Data Flow and Distributed Deep Neural Network based low latency IoT-Edge computation model for big data environment

The trillion-fold increase in computing power brings the accessibility of deep learning to everyone. Deep learning offers precise information almost all the time when compared to other learning algorithms. On the other hand, the popularity of Internet of Things (IoT) has increased in various areas s...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 94; p. 103785
Main Authors: Veeramanikandan, Sankaranarayanan, Suresh, Rodrigues, Joel J.P.C., Sugumaran, Vijayan, Kozlov, Sergei
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2020
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The trillion-fold increase in computing power brings the accessibility of deep learning to everyone. Deep learning offers precise information almost all the time when compared to other learning algorithms. On the other hand, the popularity of Internet of Things (IoT) has increased in various areas such as Smart City, Oil Mining, and Transportation. Edge/Fog computing environment helps to handle significant challenges faced by the IoT, viz. latency, bandwidth consumption, and everlasting network connectivity. For analytics in Edge computing, which is distributed in nature, the trend is more towards distributed machine learning. This research work is focused on the integration of data flow and distributed deep learning in the IoT-Edge environment to bring down the latency and increase accuracy starting from the data generation phase. To this end, a novel Data Flow and Distributed Deep Neural Network (DF-DDNN) based IoT-Edge model for big data environment has been proposed. Our proposed method has resulted in latency reduction of up to 33% when compared to the existing traditional IoT-Cloud model. •Data Flow and Distributed Deep Learning based Edge computation model for Big Data.•Data Flow based data gathering at the Edge with reduced bandwidth.•Intelligent decisions at various levels of Edge in a distributed manner.•Aggregation schemes for improving the overall performance of the system.•AI-assisted Edge services for resource-constrained heterogeneous devices.
AbstractList The trillion-fold increase in computing power brings the accessibility of deep learning to everyone. Deep learning offers precise information almost all the time when compared to other learning algorithms. On the other hand, the popularity of Internet of Things (IoT) has increased in various areas such as Smart City, Oil Mining, and Transportation. Edge/Fog computing environment helps to handle significant challenges faced by the IoT, viz. latency, bandwidth consumption, and everlasting network connectivity. For analytics in Edge computing, which is distributed in nature, the trend is more towards distributed machine learning. This research work is focused on the integration of data flow and distributed deep learning in the IoT-Edge environment to bring down the latency and increase accuracy starting from the data generation phase. To this end, a novel Data Flow and Distributed Deep Neural Network (DF-DDNN) based IoT-Edge model for big data environment has been proposed. Our proposed method has resulted in latency reduction of up to 33% when compared to the existing traditional IoT-Cloud model. •Data Flow and Distributed Deep Learning based Edge computation model for Big Data.•Data Flow based data gathering at the Edge with reduced bandwidth.•Intelligent decisions at various levels of Edge in a distributed manner.•Aggregation schemes for improving the overall performance of the system.•AI-assisted Edge services for resource-constrained heterogeneous devices.
ArticleNumber 103785
Author Sugumaran, Vijayan
Rodrigues, Joel J.P.C.
Veeramanikandan
Sankaranarayanan, Suresh
Kozlov, Sergei
Author_xml – sequence: 1
  surname: Veeramanikandan
  fullname: Veeramanikandan
  organization: Aegis School of Data Science, Bangalore, India
– sequence: 2
  givenname: Suresh
  surname: Sankaranarayanan
  fullname: Sankaranarayanan, Suresh
  email: pessuresh@hotmail.com
  organization: SRM Institute of Science and Technology, Chennai, India
– sequence: 3
  givenname: Joel J.P.C.
  surname: Rodrigues
  fullname: Rodrigues, Joel J.P.C.
