlavní autoři: Tomic, Bojan B., Kijevcanin, Anisja D., Sevarac, Zoran V., Jovanovic, Jelena M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1382, 2372-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this paper. The pedagogical underpinning of the approach includes a pedagogical framework and a quantitative soft skill assessment rubric, which have been adapted and used in an extracurricular Java programming course. The objective was to identify pros and cons of using different AI methods within this approach when it comes to assessing and grading collaboration in group programming projects. More specifically, fuzzy rules and several machine learning methods (ML onward) have been examined to see which one would yield the best results regarding performance, interpretability/explainability of recommendations and feasibility/practicality. The data used for training and testing span four academic years, and the results suggest that almost all of the examined AI methods, when used within the proposed AI-based approach, can provide adequate grading recommendations as long as teachers cover other aspects of the assessment not covered by the rubrics: code quality, plagiarism, and project completion. The fuzzy-rule-based method requires time and effort to be spent on (manual) creation and tuning of fuzzy rules and sets, whereas the examined ML methods require lesser initial investments but do need historical data for training. On the other hand, the fuzzy-rule-based method can provide the best explanations on how the assessment/grading was made - something that proved to be very important to teachers.
AbstractList Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this article. The pedagogical underpinning of the approach includes a pedagogical framework and a quantitative soft skill assessment rubric, which have been adapted and used in an extracurricular Java programming course. The objective was to identify pros and cons of using different AI methods within this approach when it comes to assessing and grading collaboration in group programming projects. More specifically, fuzzy rules and several machine learning methods (ML onward) have been examined to see which one would yield the best results regarding performance, interpretability/explainability of recommendations, and feasibility/practicality. The data used for training and testing span four academic years, and the results suggest that almost all of the examined AI methods, when used within the proposed AI-based approach, can provide adequate grading recommendations as long as teachers cover other aspects of the assessment not covered by the rubrics: code quality, plagiarism, and project completion. The fuzzy-rule-based method requires time and effort to be spent on (manual) creation and tuning of fuzzy rules and sets, whereas the examined ML methods require lesser initial investments but do need historical data for training. On the other hand, the fuzzy-rule-based method can provide the best explanations on how the assessment/grading was made—something that proved to be very important to teachers.
Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this paper. The pedagogical underpinning of the approach includes a pedagogical framework and a quantitative soft skill assessment rubric, which have been adapted and used in an extracurricular Java programming course. The objective was to identify pros and cons of using different AI methods within this approach when it comes to assessing and grading collaboration in group programming projects. More specifically, fuzzy rules and several machine learning methods (ML onward) have been examined to see which one would yield the best results regarding performance, interpretability/explainability of recommendations and feasibility/practicality. The data used for training and testing span four academic years, and the results suggest that almost all of the examined AI methods, when used within the proposed AI-based approach, can provide adequate grading recommendations as long as teachers cover other aspects of the assessment not covered by the rubrics: code quality, plagiarism, and project completion. The fuzzy-rule-based method requires time and effort to be spent on (manual) creation and tuning of fuzzy rules and sets, whereas the examined ML methods require lesser initial investments but do need historical data for training. On the other hand, the fuzzy-rule-based method can provide the best explanations on how the assessment/grading was made - something that proved to be very important to teachers.
Author Tomic, Bojan B.
Sevarac, Zoran V.
Jovanovic, Jelena M.
Kijevcanin, Anisja D.
Author_xml – sequence: 1
  givenname: Bojan B.
  surname: Tomic
  fullname: Tomic, Bojan B.
  organization: Department of Software Engineering, Faculty of Organizational Sciences, University of Belgrade, Serbia
– sequence: 2
  givenname: Anisja D.
  surname: Kijevcanin
  fullname: Kijevcanin, Anisja D.
  organization: Department of Software Engineering, Faculty of Organizational Sciences, University of Belgrade, Serbia
– sequence: 3
  givenname: Zoran V.
  surname: Sevarac
  fullname: Sevarac, Zoran V.
  organization: Department of Software Engineering, Faculty of Organizational Sciences, University of Belgrade, Serbia
– sequence: 4
  givenname: Jelena M.
  orcidid: 0000-0002-1904-0446
  surname: Jovanovic
  fullname: Jovanovic, Jelena M.
