Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem

We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society Jg. 95; H. 1; S. 199 - 247
Hauptverfasser: Goldston, D. A., Yildirim, C. Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford University Press 01.07.2007
ISSN:0024-6115, 1460-244X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions, we obtain an Ω±-result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ω-results for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
AbstractList We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for DirichletL‐functions, we obtain an Ω±‐result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ω‐results for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions, we obtain an Ω±-result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ω-results for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Author Yildirim, C. Y.
Goldston, D. A.
Author_xml – sequence: 1
  givenname: D. A.
  surname: Goldston
  fullname: Goldston, D. A.
  email: goldston@math.sjsu.edu
  organization: San Jose State University
– sequence: 2
  givenname: C. Y.
  surname: Yildirim
  fullname: Yildirim, C. Y.
  email: yalciny@boun.edu.tr
  organization: Çengelköy
BookMark eNp9kElPwzAQhS1UJNrCiT_gOwr1xLGbcIMKaFFZJAqquFhOMqGGLJWdFvrvSReBhASnkd68b5bXIa2yKpGQY2CnAOD35nnhevO0YMD2SBsCyTw_CKYt0mbMDzwJIA5Ix7k3xpjkXLSJHZrXGVqaVNZirmtTlY5WGU3N0rjKUrcoHN10MKV1RefWFOjoaHRGl9qaH6CeIUVrG6RGW1BTbpSNnZaLIm52NEJlsTgk-5nOHR7tapc8XV1OBkNvfH89GpyPvYQDj7xMZBxFqDOQkseogfNY6JiFHFIZ-FEqME4FC-MEtMikxCgLNYSRn8aBj6HPuwS2cxNbOWcxU4mpNwfXVptcAVPr0NQ6NLUNrWFOfjHrD7Rd_eHebfgwOa7-s6qH8e0jgyhqGG_LGFfj5zej7buSfd4Xajh9UeEELp5vBneK8S-HHZPl
CitedBy_id crossref_primary_10_1007_s00208_021_02179_6
ContentType Journal Article
Copyright 2007 London Mathematical Society
Copyright_xml – notice: 2007 London Mathematical Society
DBID BSCLL
AAYXX
CITATION
DOI 10.1112/plms/pdm010
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1460-244X
EndPage 247
ExternalDocumentID 10_1112_plms_pdm010
PLMS0199
ark_67375_HXZ_8T1BVJCN_0
Genre article
GroupedDBID --Z
-~X
.2P
.I3
0R~
123
1OB
1OC
1TH
2WC
33P
4.4
5VS
6TJ
70D
AAGQS
AAHQN
AAIJN
AAJKP
AAMMB
AAMNL
AAMVS
AANLZ
AAOGV
AASGY
AASVR
AAUQX
AAXRX
AAYCA
AAZKR
ABCQX
ABCUV
ABEFU
ABEJV
ABEUO
ABGDZ
ABGNP
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABQLI
ABSMQ
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCZN
ACGFS
ACIPB
ACNCT
ACPOU
ACQPF
ACUKT
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADXAS
ADXHL
ADZMN
ADZXQ
AECKG
AEFGJ
AEGPL
AEIGN
AEJOX
AENEX
AEPUE
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFIYH
AFKSM
AFWVQ
AFZJQ
AGHNM
AGKEF
AGQPQ
AGSYK
AGXDD
AGYGG
AHBTC
AHXPO
AIDQK
AIDYY
AIJHB
AIQQE
AITYG
AIURR
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMVHM
AMYDB
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
BSCLL
CAG
CHEAL
COF
CS3
CXTWN
CZ4
D0L
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
DU5
D~K
EBS
EE~
EJD
F9B
FEDTE
FSPIC
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
KOP
L7B
L98
LATKE
LEEKS
LH4
LOXES
LPU
LUTES
LYRES
M-Z
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N9A
NGC
NU-
O0~
O9-
OHT
O~Y
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROZ
RW1
RXO
S10
SAMSI
SUPJJ
TJP
TN5
TUQ
UQL
WH7
WIH
WIK
WOHZO
WXSBR
X7H
XJT
XKC
XOL
XSW
Y6R
YNT
YYP
ZCG
ZY4
ZZTAW
~91
AAHHS
AAOIN
ABDBF
ABQTQ
ABSAR
ABTAH
ACCFJ
ACUFI
ADRIX
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ESX
J21
KSI
M49
ROX
TCN
AAYXX
CITATION
ID FETCH-LOGICAL-c3139-f5f3e58af1663bea133b5ab0831d6429d5ebd508bc1a5f66e9f8a1892db42e823
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247956200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-6115
IngestDate Sat Nov 29 06:18:13 EST 2025
Tue Nov 18 22:36:48 EST 2025
Wed Jan 22 17:09:13 EST 2025
Sat Sep 20 11:01:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3139-f5f3e58af1663bea133b5ab0831d6429d5ebd508bc1a5f66e9f8a1892db42e823
Notes istex:B222091C16D15E745261E401C3F5747782C823B1
ark:/67375/HXZ-8T1BVJCN-0
2000 Mathematics Subject Classification 11N05 (primary), 11P32 (secondary).
ArticleID:pdm010
2000
Mathematics Subject Classification
The research of Goldston was supported by the NSF; that of Yildirim was supported by TÜBİTAK.
11N05 (primary), 11P32 (secondary).
PageCount 49
ParticipantIDs crossref_citationtrail_10_1112_plms_pdm010
crossref_primary_10_1112_plms_pdm010
wiley_primary_10_1112_plms_pdm010_PLMS0199
istex_primary_ark_67375_HXZ_8T1BVJCN_0
PublicationCentury 2000
PublicationDate 2007-07
July 2007
2007-07-00
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07
PublicationDecade 2000
PublicationTitle Proceedings of the London Mathematical Society
PublicationYear 2007
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0006335
Score 1.7424363
Snippet We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 199
Title Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem
URI https://api.istex.fr/ark:/67375/HXZ-8T1BVJCN-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fplms%2Fpdm010
Volume 95
WOSCitedRecordID wos000247956200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-244X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006335
  issn: 0024-6115
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SetCDb7G-yKF4KCxtdjdt1puvUqUtRVspXpY8QbQPdqv4851s1pWCCOJ1MxmWzGTyTcjMh1A1DFUkAaZ6UpuGF_KAeIyz0KNGWrQchMb1me22-n02HkeDnOfU1sK4_hDFhZvdGVm8thuci5yFhNimofNXexfRnqtJVmJV9sF3aQmVr-_bo24RjJuB49iEowiyJELzEj1QUbcK6m760qFUtuv7sQxWs9Omvfnv_9xCGznQxBfOM7bRip7uoPVe0aU13UWJe-SBpWXoyN_E4ZnBtkQrnSUYnDTF2YhWeDHDc0sFkOLb23P8Din29wTQiXWSwBQb6PHzNPuSiWNHOYJdweRkD43aN8OrjpdzMHgyAHDoGWoCTRk3BAwnNIeUVlAuLD-ZgtQlUlQLBSBPSMKpaTZ1ZBgnLPKVCH3N_GAflaazqT5AmAeREiAjW4qFEEmECanxhWZEK6V4s4JqX0aIZd6g3PJkvMYuUfFju5SxW8gKqhbCc9eX42exs8yahQxPXuxTthaNO-OnmA3J5ePdVT8GwVpmxN-UxYNu7wEgcXT4F-EjtPZ1H9wgx6i0SN70CVqV74vnNDnN_fUTHlf1CQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYhDqQ5NGnaEjeP6mB6MCzJ7kq2trfEibHbtTGpU0wvQk8I9Ytd1_Tnd7Rab2MogZKrdzQYzWj0zaCZD6EGITpRAFMDZexVQEQcBkwwElCrHFqOifVzZtP2cMgmk2T0pIvfz4eoCm7uZBTx2h1wV5AuT7mbGrqcumJEd6lnRY9VjYArgY_Xbu-7D2kVjVuxJ9mEuwjSpJCWPXqg4tIpuPTLt26lmtvg39totbhuuocv_6NH6HUJNfG19403aMfMj9HBoJrTmr9FmX_mgZXj6ChfxeGFxa5JK19kGNw0x8UXo_FqgZeODCDH_f5nvIYk--8C0IlNlsESF-rx47z4pRDHnnQE-5bJ2Tv00L0bd3pBycIQqBjgYWCpjQ1lwoZgOmkEJLWSCukYyjQkL4mmRmqAeVKFgtpWyySWiZAlkZYkMiyK36Pd-WJuThAWcaIlyKi2ZgRiibSE2kgaFhqttWjVUXNjBa7KEeWOKWPKfaoScbeV3G9kHTUq4aWfzPFvsU-FOSsZkf10j9nalPcmPzgbhzffv3SGHASbhRWfU8ZH6eAbgOLkw_8If0T7vfEg5Wl_-PUUvdpUh6_CM7S7yn6Zc7Sn1qvHPLsonfcPuGr4-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSyMxFA7SirgP62UVXW95EB-EQWcmaTO-aXWwWkvxspR9CbmCqO0w0y3-fE8m46ggwuJr58uh5CQn3wk550NolxCdKKCpgTL2MCAiDgMmGAmoVY4tx8T6PrO9dr_PhsNk8K6K3_eHqC_c3M4o47Xb4CbTttrlrmto9uguI9JMP5U1Vk3ihGQaqHl6nd716mjcir3IJpxFkCaFtKrRAxMHzsCBH_7hVGq6CX7-yFbL4yZd-P4fXUQ_K6qJj_3aWEIzZrSMflzVfVqLXyj3zzywchod1as4PLbYFWkV4xzDMi1w-cVoPBnjzIkBFLjbPcJTSLLfBoBNbPIchrhQj-9H5S8lHHvREexLJp9W0F16dts5DyoVhkDFQA8DS21sKBM2BNdJIyCplVRIp1CmIXlJNDVSA82TKhTUtlomsUyELIm0JJFhUbyKGqPxyKwhLOJES8CotmYEYom0hNpIGhYarbVoraP9Vy9wVbUod0oZj9ynKhF3U8n9RK6j3Rqc-c4cn8P2SnfWGJE_uMdsbcrPh385uw1P_lx0-hyA-6UXvzLGB72rGyDFye__Ae-gucFpynvd_uUGmn-9HD4MN1Fjkv8zW2hWTSf3Rb5drd0XUJb4dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+correlations+of+divisor+sums+related+to+primes+II%3A+variations+of+the+error+term+in+the+prime+number+theorem&rft.jtitle=Proceedings+of+the+London+Mathematical+Society&rft.au=Goldston%2C+D.+A.&rft.au=Yildirim%2C+C.+Y.&rft.date=2007-07-01&rft.pub=Oxford+University+Press&rft.issn=0024-6115&rft.eissn=1460-244X&rft.volume=95&rft.issue=1&rft.spage=199&rft.epage=247&rft_id=info:doi/10.1112%2Fplms%2Fpdm010&rft.externalDBID=10.1112%252Fplms%252Fpdm010&rft.externalDocID=PLMS0199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6115&client=summon