  organization: Federal University of Piauí (UFPI), Teresina - PI, Brazil
– sequence: 4
  givenname: Vijayan
  surname: Sugumaran
  fullname: Sugumaran, Vijayan
  organization: Oakland University, USA
– sequence: 5
  givenname: Sergei
  surname: Kozlov
  fullname: Kozlov, Sergei
  organization: ITMO University, St. Petersburg, Russia
BookMark eNqFkE1OwzAQhS0EEi1wBeQLpNiJ8yexANEWkBAsYG9N7EnlktqR7bbq7UlU2LDpakZv5r3RfFNybp1FQm45m3HGi7v1DO0K-h7MLGXpKGZllZ-RCa_KLCnKoj4nE1bnacLrsrgk0xDWjLGsEsWEhDlEoMvO7SlYTecmRG-abcShR-zpO249dEOJe-e_aQNhmIzbHUS06kBf3Vey0Cukym36bYRonKUbp7GjrfO0MSuqxxNod8Y7u0Ebr8lFC13Am996RT6Xi6-nl-Tt4_n16fEtURlPY9IialarkpV13ehK5KUQbS4AVA65rtqCV00BIhUg-CCkSjHN0zZVWYUiy65IcUxV3oXgsZW9NxvwB8mZHMHJtfwDJ0dw8ghuMN7_Mypz_Ct6MN1p-8PRjsNrO4NeBmUGVKiNRxWlduZUxA9xR5Iy
CitedBy_id crossref_primary_10_3233_JHS_230165
crossref_primary_10_1002_spe_3033
crossref_primary_10_1109_COMST_2021_3094993
crossref_primary_10_4018_IJIIT_344024
crossref_primary_10_1108_MD_07_2021_0954
crossref_primary_10_1109_ACCESS_2021_3131396
crossref_primary_10_1557_s43577_023_00613_5
crossref_primary_10_1007_s11227_022_04357_y
crossref_primary_10_3233_IDT_230240
crossref_primary_10_1515_ijeeps_2023_0154
crossref_primary_10_1155_2021_6805104
crossref_primary_10_1007_s40747_021_00505_8
crossref_primary_10_1016_j_iswa_2023_200231
crossref_primary_10_1016_j_engappai_2023_107149
crossref_primary_10_1016_j_procs_2022_12_277
crossref_primary_10_1109_ACCESS_2025_3586800
crossref_primary_10_3390_mca29040049
crossref_primary_10_4018_IJIIT_357696
crossref_primary_10_1007_s11276_022_03177_5
crossref_primary_10_3390_fire6070271
crossref_primary_10_1145_3629979
crossref_primary_10_3389_fnbot_2023_1132679
crossref_primary_10_2478_amns_2024_2978
crossref_primary_10_1007_s00500_022_07107_7
crossref_primary_10_3390_fi17030118
crossref_primary_10_1007_s11277_021_08699_3
Cites_doi 10.4018/IJIIT.2020040104
10.1109/CVPR.2016.90
10.1109/WICSA.2016.49
10.1145/2967977
10.1109/ICDE.2016.7498421
10.1109/ICDCS.2017.226
10.1109/ICNP.2017.8117585
10.1016/S0169-7439(97)00061-0
10.1162/neco.2006.18.7.1527
10.1016/j.future.2018.09.005
10.1162/neco.1997.9.8.1735
10.1016/j.ins.2019.05.058
10.1109/WF-IoT.2015.7389116
10.1109/PIMRC.2017.8292681
10.1109/BigData.2017.8258272
10.1109/BigDataCongress.2016.40
10.1016/j.future.2018.07.050
10.1109/COMST.2018.2844341
10.1109/COGSIMA.2015.7108192
10.1016/j.future.2018.05.008
10.1109/ICCCN.2019.8846941
10.4018/IJIIT.2020040103
10.1109/MNET.2018.1700202
10.1109/ICECDS.2017.8389592
10.1016/j.neunet.2014.09.003
10.1109/IIKI.2014.18
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2020.103785
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2020_103785
S0952197620301780
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-feed09c70799bd845744f54aac5a5d8f618b6a424a41a5d2cc0d12f2c38e433
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595977800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 20:59:35 EST 2025
Sat Nov 29 07:06:52 EST 2025
Fri Feb 23 02:46:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fog computing
Deep Neural Networking
Big data
Data in motion
Internet of Things
Data flow processing
Edge computing
Latency
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-feed09c70799bd845744f54aac5a5d8f618b6a424a41a5d2cc0d12f2c38e433
ParticipantIDs crossref_primary_10_1016_j_engappai_2020_103785
crossref_citationtrail_10_1016_j_engappai_2020_103785
elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103785
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pei Yun, Meng Chou, Giancarlo (b22) 2018; 88
MD Golam, Rabiul (b18) 2019; 90
Hochreiter, Schmidhuber (b9) 1997; 9
Kevin (b14) 2016; 59
Preden, J., Kaugerand, J., Suurjaak, E., Astapov, S., Motus, L., Pahtma, R., 2015. Data to decision: pushing situational information needs to the Edge of the network. In: 2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision, Orlando, FL, pp. 158–164.
Roberto (b25) 2019; 91
Jazib, Carlos, Jeff, Monique (b12) 2019
Seifermann, S., 2016. Architectural data flow analysis. In: 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA, Venice, pp. 270–271.