  organization: Department of Software Engineering, Faculty of Organizational Sciences, University of Belgrade, Serbia
BookMark eNp9kDFPwzAQRi1UJNrCjsQSiYEpxT7Hjj1GFZRKlRgos-U4NqQKcbGdgX9PSisGBqZbvnff3ZuhSe97i9A1wQtCsLzfbrYLwAALCsAKCmdoCrSEHGOGJ2hKJJU5oQIu0CzGHcYcSglTJKo-q9Z5raNtsmq_D16b98z5kK2Cbtr-LXtJQ2P7FO-ype86XfugU-v7S3TudBft1WnO0evjw3b5lG-eV-tltckNJTTl4LTkjltuJK0FI1oWRhorhGYCE6iFrAUpdIE14YZokMJRV4pGGFZTbgmdo9vj3vG0z8HGpHZ-CP1YqUAAL8pClmJM4WPKBB9jsE7tQ_uhw5ciWB38qNGPOvhRJz8jwv8gpk0_r6Wg2-4_8OYIttba3x4pOWOS028SdXIw
CODEN ITLTAT
CitedBy_id crossref_primary_10_1109_TLT_2024_3456447
crossref_primary_10_1177_10464964241279164
crossref_primary_10_1016_j_caeai_2025_100451
crossref_primary_10_1016_j_caeai_2024_100355
crossref_primary_10_1177_00472395241231815
crossref_primary_10_30831_akukeg_1644354
crossref_primary_10_1109_TLT_2023_3324714
crossref_primary_10_1080_10447318_2024_2338330
crossref_primary_10_1109_ACCESS_2025_3608158
crossref_primary_10_3390_math13172828
crossref_primary_10_1177_01626434231165977
crossref_primary_10_1080_10999922_2024_2414957
crossref_primary_10_1088_1742_6596_3105_1_012017
crossref_primary_10_1080_03634523_2025_2477479
crossref_primary_10_1016_j_caeo_2025_100278
crossref_primary_10_1038_s41598_025_93052_y
Cites_doi 10.1109/FIE.2015.7344177
10.1016/j.jss.2020.110613
10.9790/0837-19560103
10.1007/978-3-319-91602-6_4
10.1109/FIE.2016.7757406
10.1145/2445196.2445351
10.1145/3134744
10.1016/j.jss.2013.12.037
10.1109/FIE.2006.322591
10.3991/ijep.v5i1.4047
10.18543/tjhe-3(2)-2016pp389-427
10.2307/249686
10.1080/14703297.2015.1105754
10.1007/s11412-015-9226-y
10.1109/ICSE.2007.40
10.18608/jla.2021.7227
10.1007/BF01257890
10.1080/18756891.2013.818190
10.1613/jair.953
10.1080/08957347.2018.1495212
10.17140/PCSOJ-4-e011
10.1109/CHASE.2013.6614749
10.3389/fcomp.2021.728801
10.1109/MITP.2012.7
10.1016/j.ijer.2014.07.001
10.1007/s10618-012-0295-5
10.1109/APSECW.2017.19
10.1109/FIE.2018.8658983
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TLT.2022.3225432
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 2372-0050
EndPage 15
ExternalDocumentID 10_1109_TLT_2022_3225432
9965596
Genre orig-research
GroupedDBID 0R~
29I
5GY
5VS
6IK
97E
AAJGR
AAKDD
AAKPC
AASAJ
AAWTH
ABJNI
ABOPQ
ABQJQ
ABVLG
ACGFO
ACHQT
ACIWK
ADDVE
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RZB
AAYXX
CITATION
AARMG
ABAZT
ID FETCH-LOGICAL-c313t-2fa96f6e6c93b851a94c9ce88a58012b89b814a40a16c1a298f3f78d8c5b36e13
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001012684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1382
IngestDate Mon Jun 30 06:34:45 EDT 2025
Tue Nov 18 22:11:36 EST 2025
Sat Nov 29 06:08:00 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-2fa96f6e6c93b851a94c9ce88a58012b89b814a40a16c1a298f3f78d8c5b36e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1904-0446
0000-0001-5292-5804
0000-0001-9418-6915
0000-0001-6853-4322
PQID 2826474978
PQPubID 85505
PageCount 15
ParticipantIDs crossref_primary_10_1109_TLT_2022_3225432
crossref_citationtrail_10_1109_TLT_2022_3225432
proquest_journals_2826474978
ieee_primary_9965596
