Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked data
In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 134; s. 108689 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2024
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its advantages, Linked Data suffers from various limitations, such as erroneous data, imprecise information, and missing links between resources. Existing solutions to address the issue of missing links in RDF triples often overlook the semantic relationship between the subject and object. To address this gap, we present a novel approach called LinkED-S2S (Linking Entities deeply with Sequence To Sequence model), which employs an encoder–decoder model with an attention mechanism. Our proposed model incorporates an embedding layer to enhance data representation, along with GRU (Gated Recurrent Unit) cells to mitigate the vanishing gradient problem. This work demonstrates significant improvement in predicting missing links compared to baseline models. We evaluated our model’s performance using a comprehensive set of metrics on the widely-used DBpedia dataset and standard benchmark datasets. Our model achieved very good results on these metrics, highlighting its effectiveness in predicting missing links. |
|---|---|
| AbstractList | In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its advantages, Linked Data suffers from various limitations, such as erroneous data, imprecise information, and missing links between resources. Existing solutions to address the issue of missing links in RDF triples often overlook the semantic relationship between the subject and object. To address this gap, we present a novel approach called LinkED-S2S (Linking Entities deeply with Sequence To Sequence model), which employs an encoder–decoder model with an attention mechanism. Our proposed model incorporates an embedding layer to enhance data representation, along with GRU (Gated Recurrent Unit) cells to mitigate the vanishing gradient problem. This work demonstrates significant improvement in predicting missing links compared to baseline models. We evaluated our model’s performance using a comprehensive set of metrics on the widely-used DBpedia dataset and standard benchmark datasets. Our model achieved very good results on these metrics, highlighting its effectiveness in predicting missing links. |
| ArticleNumber | 108689 |
| Author | Hamel, Oussama Fareh, Messaouda |
| Author_xml | – sequence: 1 givenname: Oussama orcidid: 0000-0002-3155-2380 surname: Hamel fullname: Hamel, Oussama email: hamel.oussama@etu.univ-blida.dz – sequence: 2 givenname: Messaouda orcidid: 0000-0002-6930-1544 surname: Fareh fullname: Fareh, Messaouda email: farehm@gmail.com |
| BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIqdh5NILEDlKVViA2vLj3FxSewQm0f_noSCkNh0NXdGc69mzgxNnHeA0CklC0ooO9sswK1F1wm7SEmaD8OKVfUBmtKqzBJWsnqCpqQu0oTWJTtCsxA2hJCsytkUhSuADgd4fQOnAEf_pwO0wkWrMLQStLZujT9sfMYiRhjm3mHjezzKuMWNdS_jhnVYeRfhM2Jvhk75tmsgwvcCaKxFFMfo0IgmwMlPnaOnm-vH5V2yeri9X16uEpXRNCbGgICqVKoqJauLihVQgMhqLbXMNbDcUKG1AQZSMkJzmRUiBVqkkNe5zmQ2R-e7XNX7EHowXNkoxstjL2zDKeEjQL7hvwD5CJDvAA529s_e9bYV_Xa_8WJnhOG5dws9D8qOSLXtQUWuvd0X8QXD9ZVz |
| CitedBy_id | crossref_primary_10_1177_14727978251322545 |
| Cites_doi | 10.1504/IJMSO.2020.107791 10.18653/v1/W15-4007 10.1016/j.cmpb.2018.05.024 10.1007/s11280-010-0107-z 10.4018/IJSWIS.295977 10.1016/j.aei.2023.102008 10.1609/aaai.v32i1.11573 10.1016/j.websem.2016.05.001 10.1177/1473871621991539 10.1145/3486622.3493956 10.1145/3196248 10.1016/j.aei.2021.101427 10.1007/s13218-021-00713-x 10.1145/2851613.2851839 10.1145/3360901.3364425 10.1007/s11280-020-00793-z 10.1007/s11280-019-00764-z 10.1016/j.websem.2018.12.003 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.108689 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2024_108689 S0952197624008479 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-ffeae87cc87b695865e5ea39dbdb4de64f1addfe6ebb6014b35a2e152e494d3b3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248564000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 03:41:18 EST 2025 Tue Nov 18 22:42:47 EST 2025 Tue Jun 18 08:50:47 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Links prediction Attention mechanism Linked data Semantic links |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-ffeae87cc87b695865e5ea39dbdb4de64f1addfe6ebb6014b35a2e152e494d3b3 |
| ORCID | 0000-0002-6930-1544 0000-0002-3155-2380 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2024_108689 crossref_primary_10_1016_j_engappai_2024_108689 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108689 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Silva, Souza, Durão (b35) 2020; 14 Sun, Deng, Nie, Tang (b36) 2019 Biswas, Sofronova, Alam, Sack (b8) 2020 Darari, Nutt, Pirrò, Razniewski (b14) 2018; 12 Pan, He, Yu (b28) 2020; 23 Yue, Tian, Chen, Han, Yin (b41) 2020; 23 Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S., 2018. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1. Mihindukulasooriya, Rico (b24) 2018 Nechaev, Corcoglioniti, Giuliano (b25) 2018 Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W., 2016. Managing and Consuming Completeness Information for Wikidata Using COOL-WD. In: COLD@ ISWC. 1666. Destandau, Fekete (b15) 2021; 20 Hamel, Fareh (b19) 2022 Umbrich, Hose, Karnstedt, Harth, Polleres (b38) 2011; 14 Biswas, Alam, Sack (b7) 2021 Paulheim, Bizer (b29) 2013 Piao, G., Breslin, J.G., 2016. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 315–320. d’Amato, C., Masella, P., Fanizzi, N., 2021. An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. pp. 170–177. Achichi, Bellahsene, Ellefi, Todorov (b1) 2019; 55 Ngonga Ngomo, Sherif, Georgala, Hassan, Dreßler, Lyko, Obraczka, Soru (b26) 2021; 35 Qin, Gao, Peng, Wu, Shen, Grudtsin (b32) 2018; 162 Zhang, Lin, Pi (b42) 2017 McCrae, Buitelaar (b23) 2018; 18 Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b11) 2013; 26 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b39) 2017; 30 Hou, Luo, Qin, Shao, Chen (b20) 2023; 56 Reynolds (b34) 2014 Craswell (b12) 2009 Balažević, Allen, Hospedales (b4) 2019 Laskey, Laskey (b22) 2008; 8 Wisesa, A., Darari, F., Krisnadhi, A., Nutt, W., Razniewski, S., 2019. Wikidata completeness profiling using proWD. In: Proceedings of the 10th International Conference on Knowledge Capture. pp. 123–130. Toutanova, K., Chen, D., 2015. Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. pp. 57–66. Barbosa, Bittencourt, Siqueira, Dermeval, Cruz (b5) 2022; 18 Hamel, Fareh (b18) 2022 Goodfellow, Bengio, Courville (b17) 2016 Bahdanau, Cho, Bengio (b3) 2014 Berners-Lee (b6) 2006 Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack, H., 2018. Wikipedia Infobox Type Prediction Using Embeddings. In: DL4KGS@ ESWC. pp. 46–55. Kliegr, Zamazal (b21) 2016; 39 Nguyen, Nguyen, Nguyen, Phung (b27) 2017 Qin, Qiu, Gao, Bai (b33) 2022; 51 Al-Bakri, Atencia, David, Lalande, Rousset (b2) 2016 Bizer, Heath, Berners-Lee (b10) 2011 Silva (10.1016/j.engappai.2024.108689_b35) 2020; 14 Balažević (10.1016/j.engappai.2024.108689_b4) 2019 Umbrich (10.1016/j.engappai.2024.108689_b38) 2011; 14 10.1016/j.engappai.2024.108689_b40 Goodfellow (10.1016/j.engappai.2024.108689_b17) 2016 Reynolds (10.1016/j.engappai.2024.108689_b34) 2014 Nguyen (10.1016/j.engappai.2024.108689_b27) 2017 Mihindukulasooriya (10.1016/j.engappai.2024.108689_b24) 2018 Destandau (10.1016/j.engappai.2024.108689_b15) 2021; 20 Pan (10.1016/j.engappai.2024.108689_b28) 2020; 23 Hamel (10.1016/j.engappai.2024.108689_b19) 2022 Nechaev (10.1016/j.engappai.2024.108689_b25) 2018 Berners-Lee (10.1016/j.engappai.2024.108689_b6) 2006 Paulheim (10.1016/j.engappai.2024.108689_b29) 2013 10.1016/j.engappai.2024.108689_b13 Al-Bakri (10.1016/j.engappai.2024.108689_b2) 2016 Barbosa (10.1016/j.engappai.2024.108689_b5) 2022; 18 Biswas (10.1016/j.engappai.2024.108689_b7) 2021 10.1016/j.engappai.2024.108689_b30 10.1016/j.engappai.2024.108689_b31 McCrae (10.1016/j.engappai.2024.108689_b23) 2018; 18 Laskey (10.1016/j.engappai.2024.108689_b22) 2008; 8 Bordes (10.1016/j.engappai.2024.108689_b11) 2013; 26 10.1016/j.engappai.2024.108689_b9 Hou (10.1016/j.engappai.2024.108689_b20) 2023; 56 Ngonga Ngomo (10.1016/j.engappai.2024.108689_b26) 2021; 35 Zhang (10.1016/j.engappai.2024.108689_b42) 2017 Kliegr (10.1016/j.engappai.2024.108689_b21) 2016; 39 Qin (10.1016/j.engappai.2024.108689_b32) 2018; 162 Sun (10.1016/j.engappai.2024.108689_b36) 2019 Achichi (10.1016/j.engappai.2024.108689_b1) 2019; 55 Bizer (10.1016/j.engappai.2024.108689_b10) 2011 Craswell (10.1016/j.engappai.2024.108689_b12) 2009 Vaswani (10.1016/j.engappai.2024.108689_b39) 2017; 30 Yue (10.1016/j.engappai.2024.108689_b41) 2020; 23 Bahdanau (10.1016/j.engappai.2024.108689_b3) 2014 Hamel (10.1016/j.engappai.2024.108689_b18) 2022 Biswas (10.1016/j.engappai.2024.108689_b8) 2020 Darari (10.1016/j.engappai.2024.108689_b14) 2018; 12 10.1016/j.engappai.2024.108689_b37 10.1016/j.engappai.2024.108689_b16 Qin (10.1016/j.engappai.2024.108689_b33) 2022; 51 |
| References_xml | – start-page: 510 year: 2013 end-page: 525 ident: b29 article-title: Type inference on noisy RDF data publication-title: International Semantic Web Conference – reference: Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W., 2016. Managing and Consuming Completeness Information for Wikidata Using COOL-WD. In: COLD@ ISWC. 1666. – volume: 51 year: 2022 ident: b33 article-title: 3D CAD model retrieval based on sketch and unsupervised variational autoencoder publication-title: Adv. Eng. Inform. – volume: 56 year: 2023 ident: b20 article-title: FuS-GCN: Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval publication-title: Adv. Eng. Inform. – volume: 35 start-page: 413 year: 2021 end-page: 423 ident: b26 article-title: LIMES: A framework for link discovery on the semantic web publication-title: KI-Künstliche Intell. – start-page: 279 year: 2018 end-page: 287 ident: b24 article-title: Type prediction of rdf knowledge graphs using binary classifiers with structural data publication-title: International Conference on Web Engineering – volume: 14 start-page: 16 year: 2020 end-page: 25 ident: b35 article-title: HSLD: a hybrid similarity measure for linked data resources publication-title: Int. J. Metadata, Semant. Ontologies – volume: 18 start-page: 109 year: 2018 end-page: 123 ident: b23 article-title: Linking datasets using semantic textual similarity publication-title: Cybern. Inf. Technol. – volume: 20 start-page: 66 year: 2021 end-page: 82 ident: b15 article-title: The missing path: Analysing incompleteness in knowledge graphs publication-title: Inf. Vis. – reference: Wisesa, A., Darari, F., Krisnadhi, A., Nutt, W., Razniewski, S., 2019. Wikidata completeness profiling using proWD. In: Proceedings of the 10th International Conference on Knowledge Capture. pp. 123–130. – volume: 23 start-page: 2715 year: 2020 end-page: 2737 ident: b41 article-title: Deep learning for heterogeneous medical data analysis publication-title: World Wide Web – volume: 12 start-page: 1 year: 2018 end-page: 53 ident: b14 article-title: Completeness management for RDF data sources publication-title: ACM Trans. Web (TWEB) – start-page: 553 year: 2019 end-page: 565 ident: b4 article-title: Hypernetwork knowledge graph embeddings publication-title: International Conference on Artificial Neural Networks – start-page: 1703 year: 2009 ident: b12 article-title: Mean reciprocal rank publication-title: Encyclopedia of Database Systems – volume: 39 start-page: 47 year: 2016 end-page: 61 ident: b21 article-title: LHD 2.0: A text mining approach to typing entities in knowledge graphs publication-title: J. Web Semant. – volume: 23 start-page: 2259 year: 2020 end-page: 2279 ident: b28 article-title: Learning social representations with deep autoencoder for recommender system publication-title: World Wide Web – year: 2016 ident: b17 article-title: Deep Learning – start-page: 733 year: 2022 end-page: 739 ident: b18 article-title: Encoder-decoder neural network with attention mechanism for types detection in linked data publication-title: 2022 17th Conference on Computer Science and Intelligence Systems – year: 2014 ident: b34 article-title: Position paper: Uncertainty reasoning for linked data publication-title: Workshop, Vol. 14 – year: 2006 ident: b6 article-title: Linked data - Design issues – year: 2019 ident: b36 article-title: Rotate: Knowledge graph embedding by relational rotation in complex space – reference: Toutanova, K., Chen, D., 2015. Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. pp. 57–66. – start-page: 1033 year: 2018 end-page: 1042 ident: b25 article-title: Type prediction combining linked open data and social media publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management – volume: 162 start-page: 243 year: 2018 end-page: 252 ident: b32 article-title: Fine-grained leukocyte classification with deep residual learning for microscopic images publication-title: Comput. Methods Programs Biomed. – volume: 14 start-page: 495 year: 2011 end-page: 544 ident: b38 article-title: Comparing data summaries for processing live queries over linked data publication-title: World Wide Web – reference: d’Amato, C., Masella, P., Fanizzi, N., 2021. An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. pp. 170–177. – year: 2020 ident: b8 article-title: Entity type prediction in knowledge graphs using embeddings – volume: 55 start-page: 108 year: 2019 end-page: 121 ident: b1 article-title: Linking and disambiguating entities across heterogeneous RDF graphs publication-title: J. Web Semant. – volume: 18 start-page: 1 year: 2022 end-page: 29 ident: b5 article-title: A context-independent ontological linked data alignment approach to instance matching publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS) – reference: Piao, G., Breslin, J.G., 2016. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 315–320. – start-page: 391 year: 2017 end-page: 396 ident: b42 article-title: Predicting object types in linked data by text classification publication-title: 2017 Fifth International Conference on Advanced Cloud and Big Data – reference: Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack, H., 2018. Wikipedia Infobox Type Prediction Using Embeddings. In: DL4KGS@ ESWC. pp. 46–55. – volume: 30 year: 2017 ident: b39 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: b3 article-title: Neural machine translation by jointly learning to align and translate – reference: Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S., 2018. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1. – volume: 26 year: 2013 ident: b11 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv. Neural Inf. Process. Syst. – start-page: 212 year: 2022 end-page: 231 ident: b19 article-title: Missing types prediction in linked data using deep neural network with attention mechanism: Case study on dbpedia and uniprot datasets publication-title: Special Sessions in the Advances in Information Systems and Technologies Track of the Conference on Computer Science and Intelligence Systems – start-page: 698 year: 2016 end-page: 706 ident: b2 article-title: Uncertainty-sensitive reasoning for inferring sameas facts in linked data publication-title: 22nd European Conference on Artificial Intelligence – year: 2021 ident: b7 article-title: MADLINK: Attentive multihop and entity descriptions for link prediction in knowledge graphs – start-page: 205 year: 2011 end-page: 227 ident: b10 article-title: Linked data: The story so far publication-title: Semantic Services, Interoperability and Web Applications: Emerging Concepts – volume: 8 start-page: 108 year: 2008 end-page: 116 ident: b22 article-title: Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group publication-title: URSW – year: 2017 ident: b27 article-title: A novel embedding model for knowledge base completion based on convolutional neural network – start-page: 553 year: 2019 ident: 10.1016/j.engappai.2024.108689_b4 article-title: Hypernetwork knowledge graph embeddings – volume: 14 start-page: 16 issue: 1 year: 2020 ident: 10.1016/j.engappai.2024.108689_b35 article-title: HSLD: a hybrid similarity measure for linked data resources publication-title: Int. J. Metadata, Semant. Ontologies doi: 10.1504/IJMSO.2020.107791 – ident: 10.1016/j.engappai.2024.108689_b37 doi: 10.18653/v1/W15-4007 – volume: 8 start-page: 108 year: 2008 ident: 10.1016/j.engappai.2024.108689_b22 article-title: Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group publication-title: URSW – volume: 162 start-page: 243 year: 2018 ident: 10.1016/j.engappai.2024.108689_b32 article-title: Fine-grained leukocyte classification with deep residual learning for microscopic images publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.05.024 – year: 2020 ident: 10.1016/j.engappai.2024.108689_b8 – volume: 14 start-page: 495 issue: 5 year: 2011 ident: 10.1016/j.engappai.2024.108689_b38 article-title: Comparing data summaries for processing live queries over linked data publication-title: World Wide Web doi: 10.1007/s11280-010-0107-z – start-page: 1033 year: 2018 ident: 10.1016/j.engappai.2024.108689_b25 article-title: Type prediction combining linked open data and social media – volume: 30 year: 2017 ident: 10.1016/j.engappai.2024.108689_b39 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.engappai.2024.108689_b5 article-title: A context-independent ontological linked data alignment approach to instance matching publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS) doi: 10.4018/IJSWIS.295977 – start-page: 205 year: 2011 ident: 10.1016/j.engappai.2024.108689_b10 article-title: Linked data: The story so far – ident: 10.1016/j.engappai.2024.108689_b31 – volume: 56 year: 2023 ident: 10.1016/j.engappai.2024.108689_b20 article-title: FuS-GCN: Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102008 – year: 2014 ident: 10.1016/j.engappai.2024.108689_b3 – ident: 10.1016/j.engappai.2024.108689_b16 doi: 10.1609/aaai.v32i1.11573 – year: 2017 ident: 10.1016/j.engappai.2024.108689_b27 – volume: 39 start-page: 47 year: 2016 ident: 10.1016/j.engappai.2024.108689_b21 article-title: LHD 2.0: A text mining approach to typing entities in knowledge graphs publication-title: J. Web Semant. doi: 10.1016/j.websem.2016.05.001 – ident: 10.1016/j.engappai.2024.108689_b9 – volume: 20 start-page: 66 issue: 1 year: 2021 ident: 10.1016/j.engappai.2024.108689_b15 article-title: The missing path: Analysing incompleteness in knowledge graphs publication-title: Inf. Vis. doi: 10.1177/1473871621991539 – ident: 10.1016/j.engappai.2024.108689_b13 doi: 10.1145/3486622.3493956 – start-page: 212 year: 2022 ident: 10.1016/j.engappai.2024.108689_b19 article-title: Missing types prediction in linked data using deep neural network with attention mechanism: Case study on dbpedia and uniprot datasets – start-page: 279 year: 2018 ident: 10.1016/j.engappai.2024.108689_b24 article-title: Type prediction of rdf knowledge graphs using binary classifiers with structural data – volume: 12 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.engappai.2024.108689_b14 article-title: Completeness management for RDF data sources publication-title: ACM Trans. Web (TWEB) doi: 10.1145/3196248 – start-page: 698 year: 2016 ident: 10.1016/j.engappai.2024.108689_b2 article-title: Uncertainty-sensitive reasoning for inferring sameas facts in linked data – volume: 26 year: 2013 ident: 10.1016/j.engappai.2024.108689_b11 article-title: Translating embeddings for modeling multi-relational data publication-title: Adv. Neural Inf. Process. Syst. – volume: 51 year: 2022 ident: 10.1016/j.engappai.2024.108689_b33 article-title: 3D CAD model retrieval based on sketch and unsupervised variational autoencoder publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101427 – year: 2014 ident: 10.1016/j.engappai.2024.108689_b34 article-title: Position paper: Uncertainty reasoning for linked data – year: 2019 ident: 10.1016/j.engappai.2024.108689_b36 – start-page: 1703 year: 2009 ident: 10.1016/j.engappai.2024.108689_b12 article-title: Mean reciprocal rank – start-page: 733 year: 2022 ident: 10.1016/j.engappai.2024.108689_b18 article-title: Encoder-decoder neural network with attention mechanism for types detection in linked data – volume: 18 start-page: 109 issue: 1 year: 2018 ident: 10.1016/j.engappai.2024.108689_b23 article-title: Linking datasets using semantic textual similarity publication-title: Cybern. Inf. Technol. – start-page: 510 year: 2013 ident: 10.1016/j.engappai.2024.108689_b29 article-title: Type inference on noisy RDF data – start-page: 391 year: 2017 ident: 10.1016/j.engappai.2024.108689_b42 article-title: Predicting object types in linked data by text classification – volume: 35 start-page: 413 issue: 3 year: 2021 ident: 10.1016/j.engappai.2024.108689_b26 article-title: LIMES: A framework for link discovery on the semantic web publication-title: KI-Künstliche Intell. doi: 10.1007/s13218-021-00713-x – ident: 10.1016/j.engappai.2024.108689_b30 doi: 10.1145/2851613.2851839 – year: 2021 ident: 10.1016/j.engappai.2024.108689_b7 – ident: 10.1016/j.engappai.2024.108689_b40 doi: 10.1145/3360901.3364425 – year: 2006 ident: 10.1016/j.engappai.2024.108689_b6 – volume: 23 start-page: 2259 issue: 4 year: 2020 ident: 10.1016/j.engappai.2024.108689_b28 article-title: Learning social representations with deep autoencoder for recommender system publication-title: World Wide Web doi: 10.1007/s11280-020-00793-z – volume: 23 start-page: 2715 issue: 5 year: 2020 ident: 10.1016/j.engappai.2024.108689_b41 article-title: Deep learning for heterogeneous medical data analysis publication-title: World Wide Web doi: 10.1007/s11280-019-00764-z – volume: 55 start-page: 108 year: 2019 ident: 10.1016/j.engappai.2024.108689_b1 article-title: Linking and disambiguating entities across heterogeneous RDF graphs publication-title: J. Web Semant. doi: 10.1016/j.websem.2018.12.003 – year: 2016 ident: 10.1016/j.engappai.2024.108689_b17 |
| SSID | ssj0003846 |
| Score | 2.4197192 |
| Snippet | In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108689 |
| SubjectTerms | Attention mechanism Deep learning Linked data Links prediction Semantic links |
| Title | Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked data |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.108689 |
| Volume | 134 |
| WOSCitedRecordID | wos001248564000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBHlJR-4RVmaxHn4WEErQFA4FLS3KLbHaKs2u9rsVuUf8LMZx48EqCg9cIksK554M1_s8ew3M4S8LAqdyypp4pLxNGYF6FjsJRDneaYyhlPnfRWFrx_Ko6NqPuefJ5MfPhbm_LRs2-rigq_-q6qxD5VtQmevoe4gFDuwjUrHK6odr_-k-DcAq8gzpI1pGdodnOF7XMgIzgQoFdywJsVmGziHfeDu98gVVYh6nnpr-CE2u0TPQUdLu78BrVUX3Da494cEh9H43_GecLDumUl9nZBRKtCRF91yBj5tu64ZNozDZg299-ejqdey3DongvNVpCww5QanYxon3FZ8Ceuv82baFdRUfrJFhf5Y3K2f4WQG7Tecf7OYmUfMhgG_ZtP-bZcL3ENPazupvZzayKmtnBtkJy1zXk3Jzv67g_n7sKtnlQ368r9gFG1--YwuN3RGxsvxXXLbnTrovkXLPTKB9j65404g1K3vHXb5Ih--7wHpDJ6oxxDdLIe2xxMNeKIGTzTgiSKeqMUTdXiii5Y6PNGlpgOeqMUTNXh6SL4cHhy_fhu7Sh2xzJJ0E2sNDVSllFUpCp5XRQ45NBlXQgmmoGA6wX1UQwFCFHgoF1nepICmIzDOVCayR2TaLlt4TKgRKFMuJNOageBC7SmZJqoqMo22e75Lcv9aa-nS2JtqKqf13xW7S16FcSubyOXKEdxrrXbmqDUzawTkFWOfXPtpT8mt4Yt5Rqab9Raek5vyfLPo1i8cGn8C00O4Ig |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+sequence+to+sequence+semantic+embedding+with+attention+for+entity+linking+in+context+of+incomplete+linked+data&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Hamel%2C+Oussama&rft.au=Fareh%2C+Messaouda&rft.date=2024-08-01&rft.issn=0952-1976&rft.volume=134&rft.spage=108689&rft_id=info:doi/10.1016%2Fj.engappai.2024.108689&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108689 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |