Toward an efficient second‐order method for computing the surface gravitational potential on spherical‐polar meshes

Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomische Nachrichten Jg. 345; H. 8
Hauptverfasser: Gressel, Oliver, Ziegler, Udo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.10.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0004-6337, 1521-3994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas‐giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical‐polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second‐order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of ∼On3$$ \sim \mathcal{O}\left({n}^3\right) $$ compared with the ∼On4$$ \sim \mathcal{O}\left({n}^4\right) $$ scaling of the CCGF method.
AbstractList Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas‐giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical‐polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second‐order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of ∼On3$$ \sim \mathcal{O}\left({n}^3\right) $$ compared with the ∼On4$$ \sim \mathcal{O}\left({n}^4\right) $$ scaling of the CCGF method.
Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas‐giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical‐polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second‐order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of compared with the scaling of the CCGF method.
Author Ziegler, Udo
Gressel, Oliver
Author_xml – sequence: 1
  givenname: Oliver
  orcidid: 0000-0002-5398-9225
  surname: Gressel
  fullname: Gressel, Oliver
  email: ogressel@aip.de
  organization: Leibniz Institute for Astrophysics Potsdam
– sequence: 2
  givenname: Udo
  surname: Ziegler
  fullname: Ziegler, Udo
  organization: Leibniz Institute for Astrophysics Potsdam
BookMark eNp9kLFu2zAQhonCBWq7HbsT6KyUFEXSGo2gSQMYzZB0Fk7U0aYhkwpJ18iWR8gz9kkiw26HAMl0d-D_f8f7Z2Tig0dCvnJ2wRkrv0PycFGysmJMqg9kymXJC1HX1YRMGWNVoYTQn8gspe041qrkU3K4DweIHQVP0VpnHPpME5rgu79PzyF2GOkO8yZ01IZITdgN--z8muYN0rSPFgzSdYQ_LkN2wUNPh5BHiBu74GkaNhidgX6kDaGHIy1tMH0mHy30Cb-c65z8vvpxf_mzWN1e31wuV4URXKjC1kpCKw0aULpkgEq3QnaqXeCiNbIa302LVlRadxpBVhVIIezR0WopajEn307cIYaHPabcbMM-jt9MjeBcLZSqlB5VxUllYkgpom2G6HYQHxvOmmO2zTHb5l-2o1680pvz_TmC69906ZPr4Hp8fH9Fs7z7tfzvfAG5lZVl
CitedBy_id crossref_primary_10_3847_1538_4365_adec68
Cites_doi 10.1086/308062
10.1051/0004-6361/202346005
10.3847/1538-4357/aaafc9
10.1016/0021-9991(77)90013-4
10.1146/annurev.astro.45.051806.110602
10.21105/joss.04633
10.1051/0004-6361:20042451
10.3847/1538-4357/abd2b2
10.3847/1538-4365/ab09e9
10.1051/0004-6361/202245601
10.1051/0004-6361/202040094
10.1007/s10569-014-9535-x
10.1109/JPROC.2004.840301
10.1086/424829
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1002/asna.20240056
DatabaseName Wiley Online Library Open Access
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1521-3994
EndPage n/a
ExternalDocumentID 10_1002_asna_20240056
ASNA20240056
Genre researchArticle
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  funderid: 101043302
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNP
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHDLI
AIDQK
AIDYY
AIQQE
CITATION
O8X
8FD
H8D
L7M
ID FETCH-LOGICAL-c3136-f965ab5ceca6720ae67b35d6b8e8bc54f96cbef3477d7ea544a533fb5ceb75393
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284570500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-6337
IngestDate Sat Jul 26 00:43:04 EDT 2025
Tue Nov 18 22:49:41 EST 2025
Sat Nov 29 06:07:06 EST 2025
Wed Jan 22 17:15:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3136-f965ab5ceca6720ae67b35d6b8e8bc54f96cbef3477d7ea544a533fb5ceb75393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5398-9225
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasna.20240056
PQID 3116866467
PQPubID 956345
PageCount 12
ParticipantIDs proquest_journals_3116866467
crossref_primary_10_1002_asna_20240056
crossref_citationtrail_10_1002_asna_20240056
wiley_primary_10_1002_asna_20240056_ASNA20240056
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Astronomische Nachrichten
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2014; 118
2021; 907
1977; 25
2022
2022; 7
2005; 435
2009
2023; 678
2023; 677
2023; 534
2018; 857
2021; 650
2005; 93
2007; 45
2019; 241
1999; 527
2004; 616
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Tsukamoto Y. (e_1_2_7_16_1) 2023
e_1_2_7_18_1
e_1_2_7_17_1
Rice K. (e_1_2_7_15_1) 2022
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Gough B. (e_1_2_7_6_1) 2009
References_xml – year: 2009
– volume: 45
  start-page: 565
  issue: 1
  year: 2007
  publication-title: Annu. Rev. Astron. Astrophys.
– volume: 616
  start-page: 364
  issue: 1
  year: 2004
  publication-title: Astrophys. J.
– volume: 435
  start-page: 385
  issue: 2
  year: 2005
  publication-title: Astron. Astrophys.
– volume: 677
  start-page: A9
  year: 2023
  publication-title: Astron. Astrophys.
– volume: 25
  start-page: 71
  issue: 2
  year: 1977
  publication-title: J. Comput. Phys.
– volume: 118
  start-page: 299
  issue: 4
  year: 2014
  publication-title: Celest. Mech. Dyn. Astron.
– volume: 678
  start-page: A134
  year: 2023
  publication-title: Astron Astrophys
– volume: 857
  start-page: 34
  issue: 1
  year: 2018
  publication-title: Astrophys. J.
– volume: 527
  start-page: 86
  issue: 1
  year: 1999
  publication-title: Astrophys J
– volume: 650
  start-page: A49
  year: 2021
  publication-title: Astron. Astrophys.
– start-page: 250
  year: 2022
– volume: 7
  start-page: 4633
  issue: 80
  year: 2022
  publication-title: J. Open Source Softw.
– volume: 241
  start-page: 24
  issue: 2
  year: 2019
  publication-title: Astrophys. J. Suppl.
– volume: 93
  start-page: 216
  year: 2005
  publication-title: IEEE Proc.
– volume: 907
  start-page: 43
  issue: 1
  year: 2021
  publication-title: Astrophys. J.
– volume: 534
  start-page: 317
  year: 2023
– ident: e_1_2_7_3_1
  doi: 10.1086/308062
– ident: e_1_2_7_11_1
  doi: 10.1051/0004-6361/202346005
– ident: e_1_2_7_17_1
  doi: 10.3847/1538-4357/aaafc9
– ident: e_1_2_7_9_1
  doi: 10.1016/0021-9991(77)90013-4
– start-page: 317
  volume-title: Protostars and Planets VII
  year: 2023
  ident: e_1_2_7_16_1
– ident: e_1_2_7_12_1
  doi: 10.1146/annurev.astro.45.051806.110602
– ident: e_1_2_7_14_1
  doi: 10.21105/joss.04633
– ident: e_1_2_7_18_1
  doi: 10.1051/0004-6361:20042451
– ident: e_1_2_7_7_1
  doi: 10.3847/1538-4357/abd2b2
– start-page: 250
  volume-title: Oxford Research Encyclopedia of Planetary Science
  year: 2022
  ident: e_1_2_7_15_1
– ident: e_1_2_7_13_1
  doi: 10.3847/1538-4365/ab09e9
– ident: e_1_2_7_10_1
  doi: 10.1051/0004-6361/202245601
– ident: e_1_2_7_2_1
  doi: 10.1051/0004-6361/202040094
– ident: e_1_2_7_8_1
  doi: 10.1007/s10569-014-9535-x
– volume-title: GNU Scientific Library Reference Manual
  year: 2009
  ident: e_1_2_7_6_1
– ident: e_1_2_7_4_1
  doi: 10.1109/JPROC.2004.840301
– ident: e_1_2_7_5_1
  doi: 10.1086/424829
SSID ssj0009621
Score 2.3816009
Snippet Astrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms accretion discs
Accretion disks
Boundary conditions
Computational grids
Gas formation
gravitational instability
Green's functions
Multipoles
Planet formation
Poisson equation
Poisson solver
self‐gravity
Title Toward an efficient second‐order method for computing the surface gravitational potential on spherical‐polar meshes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasna.20240056
https://www.proquest.com/docview/3116866467
Volume 345
WOSCitedRecordID wos001284570500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009621
  issn: 0004-6337
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOnDhjdqFRT4gTkSQ2HGcY8VuxQFViIfELbIdRyBBWtUFxI2fwG_cX8KMk9LlANJqb45sTyzPODNjTb4PYD9JclWWqAFnRBkJHZeRkopHMhVaWc0xBGjIJrLBQN3c5Octzyn9C9PgQ3xcuNHJCN9rOuDa-KMZaKj2NeEGUQ1kKudhMY65Iu6GRJzPUHdl0lLmiUhynrUgmyjg6NP0z05pFmn-Ha8Gh9Nf_e-lrsFKG2uyXmMc6zDn6g3o9Dzdfg8fXtgBC-3mcsNvwvNVqKFlumYuIEugQ2KeMubyz-tbAOlkDeM0w1CX2UAIga6PYRDJ_OO40tYx4jNqcb_x3aPhhMqRsDWsmScIAzIKlDailBql-Vvnt-C6__vq5DRqiRkiy2MuoyqXqTapdVbLLDnWTmaGp6U0yiljU4H91riKiywrM6dTITRGlRXNMJge5XwbFuph7TrAtMsqtA2LkR4m6ZXJ4yo3wlSJVibBri4cTjVT2Hb1RJ5xXzR4y0lBm1tMN7cLBx_DRw1cx1cDd6dqLtpT6wsex1JJib6jC8dBod8LKXqXg9704ce_T9mBZWo2tYG7sDAZP7qfsGSfJnd-vBdMeQ8Wf130r8_eAX82-xE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gV58i-szB_Fk0TZpmh4XdVlxXURX8FaSNEVBu8tmVbz5E_yN_hInbdddDwrirW2SaUgmnW-G6TcAe0EQizTFHTCKpR6TfuoJLqjHQyaFlhQhQFlsImq3xe1tfDn2F3_JD_EVcHMno_heuwPuAtKHI9ZQaXNHHOSSIEM-CdMMVQl1fPrkqnHTGhHv8qCqmsc8TmlU8WyiiMNvAr7bpRHYHIeshc1pLPx_toswX-FNUi8VZAkmTL4M63XrIuDdx1eyT4rrMsBhV-ClU-TREpkTU7BLoFEi1nnN6cfbe0HUScqq0wThLtFFUQg0fwSBJLFP_UxqQ1xNo4r7G9_d6w5cShJedXNiHY2BUwyU1nNuNUqzd8auwk3jtHPc9KriDJ6mPuVeFvNQqlAbLXkUHEnDI0XDlCthhNIhw3atTEZZFKWRkSFjEpFl5kYodJFiugZTeTc360CkiTLUD41oDx31TMV-FiumskAKFWBTDQ6GW5PoavaugMZDUnIuB4lb3GS4uDXY_-reKyk7fuq4NdznpDq5NqG-zwXnaD9qcFTs6O9Ckvp1uz682fj7kF2YbXYuWknrrH2-CXPucZkruAVTg_6T2YYZ_Ty4t_2dSrM_ASWl_vc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOYgni7ZJ0_S4qIuiLOIDvJUkTVDQ7rJZFW_-BH-jv8RJ23X1oCDe2iaZhsyk802YfgOwHUWpyHPUgFEsD5gM80BwQQMeMym0pAgBqmITSacjbm7S8y9_8Vf8EJ8Hbn5nlN9rv8FNL7d7I9ZQ6QpPHOSTIGM-DhPMF5JpwMThRfv6bES8y6O6ah4LOKVJzbOJIva-Cfjul0Zg8ytkLX1Oe_b_s52DmRpvklZlIPMwZooFWGk5fwLefXghO6S8rg443CI8X5V5tEQWxJTsEuiUiPNRc_7--lYSdZKq6jRBuEt0WRQC3R9BIEncY99KbYivaVRzf-O7e92BT0nCq25BnKcx8IaB0no-rEZp7ta4JbhuH10dHAd1cYZA05DywKY8lirWRkueRPvS8ETROOdKGKF0zLBdK2MpS5I8MTJmTCKytH6EwhAppcvQKLqFWQEiTWLRPjSiPQzUrUpDmyqmbCSFirCpCbtD1WS6nr0voHGfVZzLUeYXNxsubhN2Prv3KsqOnzquD_Wc1TvXZTQMueAc_UcT9kuN_i4ka112WsOb1b8P2YKp88N2dnbSOV2Daf-0ShVch8ag_2g2YFI_De5cf7M27A-zfP5y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+efficient+second%E2%80%90order+method+for+computing+the+surface+gravitational+potential+on+spherical%E2%80%90polar+meshes&rft.jtitle=Astronomische+Nachrichten&rft.au=Gressel%2C+Oliver&rft.au=Ziegler%2C+Udo&rft.date=2024-10-01&rft.issn=0004-6337&rft.eissn=1521-3994&rft.volume=345&rft.issue=8&rft_id=info:doi/10.1002%2Fasna.20240056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asna_20240056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6337&client=summon