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on learning technologies
PublicationTitleAbbrev TLT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref37
ref31
ref30
ref33
ref2
binkley (ref12) 2011
ref1
(ref10) 0
ref17
ref39
ref16
ref38
(ref9) 0
(ref35) 0
ref19
ref18
molnar (ref27) 0
ref24
ref23
lee (ref14) 2012; 15
ref26
ref20
ref42
ref41
ref22
(ref36) 0
beckett (ref40) 2018
(ref11) 0
(ref34) 0
ref28
tomi? (ref25) 2017; 50
ref29
ref8
ref4
ref3
gitinabard (ref21) 2020
ref6
matturro (ref7) 2019; 25
ref5
schneider (ref32) 2016
References_xml – year: 0
  ident: ref35
  article-title: GRASS D2.2 supporting document GRASS pedagogical rubric
– volume: 50
  start-page: 518
  year: 2017
  ident: ref25
  article-title: Grading students' programming and soft skills with open badges: A case study
  publication-title: Brit J Educ Technol
– ident: ref18
  doi: 10.1109/FIE.2015.7344177
– ident: ref22
  doi: 10.1016/j.jss.2020.110613
– ident: ref1
  doi: 10.9790/0837-19560103
– ident: ref6
  doi: 10.1007/978-3-319-91602-6_4
– ident: ref20
  doi: 10.1109/FIE.2016.7757406
– ident: ref4
  doi: 10.1145/2445196.2445351
– ident: ref16
  doi: 10.1145/3134744
– ident: ref28
  doi: 10.1016/j.jss.2013.12.037
– ident: ref17
  doi: 10.1109/FIE.2006.322591
– volume: 15
  start-page: 214
  year: 2012
  ident: ref14
  article-title: Peer evaluation in blended team project-Based learning: What do students find important?
  publication-title: Educ Technol Soc
– ident: ref13
  doi: 10.3991/ijep.v5i1.4047
– start-page: 409
  year: 2020
  ident: ref21
  article-title: Student teamwork on programming projects: What can GitHub logs show us?
  publication-title: Proc 13th Int Conf Educ Data Mining
– ident: ref8
  doi: 10.18543/tjhe-3(2)-2016pp389-427
– ident: ref41
  doi: 10.2307/249686
– volume: 25
  start-page: 16
  year: 2019
  ident: ref7
  article-title: A systematic mapping study on soft skills in software engineering
  publication-title: JUCS - Journal of Universal Computer Science
– ident: ref15
  doi: 10.1080/14703297.2015.1105754
– ident: ref30
  doi: 10.1007/s11412-015-9226-y
– year: 0
  ident: ref11
  article-title: 21CLD student work rubrics
– year: 0
  ident: ref10
  article-title: 21CLD learning activity rubrics
– year: 0
  ident: ref27
  article-title: Interpretable machine learning: A guide for making black box models explainable
– ident: ref29
  doi: 10.1109/ICSE.2007.40
– start-page: 17
  year: 2011
  ident: ref12
  article-title: Defining twenty-first century skills
  publication-title: Assessment and Teaching of 21st Century Skills
– year: 0
  ident: ref36
  article-title: GRASS D3.2 supporting document didactic materials for GRASS application cases
– ident: ref33
  doi: 10.18608/jla.2021.7227
– year: 0
  ident: ref9
  article-title: PISA 2015 draft collaborative problem solving framework
– ident: ref42
  doi: 10.1007/BF01257890
– ident: ref37
  doi: 10.1080/18756891.2013.818190
– year: 0
  ident: ref34
  article-title: GRASS D2.2 pedagogical approaches
– ident: ref38
  doi: 10.1613/jair.953
– ident: ref26
  doi: 10.1080/08957347.2018.1495212
– ident: ref5
  doi: 10.17140/PCSOJ-4-e011
– year: 2018
  ident: ref40
  article-title: Rfviz: An interactive visualization package for random forests in R
– ident: ref3
  doi: 10.1109/CHASE.2013.6614749
– ident: ref31
  doi: 10.3389/fcomp.2021.728801
– ident: ref2
  doi: 10.1109/MITP.2012.7
– start-page: 99
  year: 2016
  ident: ref32
  article-title: Real-time mutual gaze perception enhances collaborative learning and collaboration quality
  publication-title: Educational Media and Technology Yearbook
– ident: ref19
  doi: 10.1016/j.ijer.2014.07.001
– ident: ref39
  doi: 10.1007/s10618-012-0295-5
– ident: ref24
  doi: 10.1109/APSECW.2017.19
– ident: ref23
  doi: 10.1109/FIE.2018.8658983
SSID ssj0062792
Score 2.3879402
Snippet Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Automatic assessment tools
Codes
Collaboration
Computer Assisted Instruction
computer science education
Cooperation
Electronic mail
Fuzzy sets
fuzzy systems
Grading
Java
Machine learning
Measurement
Pedagogy
Programming
Scoring Rubrics
Soft Skills
Software engineering
Students
Teachers
Teaching Methods
Teamwork
Training
Title An AI-based Approach for Grading Students' Collaboration
URI https://ieeexplore.ieee.org/document/9965596
https://www.proquest.com/docview/2826474978
Volume 16
WOSCitedRecordID wos001012684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2372-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062792
  issn: 1939-1382
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP3Yhg--eJvidEofBBHM1jZtmjyW4VQYQ3DC3kpzA0E62cXfb5KmQ1EE3_qQ0HJyOd_XfDkH4CpSOjU0HyIdaoGsgBeiSSSQkqEw7GeSIu50ZifZdErnc_bUgtvtXRillCs-UwP76M7y5UJs7K-yoYnNTQBM2tDOMlLf1Wp2XWKF8JpjyJANZ5OZSf7ieGAnbILjb7TjfFR-bL6OUcb7__uWA9jzkWOQ10N9CC1VHVnTZV-g0QWaV0H-iCwvySD3WuGBCUqD-6WrlA-eayHL1XUw-jr8x_AyvpuNHpA3RkACR3iNYl0yookigmFuQqaSJYIJRWmZWsLhlHEaJWUSlhERURkzqrHOqKQi5ZioCJ9Ap1pU6hQCbjIEQQgTqbRqYJpyFUosWcyleYEUPRg2uBXCq4Zb84q3wmUPISsM0oVFuvBI9-Bm2-O9Vsz4o23XIrtt50HtQb8ZmsIvqVVhckOSZNYQ7-z3Xuewa73g6zquPnTWy426gB3xsX5dLS_dbPkE13O8yA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP2YU9AXb1OcTs2DIILZes2SxzKcG9YhWGFvpU1SEKSTXfz9Jmk6FEXwrQ8JLSeX833Nl3MArlxZhIrmHVw4BcdawAvTwOVYCocr9lNJUW50ZuP-ZEKnU_bUgNv1XRgppSk-k139aM7yxYyv9K-ynorNVQBMNmBTO2fZ21r1vku0FF59EOmwXhInKv3zvK6esoHvfSMe46TyY_s1nDLc-9_X7MOujR1RVA32ATRkeahtl22JRgtoVKJojDUzCRRZtXCkwlJ0Pze18ui5krJcXKPB1wlwBC_Du2QwwtYaAXPf9ZfYKzJGCiIJZ36ugqaMBZxxSWkWasrJKcupG2SBk7mEu5nHaOEXfSooD3OfSNc_hmY5K-UJoFzlCJwQxkOh9cAKmktH-IJ5uVAvELwNvRq3lFvdcG1f8Zaa_MFhqUI61UinFuk23Kx7vFeaGX-0bWlk1-0sqG3o1EOT2kW1SFV2SIK-tsQ7_b3XJWyPksc4jceThzPY0c7wVVVXB5rL-Uqewxb_WL4u5hdm5nwC2j7AEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+AI-based+Approach+for+Grading+Students%E2%80%99+Collaboration&rft.jtitle=IEEE+transactions+on+learning+technologies&rft.au=Tomi%C4%87%2C+Bojan+B.&rft.au=Kijev%C4%8Danin%2C+Anisja+D.&rft.au=%C5%A0evarac%2C+Zoran+V.&rft.au=Jovanovi%C4%87%2C+Jelena+M.&rft.date=2023-06-01&rft.issn=1939-1382&rft.eissn=2372-0050&rft.volume=16&rft.issue=3&rft.spage=292&rft.epage=305&rft_id=info:doi/10.1109%2FTLT.2022.3225432&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TLT_2022_3225432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1382&client=summon