Papageorgiou, A., Poormohammady, E., Cheng, B., 2016. Edge-computing-aware deployment of stream processing tasks based on topology-external information: Model, algorithms, and a storm-based prototype. In: 2016 IEEE International Congress on Big Data, BigData Congress, San Francisco, CA, pp. 259–266.
White (b34) 2015
Calo, S.B., Touna, M., Verma, D.C., Cullen, A., 2017. Edge computing architecture for applying AI to IoT. In: IEEE International Conference on Big Data. pp. 3012–3016.
Schmidhuber (b27) 2015; 61
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Mikolov, Joulin, Chopra, Mathieu, Ranzato (b19) 2014
El-Alami, El Alaoui, En-Nahnahi (b4) 2020; 16
Cheng, B., Papageorgiou, A., Cirillo, F., Kovacs, E., 2015. GeeLytics: Geo-distributed Edge analytics for large scale IoT systems based on dynamic topology. In: 2015 IEEE 2nd World Forum on Internet of Things, WF-IoT, Milan, pp. 565–570.
Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. pp. 315–323.
Huang, Y., Ma, X., Fan, X., Liu, J., Gong, W., 2017. When deep learning meets Edge computing. In: 2017 IEEE 25th International Conference on Network Protocols, ICNP, Toronto, pp. 1–2.
.
Sutskever, I., Martens, J., Dahl, G., Hinton, G., 2013. On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning. pp. 1139–1147.
Svozil, Kvasnicka, Pospichal (b30) 1997; 39
Mohammadi, Al-Fuqaha, Sorour, Guizani (b20) 2018; 20
Li, Ota, Dong (b17) 2018; 32
Kourtellis, N., De Francisci Morales, G., Bonchi, F., 2016. Scalable online betweenness centrality in evolving graphs. In: 2016 IEEE 32nd International Conference on Data Engineering, ICDE, Helsinki, pp. 1580–1581.
Volk, Staegemann, Jamous, Pohl, Turowski (b33) 2020; 16
Hinton, Osindero, Teh (b7) 2006; 18
Casadei (b2) 2019; 498
Veeramanikandan, M., Sankaranarayanan, S., 2017. Publish/subscribe broker based architecture for fog computing. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS, Chennai, pp. 1024–1026.
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b8) 2012
Savaglio, C., Gerace, P., Di Fatta, G., Fortino, G., 2019. Data mining at the IoT edge. In: 2019 28th International Conference on Computer Communication and Networks, ICCCN, Valencia, Spain, pp. 1–6.
Teerapittayanon, S., McDanel, B., Kung, H.T., 2017. Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems, ICDCS, Atlanta, GA, pp. 328–339.
Kevin (b13) 2009
Kos, A., Tomazic, S., Salom, J., Trifunovic, N., Valero, M., Milutinovic, V., 2014. Big data processing: Data flow vs control flow (New benchmarking methodology). In: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, Beijing, pp. 56–59.
Ridhawi, N., Mostafa, Y., Kotb, M., Aloqaily, M., Abualhaol, I., 2017. Data caching and selection in 5G networks using F2F communication. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC, Montreal, QC, pp. 1–6.
Jain (b11) 2017
10.1016/j.engappai.2020.103785_b1
MD Golam (10.1016/j.engappai.2020.103785_b18) 2019; 90
Hochreiter (10.1016/j.engappai.2020.103785_b9) 1997; 9
El-Alami (10.1016/j.engappai.2020.103785_b4) 2020; 16
Li (10.1016/j.engappai.2020.103785_b17) 2018; 32
Kevin (10.1016/j.engappai.2020.103785_b13) 2009
Svozil (10.1016/j.engappai.2020.103785_b30) 1997; 39
10.1016/j.engappai.2020.103785_b16
White (10.1016/j.engappai.2020.103785_b34) 2015
10.1016/j.engappai.2020.103785_b15
10.1016/j.engappai.2020.103785_b10
10.1016/j.engappai.2020.103785_b32
10.1016/j.engappai.2020.103785_b31
Schmidhuber (10.1016/j.engappai.2020.103785_b27) 2015; 61
Kevin (10.1016/j.engappai.2020.103785_b14) 2016; 59
Hinton (10.1016/j.engappai.2020.103785_b7) 2006; 18
Pei Yun (10.1016/j.engappai.2020.103785_b22) 2018; 88
Roberto (10.1016/j.engappai.2020.103785_b25) 2019; 91
Hinton (10.1016/j.engappai.2020.103785_b8) 2012
Volk (10.1016/j.engappai.2020.103785_b33) 2020; 16
Jazib (10.1016/j.engappai.2020.103785_b12) 2019
Mohammadi (10.1016/j.engappai.2020.103785_b20) 2018; 20
10.1016/j.engappai.2020.103785_b29
10.1016/j.engappai.2020.103785_b28
10.1016/j.engappai.2020.103785_b24
10.1016/j.engappai.2020.103785_b6
Jain (10.1016/j.engappai.2020.103785_b11) 2017
10.1016/j.engappai.2020.103785_b26
10.1016/j.engappai.2020.103785_b21
10.1016/j.engappai.2020.103785_b5
Mikolov (10.1016/j.engappai.2020.103785_b19) 2014
10.1016/j.engappai.2020.103785_b23
Casadei (10.1016/j.engappai.2020.103785_b2) 2019; 498
10.1016/j.engappai.2020.103785_b3
References_xml – volume: 91
  start-page: 252
  year: 2019
  end-page: 262
  ident: b25
  article-title: Modelling and simulation of opportunistic iot services with aggregate computing
  publication-title: Future Gener. Comput. Syst.
