Cauchy activation function and XNet

We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural netw...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 188; p. 107375
Main Authors: Li, Xin, Xia, Zhihong, Zhang, Hongkun
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.08.2025
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.
AbstractList We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.
We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.
We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.
ArticleNumber 107375
Author Zhang, Hongkun
Li, Xin
Xia, Zhihong
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  email: xinli2023@u.northwestern.edu
  organization: Department of Computer Science, Northwestern University, Evanston, IL, USA
– sequence: 2
  givenname: Zhihong
  surname: Xia
  fullname: Xia, Zhihong
  email: xia@math.northwestern.edu
  organization: School of Natural Science, Great Bay University, Guangdong, China
– sequence: 3
  givenname: Hongkun
  surname: Zhang
  fullname: Zhang, Hongkun
  email: hzhang@umass.edu
  organization: School of Natural Science, Great Bay University, Guangdong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40157236$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1LAzEQxYMo9kP_A5GCFy9bk0k2m70IUvyCohcFbyFNZjGlzdZkt9D_3q1bPXqaYfi9x7w3IsehDkjIBaNTRpm8WU4DtgGbKVDIu1PBi_yIDJkqygwKBcdkSFXJM0kVHZBRSktKqVSCn5KBoCwvgMshuZqZ1n7uJsY2fmsaX4dJ1Qb7s5jgJh8v2JyRk8qsEp4f5pi8P9y_zZ6y-evj8-xunlnOeJMBL1HxnLOKoVioyjiocpCwKLgDWkjnnCmZFdZQYNZwqgCcklDmApREwcfkuvfdxPqrxdTotU8WVysTsG6T5kx1j5c8Vx16eUDbxRqd3kS_NnGnf4N1gOgBG-uUIlZ_CKN6359e6r4_ve9P9_11sttehl3Orceok_UYLDof0Tba1f5_g28tyXdO
Cites_doi 10.1016/j.neucom.2022.06.111
10.1007/s12065-024-00908-9
10.1038/s41586-019-1923-7
10.1073/pnas.1718942115
10.1109/ACCESS.2022.3232064
10.1016/j.jcp.2019.109136
10.1038/nature14539
10.1016/j.jcp.2018.10.045
10.4208/cicp.OA-2020-0164
10.1038/s42256-021-00302-5
10.1016/j.dsp.2022.103812
10.1038/s41586-019-0912-1
10.1038/s41586-021-03819-2
10.1016/j.neunet.2017.07.002
10.1109/JAS.2022.105743
10.1038/323533a0
10.1016/j.jcp.2018.08.029
10.1016/j.neunet.2022.01.001
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2025.107375
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 40157236
10_1016_j_neunet_2025_107375
S0893608025002540
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c313t-239e83531f1e4b8fad2f5262b73d2076ddda91c4ca021ca30822d862954286e43
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Fri Oct 03 00:37:49 EDT 2025
Mon Jun 02 02:21:45 EDT 2025
Sat Nov 29 07:55:06 EST 2025
Sat Jun 28 18:16:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Physics-Informed Neural Networks
Cauchy Integral Theorem
Image classification
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-239e83531f1e4b8fad2f5262b73d2076ddda91c4ca021ca30822d862954286e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40157236
PQID 3184019358
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3184019358
pubmed_primary_40157236
crossref_primary_10_1016_j_neunet_2025_107375
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107375
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jagtap, Karniadakis (b13) 2020; 28
Jarrett, Kavukcuoglu, Ranzato, LeCun (b17) 2009
Begion, Y., et al. (2018). Deep Complex Networks. In
Wu, Luo, Wang, Wang, Long (b36) 2024
E, Wang (b7) 2018; 16
Kunc, Kléma (b23) 2024
Yarotsky (b38) 2017; 94
Zhang, Li, Xia (b40) 2024
Fu, Hamilton, Brandt, Feldman, Zhang, Freeman (b9) 2024
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais (b31) 2019; 566
Sirignano, Spiliopoulos (b34) 2018; 375
Hirose (b12) 2012
Lee, Hasegawa, Gao (b26) 2022; 9
Raissi, Perdikaris, Karniadakis (b29) 2019; 378
Jagtap, Kharazmi, Karniadakis (b16) 2022; 92
Ramachandran, Zoph, Le (b30) 2017
Jagtap, Kawaguchi, Karniadakis (b15) 2020; 404
Li, Xia, Zheng (b27) 2024
Emmerich (b8) 2003
Senior, Evans, Jumper, Kirkpatrick, Sifre, Green (b33) 2020; 577
Rumelhart, Hinton, Williams (b32) 1986; 323
Jumper, Evans, Pritzel, Green, Figurnov, Tunyasuvunakool (b19) 2021; 596
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Jin, Lu, Pang, Zhang, Karniadakis (b18) 2021; 3
Wu, Xu, Dai, Wan, Zhang, Yan (b37) 2020
Kalim, Chug, Singh (b20) 2024; 17
Jagtap, Karniadakis (b14) 2022
Arjovsky, Shah, Bengio (b1) 2016
Zhao, Ding, Aditya Prakash (b41) 2023
Boullé, Nakatsukasa, Townsend (b5) 2020; 33
Dubey, Singh, Chaudhuri (b6) 2022; 503
Han, Jentzen, Weinan (b11) 2018; 115
Tripathi, Tiwari, Dhawan, Sharma, Jha (b35) 2021
Knezevic, Fulir, Jakobovic, Picek, Durasevic (b22) 2023; 11
Poster session.
Goodfellow, Bengio, Courville (b10) 2016
LeCun, Bengio, Hinton (b25) 2015; 521
Bingham, Miikkulainen (b4) 2022; 148
Le, Rathour, Yamazaki, Luu, Savvides (b24) 2022
Yeats, Chen, Li (b39) 2021
Barrachina, Ren, Vieillard, Morisseau, Ovarlez (b2) 2023
Kaur, Singh (b21) 2023; 132
(pp. 807–814).
Hirose (10.1016/j.neunet.2025.107375_b12) 2012
Arjovsky (10.1016/j.neunet.2025.107375_b1) 2016
Dubey (10.1016/j.neunet.2025.107375_b6) 2022; 503
Jin (10.1016/j.neunet.2025.107375_b18) 2021; 3
Emmerich (10.1016/j.neunet.2025.107375_b8) 2003
Jumper (10.1016/j.neunet.2025.107375_b19) 2021; 596
Yeats (10.1016/j.neunet.2025.107375_b39) 2021
Jagtap (10.1016/j.neunet.2025.107375_b14) 2022
Kalim (10.1016/j.neunet.2025.107375_b20) 2024; 17
Barrachina (10.1016/j.neunet.2025.107375_b2) 2023
Ramachandran (10.1016/j.neunet.2025.107375_b30) 2017
Fu (10.1016/j.neunet.2025.107375_b9) 2024
Kunc (10.1016/j.neunet.2025.107375_b23) 2024
Raissi (10.1016/j.neunet.2025.107375_b29) 2019; 378
Sirignano (10.1016/j.neunet.2025.107375_b34) 2018; 375
Jarrett (10.1016/j.neunet.2025.107375_b17) 2009
Tripathi (10.1016/j.neunet.2025.107375_b35) 2021
Jagtap (10.1016/j.neunet.2025.107375_b13) 2020; 28
Jagtap (10.1016/j.neunet.2025.107375_b15) 2020; 404
Reichstein (10.1016/j.neunet.2025.107375_b31) 2019; 566
Senior (10.1016/j.neunet.2025.107375_b33) 2020; 577
10.1016/j.neunet.2025.107375_b28
10.1016/j.neunet.2025.107375_b3
Wu (10.1016/j.neunet.2025.107375_b36) 2024
Knezevic (10.1016/j.neunet.2025.107375_b22) 2023; 11
Le (10.1016/j.neunet.2025.107375_b24) 2022
Rumelhart (10.1016/j.neunet.2025.107375_b32) 1986; 323
Han (10.1016/j.neunet.2025.107375_b11) 2018; 115
Boullé (10.1016/j.neunet.2025.107375_b5) 2020; 33
Zhang (10.1016/j.neunet.2025.107375_b40) 2024
E (10.1016/j.neunet.2025.107375_b7) 2018; 16
LeCun (10.1016/j.neunet.2025.107375_b25) 2015; 521
Bingham (10.1016/j.neunet.2025.107375_b4) 2022; 148
Li (10.1016/j.neunet.2025.107375_b27) 2024
Wu (10.1016/j.neunet.2025.107375_b37) 2020
Zhao (10.1016/j.neunet.2025.107375_b41) 2023
Yarotsky (10.1016/j.neunet.2025.107375_b38) 2017; 94
Lee (10.1016/j.neunet.2025.107375_b26) 2022; 9
Kaur (10.1016/j.neunet.2025.107375_b21) 2023; 132
Goodfellow (10.1016/j.neunet.2025.107375_b10) 2016
Jagtap (10.1016/j.neunet.2025.107375_b16) 2022; 92
References_xml – volume: 404
  year: 2020
  ident: b15
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: Journal of Computational Physics
– start-page: 11953
  year: 2021
  end-page: 11963
  ident: b39
  article-title: Improving gradient regularization using complex-valued neural networks
  publication-title: Proceedings of the 38th international conference on machine learning, volume 139
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b11
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proceedings of the National Academy of Sciences
– year: 2024
  ident: b40
  article-title: Cauchynet: Utilizing complex activation functions for enhanced time-series forecasting and data imputation
– volume: 11
  start-page: 284
  year: 2023
  end-page: 299
  ident: b22
  article-title: NeuroSCA: Evolving activation functions for side-channel analysis
  publication-title: IEEE Access
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: b19
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b32
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2016
  ident: b10
  article-title: Deep learning
– year: 2023
  ident: b2
  article-title: Theory and implementation of complex-valued neural networks
– reference: . Poster session.
– reference: Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
– year: 2021
  ident: b35
  article-title: A survey on efficient realization of activation functions of artificial neural network
  publication-title: 2021 Asian conference on innovation in technology
– start-page: 2146
  year: 2009
  end-page: 2153
  ident: b17
  article-title: What is the best multi-stage architecture for object recognition?
  publication-title: Proceedings of the IEEE international conference on computer vision
– year: 2024
  ident: b36
  article-title: Transolver: A fast transformer solver for PDEs on general geometries
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b25
  article-title: Deep learning
  publication-title: Nature
– volume: 33
  start-page: 14243
  year: 2020
  end-page: 14253
  ident: b5
  article-title: Rational neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 92
  start-page: 80
  year: 2022
  ident: b16
  article-title: Locally adaptive activation functions with applications to deep and physics-informed neural networks
  publication-title: Journal of Scientific Computing
– volume: 132
  year: 2023
  ident: b21
  article-title: A comprehensive review of object detection with deep learning
  publication-title: Digital Signal Processing
– reference: (pp. 807–814).
– volume: 16
  start-page: 2349
  year: 2018
  end-page: 2383
  ident: b7
  article-title: A priori estimates and PochHammer-Chree expansions for deep neural networks
  publication-title: Communications in Mathematical Sciences
– start-page: 1120
  year: 2016
  end-page: 1128
  ident: b1
  article-title: Unitary evolution recurrent neural networks
  publication-title: Proceedings of the 33rd international conference on machine learning - volume 48
– volume: 28
  start-page: 2002
  year: 2020
  end-page: 2041
  ident: b13
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: b31
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 577
  start-page: 706
  year: 2020
  end-page: 710
  ident: b33
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
– year: 2003
  ident: b8
  publication-title: The diffuse interface approach in materials science: Thermodynamic concepts and applications of phase-field models
– volume: 9
  start-page: 1406
  year: 2022
  end-page: 1426
  ident: b26
  article-title: Complex-valued neural networks: A comprehensive survey
  publication-title: IEEE/CAA Journal of Automatica Sinica
– year: 2024
  ident: b9
  article-title: Featup: A model-agnostic framework for features at any resolution
– year: 2022
  ident: b14
  article-title: How important are activation functions in regression and classification? A survey, performance comparison, and future directions
– volume: 3
  start-page: 218
  year: 2021
  end-page: 229
  ident: b18
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nature Machine Intelligence
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b29
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– year: 2024
  ident: b27
  article-title: Model comparisons: Xnet outperforms KAN
– year: 2020
  ident: b37
  article-title: Visual transformers: Token-based image representation and processing for computer vision
– year: 2017
  ident: b30
  article-title: Searching for activation functions
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: b34
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: Journal of Computational Physics
– year: 2023
  ident: b41
  article-title: PINNsFormer: A transformer-based framework for physics-informed neural networks
– year: 2012
  ident: b12
  publication-title: Complex-valued neural networks
– year: 2024
  ident: b23
  article-title: Three decades of activations: A comprehensive survey of 400 activation functions for neural networks
– volume: 94
  start-page: 103
  year: 2017
  end-page: 114
  ident: b38
  article-title: Error bounds for approximations with deep ReLU networks
  publication-title: Neural Networks
– reference: Begion, Y., et al. (2018). Deep Complex Networks. In
– start-page: 1
  year: 2022
  end-page: 87
  ident: b24
  article-title: Deep reinforcement learning in computer vision: a comprehensive survey
  publication-title: Artificial Intelligence Review
– volume: 503
  start-page: 92
  year: 2022
  end-page: 108
  ident: b6
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
– volume: 148
  start-page: 48
  year: 2022
  end-page: 65
  ident: b4
  article-title: Discovering parametric activation functions
  publication-title: Neural Networks
– volume: 17
  start-page: 1
  year: 2024
  end-page: 11
  ident: b20
  article-title: modSwish: a new activation function for neural network
  publication-title: Evolutionary Intelligence
– volume: 503
  start-page: 92
  year: 2022
  ident: 10.1016/j.neunet.2025.107375_b6
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.111
– volume: 17
  start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2025.107375_b20
  article-title: modSwish: a new activation function for neural network
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-024-00908-9
– year: 2003
  ident: 10.1016/j.neunet.2025.107375_b8
– year: 2023
  ident: 10.1016/j.neunet.2025.107375_b41
– year: 2022
  ident: 10.1016/j.neunet.2025.107375_b14
– ident: 10.1016/j.neunet.2025.107375_b28
– volume: 577
  start-page: 706
  issue: 7792
  year: 2020
  ident: 10.1016/j.neunet.2025.107375_b33
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.neunet.2025.107375_b11
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1718942115
– start-page: 1120
  year: 2016
  ident: 10.1016/j.neunet.2025.107375_b1
  article-title: Unitary evolution recurrent neural networks
– year: 2016
  ident: 10.1016/j.neunet.2025.107375_b10
– volume: 92
  start-page: 80
  year: 2022
  ident: 10.1016/j.neunet.2025.107375_b16
  article-title: Locally adaptive activation functions with applications to deep and physics-informed neural networks
  publication-title: Journal of Scientific Computing
– volume: 11
  start-page: 284
  year: 2023
  ident: 10.1016/j.neunet.2025.107375_b22
  article-title: NeuroSCA: Evolving activation functions for side-channel analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232064
– volume: 404
  year: 2020
  ident: 10.1016/j.neunet.2025.107375_b15
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.109136
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neunet.2025.107375_b25
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2024
  ident: 10.1016/j.neunet.2025.107375_b27
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.neunet.2025.107375_b29
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– start-page: 11953
  year: 2021
  ident: 10.1016/j.neunet.2025.107375_b39
  article-title: Improving gradient regularization using complex-valued neural networks
– ident: 10.1016/j.neunet.2025.107375_b3
– volume: 28
  start-page: 2002
  issue: 5
  year: 2020
  ident: 10.1016/j.neunet.2025.107375_b13
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
  doi: 10.4208/cicp.OA-2020-0164
– year: 2024
  ident: 10.1016/j.neunet.2025.107375_b40
– year: 2024
  ident: 10.1016/j.neunet.2025.107375_b23
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2025.107375_b18
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00302-5
– year: 2017
  ident: 10.1016/j.neunet.2025.107375_b30
– volume: 132
  year: 2023
  ident: 10.1016/j.neunet.2025.107375_b21
  article-title: A comprehensive review of object detection with deep learning
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2022.103812
– year: 2020
  ident: 10.1016/j.neunet.2025.107375_b37
– year: 2024
  ident: 10.1016/j.neunet.2025.107375_b9
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 10.1016/j.neunet.2025.107375_b31
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– year: 2021
  ident: 10.1016/j.neunet.2025.107375_b35
  article-title: A survey on efficient realization of activation functions of artificial neural network
– year: 2012
  ident: 10.1016/j.neunet.2025.107375_b12
– start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2025.107375_b24
  article-title: Deep reinforcement learning in computer vision: a comprehensive survey
  publication-title: Artificial Intelligence Review
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  ident: 10.1016/j.neunet.2025.107375_b19
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 33
  start-page: 14243
  year: 2020
  ident: 10.1016/j.neunet.2025.107375_b5
  article-title: Rational neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 2349
  issue: 8
  year: 2018
  ident: 10.1016/j.neunet.2025.107375_b7
  article-title: A priori estimates and PochHammer-Chree expansions for deep neural networks
  publication-title: Communications in Mathematical Sciences
– volume: 94
  start-page: 103
  year: 2017
  ident: 10.1016/j.neunet.2025.107375_b38
  article-title: Error bounds for approximations with deep ReLU networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.07.002
– volume: 9
  start-page: 1406
  issue: 8
  year: 2022
  ident: 10.1016/j.neunet.2025.107375_b26
  article-title: Complex-valued neural networks: A comprehensive survey
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.105743
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.neunet.2025.107375_b32
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 2146
  year: 2009
  ident: 10.1016/j.neunet.2025.107375_b17
  article-title: What is the best multi-stage architecture for object recognition?
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.neunet.2025.107375_b34
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.08.029
– year: 2023
  ident: 10.1016/j.neunet.2025.107375_b2
– year: 2024
  ident: 10.1016/j.neunet.2025.107375_b36
– volume: 148
  start-page: 48
  year: 2022
  ident: 10.1016/j.neunet.2025.107375_b4
  article-title: Discovering parametric activation functions
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.01.001
SSID ssj0006843
Score 2.4739628
Snippet We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107375
SubjectTerms Algorithms
Cauchy Integral Theorem
Humans
Image classification
Neural Networks, Computer
Physics-Informed Neural Networks
Title Cauchy activation function and XNet
URI https://dx.doi.org/10.1016/j.neunet.2025.107375
https://www.ncbi.nlm.nih.gov/pubmed/40157236
https://www.proquest.com/docview/3184019358
Volume 188
WOSCitedRecordID wos001460990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZN0kMvbfretgku7VXBlmw9jiGkJCUshaZgejGyLLGbgDZk1yH99x1ZkjdtE_qAXoyRsSTmE6NPo3kg9N4SoolVJa5Y2eFSMIGFKlpMdMekyC2zZqhacsKnU1HX8lOs5Lkcyglw58T1tbz4r1BDG4DtQ2f_Au6xU2iAdwAdngA7PP8I-APV69m3IUnGVfQkhL1rldyO66n5wRzvs3MATC64g48M-2S45a_n49qpg1ft19l8toi73U178xE0nvfuphGBVKMLW7RspeiWtSvRoIAkxSwPlZbW2lLcqnmDEeBsz5keZrznB4FGTkNdlJ9yWn_2XfuegYD5cPx8A20RXklQS1v7x4f1x3EzZSI4PqappOjHwUXv17HuYhd3nR4GFnG6jR5G-p_tB9geo3vGPUGPUmmNLGrap-hdQDFbo5glFDNAMfMoPkNfPhyeHhzhWM8Ca1rQFSZUGiC8tLCFKVthVUdsRRhpOe1IzlnXdUoWutQKiJdWPpEQ6eDEKSs4IzJT0udo0y2ceYkyIVvgEVKSopWl5aq1xuSibeH4mWvG7AThJIfmIqQtaZI_31kT5NZ4uTVBbhPEk7CaSL0CpWoA39_8-TbJtgHN5K-blDOLftlQbzwo_D37BL0IQh_nAh8qTih79c_jvkYP1gv5DdpcXfZmB93XV6v58nIXbfBa7MbF9B1lkmcc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cauchy+activation+function+and+XNet&rft.jtitle=Neural+networks&rft.au=Li%2C+Xin&rft.au=Xia%2C+Zhihong&rft.au=Zhang%2C+Hongkun&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.volume=188&rft_id=info:doi/10.1016%2Fj.neunet.2025.107375&rft.externalDocID=S0893608025002540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon