Data-driven optimal tracking control for nonlinear systems with performance constraints via adaptive dynamic programming

This paper studies the optimal tracking problem for an unknown nonlinear systems subject to input and performance constraints. A data-driven constrained optimal tracking control scheme is designed to make the system states pursue the desired trajectory while minimizing the cost and strictly limiting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks Jg. 191; S. 107852
Hauptverfasser: Zhang, Lulu, Zhang, Huaguang, Yue, Xiaohui, Wang, Tianbiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.11.2025
Schlagworte:
ISSN:0893-6080, 1879-2782, 1879-2782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the optimal tracking problem for an unknown nonlinear systems subject to input and performance constraints. A data-driven constrained optimal tracking control scheme is designed to make the system states pursue the desired trajectory while minimizing the cost and strictly limiting the tracking error within thepredefined zones. Specifically, a finite-time performance function is deployed to ensure that errors converge to steady-state regions within a user-defined time. Furthermore, by employing a nonquadratic cost function, a modified Hamilton-Jacobi-Bellman equation is constructed to ensure input limitations are satisfied. Subsequently, the adaptive dynamic programming algorithm, implemented with neural networks (NNs) in an actor-critic structure, is employed to learn the optimal control policy without relying on any prior information about the system dynamics. Meanwhile, the weights of the actor-critic NNs are tuned using the least-squares method based on the collected dataset. Finally, simulations on Chua’s circuit demonstrate the effectiveness and benefits of the designed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2025.107852