– reference: Huang, Y., Ma, X., Fan, X., Liu, J., Gong, W., 2017. When deep learning meets Edge computing. In: 2017 IEEE 25th International Conference on Network Protocols, ICNP, Toronto, pp. 1–2.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b7
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– reference: Kos, A., Tomazic, S., Salom, J., Trifunovic, N., Valero, M., Milutinovic, V., 2014. Big data processing: Data flow vs control flow (New benchmarking methodology). In: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, Beijing, pp. 56–59.
– volume: 88
  start-page: 16
  year: 2018
  end-page: 27
  ident: b22
  article-title: Security and trust issues in fog computing - A survey
  publication-title: Future Gener. Comput. Syst.
– volume: 59
  start-page: 17
  year: 2016
  end-page: 19
  ident: b14
  article-title: The Edge of the uncanny
  publication-title: Commun. ACM
– reference: Seifermann, S., 2016. Architectural data flow analysis. In: 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA, Venice, pp. 270–271.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b9
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2012
  ident: b8
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– year: 2017
  ident: b11
  article-title: Mastering Apache Storm
– volume: 32
  start-page: 96
  year: 2018
  end-page: 101
  ident: b17
  article-title: Learning IoT in Edge: Deep learning for the Internet of Things with Edge computing
  publication-title: IEEE Netw.
– volume: 20
  start-page: 2923
  year: 2018
  end-page: 2960
  ident: b20
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2014
  ident: b19
  article-title: Learning longer memory in recurrent neural networks
– year: 2019
  ident: b12
  article-title: Securing the internet of things: A proposed framework
– volume: 16
  start-page: 49
  year: 2020
  end-page: 73
  ident: b33
  article-title: Providing clarity on big data technologies: The BDTOnto ontology
  publication-title: Int. J. Intell. Inf. Technol.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b27
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– reference: Savaglio, C., Gerace, P., Di Fatta, G., Fortino, G., 2019. Data mining at the IoT edge. In: 2019 28th International Conference on Computer Communication and Networks, ICCCN, Valencia, Spain, pp. 1–6.
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: b30
  article-title: Introduction to multilayer feed-forward neural networks
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 4986
  year: 2009
  ident: b13
  article-title: That internet of things thing
  publication-title: RFID J.
– volume: 90
  start-page: 149
  year: 2019
  end-page: 157
  ident: b18
  article-title: Autonomic computational offloading in mobile edge for iot applications
  publication-title: Future Generation Computer systems
– year: 2015
  ident: b34
  article-title: Hadoop: The Definitive Guide
– reference: Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. pp. 315–323.
– volume: 16
  start-page: 74
  year: 2020
  end-page: 86
  ident: b4
  article-title: Deep neural models and retrofitting for arabic text categorization
  publication-title: Int. J. Intell. Inf. Technol.
– reference: .
– reference: Ridhawi, N., Mostafa, Y., Kotb, M., Aloqaily, M., Abualhaol, I., 2017. Data caching and selection in 5G networks using F2F communication. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC, Montreal, QC, pp. 1–6.
– reference: Calo, S.B., Touna, M., Verma, D.C., Cullen, A., 2017. Edge computing architecture for applying AI to IoT. In: IEEE International Conference on Big Data. pp. 3012–3016.
– volume: 498
  start-page: 154
  year: 2019
  end-page: 169
  ident: b2
  article-title: A development approach for collective opportunistic Edge-of-Things services
  publication-title: Inform. Sci.
– reference: Teerapittayanon, S., McDanel, B., Kung, H.T., 2017. Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems, ICDCS, Atlanta, GA, pp. 328–339.
– reference: Papageorgiou, A., Poormohammady, E., Cheng, B., 2016. Edge-computing-aware deployment of stream processing tasks based on topology-external information: Model, algorithms, and a storm-based prototype. In: 2016 IEEE International Congress on Big Data, BigData Congress, San Francisco, CA, pp. 259–266.
– reference: Preden, J., Kaugerand, J., Suurjaak, E., Astapov, S., Motus, L., Pahtma, R., 2015. Data to decision: pushing situational information needs to the Edge of the network. In: 2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision, Orlando, FL, pp. 158–164.
– reference: Cheng, B., Papageorgiou, A., Cirillo, F., Kovacs, E., 2015. GeeLytics: Geo-distributed Edge analytics for large scale IoT systems based on dynamic topology. In: 2015 IEEE 2nd World Forum on Internet of Things, WF-IoT, Milan, pp. 565–570.
– reference: Kourtellis, N., De Francisci Morales, G., Bonchi, F., 2016. Scalable online betweenness centrality in evolving graphs. In: 2016 IEEE 32nd International Conference on Data Engineering, ICDE, Helsinki, pp. 1580–1581.
– reference: Sutskever, I., Martens, J., Dahl, G., Hinton, G., 2013. On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning. pp. 1139–1147.
– reference: Veeramanikandan, M., Sankaranarayanan, S., 2017. Publish/subscribe broker based architecture for fog computing. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS, Chennai, pp. 1024–1026.
– volume: 16
  start-page: 74
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2020.103785_b4
  article-title: Deep neural models and retrofitting for arabic text categorization
  publication-title: Int. J. Intell. Inf. Technol.
  doi: 10.4018/IJIIT.2020040104
– ident: 10.1016/j.engappai.2020.103785_b6
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.engappai.2020.103785_b28
  doi: 10.1109/WICSA.2016.49
– volume: 59
  start-page: 17
  issue: 9
  year: 2016
  ident: 10.1016/j.engappai.2020.103785_b14
  article-title: The Edge of the uncanny
  publication-title: Commun. ACM
  doi: 10.1145/2967977
– ident: 10.1016/j.engappai.2020.103785_b16
  doi: 10.1109/ICDE.2016.7498421
– ident: 10.1016/j.engappai.2020.103785_b31
  doi: 10.1109/ICDCS.2017.226
– year: 2017
  ident: 10.1016/j.engappai.2020.103785_b11
– ident: 10.1016/j.engappai.2020.103785_b10
  doi: 10.1109/ICNP.2017.8117585
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  ident: 10.1016/j.engappai.2020.103785_b30
  article-title: Introduction to multilayer feed-forward neural networks
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.engappai.2020.103785_b7
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 91
  start-page: 252
  year: 2019
  ident: 10.1016/j.engappai.2020.103785_b25
  article-title: Modelling and simulation of opportunistic iot services with aggregate computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.09.005
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.engappai.2020.103785_b9
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 498
  start-page: 154
  year: 2019
  ident: 10.1016/j.engappai.2020.103785_b2
  article-title: A development approach for collective opportunistic Edge-of-Things services
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.058
– year: 2015
  ident: 10.1016/j.engappai.2020.103785_b34
– ident: 10.1016/j.engappai.2020.103785_b5
– year: 2014
  ident: 10.1016/j.engappai.2020.103785_b19
– start-page: 4986
  year: 2009
  ident: 10.1016/j.engappai.2020.103785_b13
  article-title: That internet of things thing
  publication-title: RFID J.
– ident: 10.1016/j.engappai.2020.103785_b3
  doi: 10.1109/WF-IoT.2015.7389116
– ident: 10.1016/j.engappai.2020.103785_b24
  doi: 10.1109/PIMRC.2017.8292681
– ident: 10.1016/j.engappai.2020.103785_b29
– year: 2019
  ident: 10.1016/j.engappai.2020.103785_b12
– ident: 10.1016/j.engappai.2020.103785_b1
  doi: 10.1109/BigData.2017.8258272
– ident: 10.1016/j.engappai.2020.103785_b21
  doi: 10.1109/BigDataCongress.2016.40
– volume: 90
  start-page: 149
  year: 2019
  ident: 10.1016/j.engappai.2020.103785_b18
  article-title: Autonomic computational offloading in mobile edge for iot applications
  publication-title: Future Generation Computer systems
  doi: 10.1016/j.future.2018.07.050
– volume: 20
  start-page: 2923
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2020.103785_b20
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2844341
– ident: 10.1016/j.engappai.2020.103785_b23
  doi: 10.1109/COGSIMA.2015.7108192
– volume: 88
  start-page: 16
  year: 2018
  ident: 10.1016/j.engappai.2020.103785_b22
  article-title: Security and trust issues in fog computing - A survey
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.008
– year: 2012
  ident: 10.1016/j.engappai.2020.103785_b8
– ident: 10.1016/j.engappai.2020.103785_b26
  doi: 10.1109/ICCCN.2019.8846941
– volume: 16
  start-page: 49
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2020.103785_b33
  article-title: Providing clarity on big data technologies: The BDTOnto ontology
  publication-title: Int. J. Intell. Inf. Technol.
  doi: 10.4018/IJIIT.2020040103
– volume: 32
  start-page: 96
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2020.103785_b17
  article-title: Learning IoT in Edge: Deep learning for the Internet of Things with Edge computing
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700202
– ident: 10.1016/j.engappai.2020.103785_b32
  doi: 10.1109/ICECDS.2017.8389592
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.engappai.2020.103785_b27
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1016/j.engappai.2020.103785_b15
  doi: 10.1109/IIKI.2014.18
SSID ssj0003846
Score 2.4163158
Snippet The trillion-fold increase in computing power brings the accessibility of deep learning to everyone. Deep learning offers precise information almost all the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103785
SubjectTerms Big data
Data flow processing
Data in motion
Deep Neural Networking
Edge computing
Fog computing
Internet of Things
Latency
Title Data Flow and Distributed Deep Neural Network based low latency IoT-Edge computation model for big data environment
URI https://dx.doi.org/10.1016/j.engappai.2020.103785
Volume 94
WOSCitedRecordID wos000595977800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXvoukL3DoJki1KMqSxiBx0GQwgtoIvAkURRt2DNmQ5SD9i_1VvRNJSWmDphk6WDAIHvW4T-LxeHcfIV-iKJJRpOBNC7l0ObwTbgZWhZvnMfOFZH6WiJpsIhqP49ksuez1ftpcmJt1VBTx7W2y_a-qhjZQNqbOPkLdzaDQAP9B6XAEtcPxnxR_KirhnK03OtT3FAvjIqeVwohjtXWwGgeoZazDvx2cxXIHe69FVadhnm-m7giTuGRN-KABUhPm6NDO5cLBsNJuitwd935b4NDp7o7XAQdlHZlU84R0SoFapV-BmMB6HNfo3mhQOxHFtYApFX4_hKFTnuxLtWs82d83eblc7JXZ04ArvfAuvROv3fFaYCS5Fr1arnCcrrsD1rY2nqv1WzLXTzRpjP2EJ7zzDcbMR00D9Mf0oD0VK08VC3gCYunhGbxW4G497t_mySZ60QbGrVI7TorjpHqcJ-SARWES98nB8flodtHYBUGs08bsDXTy1e-_ovtNpY75M31Jnpt1Cz3WeHtFeqp4TV6YNQw1M8QOmixNiG17Q3aISIqIpKBX2kEkRURSjUhqEElrRFLsbRBJLSJpB5G0RiQFRFJAJEVE0g4i35LJ2Wh68s01XB-uDHxWuXOw1QaJxHqNSZbHPIw4n4dcCBmKMI_nQz_OhoIzLrgPDUzKQe6zOZNBrHgQvCP9YlOoQ0JDATYxrMoDJnw-ECpLoD-Lsgxs_WGQBUcktA81laYMPrKxrNO_q_WIfG3ktroQzIMSidVZasxZbaamAMcHZN8_-mwfyLP2dflI-lW5V5_IU3lTLXflZ4PFX9j-ym8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Flow+and+Distributed+Deep+Neural+Network+based+low+latency+IoT-Edge+computation+model+for+big+data+environment&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Veeramanikandan&rft.au=Sankaranarayanan%2C+Suresh&rft.au=Rodrigues%2C+Joel+J.P.C.&rft.au=Sugumaran%2C+Vijayan&rft.date=2020-09-01&rft.issn=0952-1976&rft.volume=94&rft.spage=103785&rft_id=info:doi/10.1016%2Fj.engappai.2020.103785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2020_103785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon