A generative design method of airfoil based on conditional variational autoencoder

The challenges in multi-objective and multi-dimensional optimization design of airfoils, marked by prolonged optimization cycles and low accuracy, call for an efficient solution to expedite airfoil design. This study presents an innovative airfoil generative design model based on a conditional varia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 139; s. 109461
Hlavní autoři: Wang, Xu, Qian, Weiqi, Zhao, Tun, Chen, Hai, He, Lei, Sun, Haisheng, Tian, Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The challenges in multi-objective and multi-dimensional optimization design of airfoils, marked by prolonged optimization cycles and low accuracy, call for an efficient solution to expedite airfoil design. This study presents an innovative airfoil generative design model based on a conditional variational autoencoder (CVAE). Initially, to overcome the limitation of insufficient training data, the model leverages the variational autoencoder (VAE) to learn the spatial distribution of University of Illinois at Urbana-Champaign (UIUC) airfoils, enabling the generation of a diverse set of airfoils with similar distributions. Subsequently, two CVAE-based airfoil generation models, the airfoil freedom design model and the airfoil precision design model, are proposed, which can realize diverse airfoil design under different conditions, such as shape and aerodynamic conditions. Furthermore, two measurements of roughness and diversity are introduced to evaluate the quality of the generated airfoils. The impact of different conditions and network parameters on the model’s generation performance is thoroughly analyzed. Results indicate that our proposed model achieves a 65% lower error compared to physics-guided conditional Wasserstein generative adversarial networks (PG-cWGAN) when generating airfoils that satisfy a specific lift coefficient and a 99.99% lower error compared to airfoil pressure distributions generative adversarial networks (Airfoil-Cp-GAN) when generating airfoils that satisfy specific pressure distributions. This method introduces a more creative and accurate approach for aircraft designers in the realm of airfoil design. The code used for this paper is available at https://github.com/liujun39/airfoilvae. •Airfoil-VAE generates diverse airfoils similar to UIUC, solving data scarcity.•AFD-CVAE reduces error by 65% compared to PG-cWGAN.•APD-CVAE reduces error by 99.99% compared to Airfoil-Cp-GAN.
AbstractList The challenges in multi-objective and multi-dimensional optimization design of airfoils, marked by prolonged optimization cycles and low accuracy, call for an efficient solution to expedite airfoil design. This study presents an innovative airfoil generative design model based on a conditional variational autoencoder (CVAE). Initially, to overcome the limitation of insufficient training data, the model leverages the variational autoencoder (VAE) to learn the spatial distribution of University of Illinois at Urbana-Champaign (UIUC) airfoils, enabling the generation of a diverse set of airfoils with similar distributions. Subsequently, two CVAE-based airfoil generation models, the airfoil freedom design model and the airfoil precision design model, are proposed, which can realize diverse airfoil design under different conditions, such as shape and aerodynamic conditions. Furthermore, two measurements of roughness and diversity are introduced to evaluate the quality of the generated airfoils. The impact of different conditions and network parameters on the model’s generation performance is thoroughly analyzed. Results indicate that our proposed model achieves a 65% lower error compared to physics-guided conditional Wasserstein generative adversarial networks (PG-cWGAN) when generating airfoils that satisfy a specific lift coefficient and a 99.99% lower error compared to airfoil pressure distributions generative adversarial networks (Airfoil-Cp-GAN) when generating airfoils that satisfy specific pressure distributions. This method introduces a more creative and accurate approach for aircraft designers in the realm of airfoil design. The code used for this paper is available at https://github.com/liujun39/airfoilvae. •Airfoil-VAE generates diverse airfoils similar to UIUC, solving data scarcity.•AFD-CVAE reduces error by 65% compared to PG-cWGAN.•APD-CVAE reduces error by 99.99% compared to Airfoil-Cp-GAN.
ArticleNumber 109461
Author Wang, Xu
Tian, Yuan
Zhao, Tun
Chen, Hai
Qian, Weiqi
Sun, Haisheng
He, Lei
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0001-7730-0296
  surname: Wang
  fullname: Wang, Xu
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 2
  givenname: Weiqi
  surname: Qian
  fullname: Qian, Weiqi
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 3
  givenname: Tun
  orcidid: 0000-0003-4428-161X
  surname: Zhao
  fullname: Zhao, Tun
  email: zhaotun.aero@live.com
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 4
  givenname: Hai
  orcidid: 0000-0003-4145-4917
  surname: Chen
  fullname: Chen, Hai
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 5
  givenname: Lei
  surname: He
  fullname: He, Lei
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 6
  givenname: Haisheng
  surname: Sun
  fullname: Sun, Haisheng
  organization: Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 7
  givenname: Yuan
  surname: Tian
  fullname: Tian, Yuan
  organization: Chengdu Aeronautic Polytechnic, Chengdu, 610100, China
BookMark eNqFkE1LAzEQhnOoYFv9C5I_sDXJpukueLAUv6AgiJ5DmkzqlG1Skljw37u19eKlpxleeF5mnhEZhBiAkBvOJpxxdbuZQFib3c7gRDAh-7CVig_IkLVTUfF2pi7JKOcNY6xupBqStzldQ4BkCu6BOsi4DnQL5TM6Gj01mHzEjq5Mhj4I1MbgsGAMpqN7k9CcdvNVIgQbHaQrcuFNl-H6NMfk4_HhffFcLV-fXhbzZWVrLkrlQTDf1I3iThrhvFAgjRQO7BQEMKjZClYcGiFdC9w1VrUzq7xlrm4bx3w9JnfHXptizgm8tlh-7ynJYKc50wcneqP_nOiDE3100uPqH75LuDXp-zx4fwShf26PkHS22P8ODhPYol3EcxU_WKeGUA
CitedBy_id crossref_primary_10_1016_j_cad_2025_103945
crossref_primary_10_1016_j_neucom_2025_131639
crossref_primary_10_1016_j_engappai_2025_112143
crossref_primary_10_1007_s00158_025_04111_x
Cites_doi 10.1145/15922.15903
10.1016/j.engappai.2023.107388
10.1109/TNNLS.2021.3111911
10.1063/1.5094943
10.2514/1.29958
10.1016/j.apm.2021.03.019
10.1016/j.ast.2023.108268
10.1016/j.cma.2024.116746
10.2514/1.J059317
10.1016/j.oceaneng.2022.113000
10.3390/sym12040544
10.1061/JAEEEZ.ASENG-4508
10.1021/ac60214a047
10.1016/j.ast.2015.01.030
10.2514/1.J061234
10.1016/j.ast.2011.08.010
10.2514/1.J057894
10.1016/j.paerosci.2022.100849
10.1016/j.engappai.2021.104560
10.1016/j.ast.2020.105949
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.109461
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_109461
S0952197624016191
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-fe20f83861d4a2df26e4a42dec5e2e0e30beb1e824d9e1d8c697c6fc0d398d0f3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343767000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:21 EST 2025
Tue Nov 18 21:01:22 EST 2025
Sat Dec 14 16:13:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Conditional variational autoencoder
Variational autoencoder
Airfoil design
Generative model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-fe20f83861d4a2df26e4a42dec5e2e0e30beb1e824d9e1d8c697c6fc0d398d0f3
ORCID 0000-0003-4145-4917
0000-0003-4428-161X
0000-0001-7730-0296
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2024_109461
crossref_primary_10_1016_j_engappai_2024_109461
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109461
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Sun, Sun, Wang (b27) 2015; 42
Savitzky, Golay (b21) 1964; 36
Yonekura, Wada, Suzuki (b36) 2022; 108
Drela (b9) 1989; vol. 54
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b11) 2014; vol. 27
Yonekura, Miyamoto, Suzuki (b34) 2021
Lin, Zhang, Xie, Shi, Xu, Duan (b19) 2022
Asgarkhani, Kazemi, Jakubczyk-Gałczyńska, Mohebi, Jankowski (b3) 2024; 128
Wallach, Mattos, Girardi, Curvo (b29) 2006
Wang, Deng, Wan, Yang, Yang, Chen, Zhao, Wang, Guo (b30) 2023; 34
Kingma, Welling (b16) 2013
Sekar, Khoo (b23) 2019; 31
Kulfan (b17) 2008; 45
Wang, Shimada, Barati Farimani (b31) 2023; 10
Yonekura, Wada, Suzuki (b35) 2021
Zhao, Qian, Lin, Chen, Ao, Chen, He (b38) 2023; 36
Balla, Sevilla, Hassan, Morgan (b4) 2021; 96
Wada, Suzuki, Yonekura (b28) 2024; 421
Chen, He, Qian, Wang (b8) 2020; 12
Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. pp. 151–160.
Sekar, Zhang, Shu, Khoo (b24) 2019; 57
Abbott, I.H., Von Doenhoff, A.E., Stivers, L., 1945. Summary of Airfoil Data. Technical Report.
Du, He, Martins (b10) 2020
Hines, Bekemeyer (b12) 2023; 137
Sabater, Stürmer, Bekemeyer (b20) 2022; 60
Chen, Chiu, Fuge (b6) 2020; 58
Yilmaz, German (b33) 2020
Zhang, Sung, Mavris (b37) 2018
Achour, Sung, Pinon-Fischer, Mavris (b2) 2020
Chen, Chiu, Fuge (b5) 2019
Xie, Wang, Zhang (b32) 2022
Chen, Fuge (b7) 2018
Kim, Yoon (b15) 2022; 266
Kharal, Saleem (b14) 2012; 23
Selig (b25) 1996
Li, Du, Martins (b18) 2022; 134
Sobieczky (b26) 1999; vol. 65
Hui, Bai, Wang, Zhang (b13) 2020; 105
Lin (10.1016/j.engappai.2024.109461_b19) 2022
Zhang (10.1016/j.engappai.2024.109461_b37) 2018
Chen (10.1016/j.engappai.2024.109461_b8) 2020; 12
Kingma (10.1016/j.engappai.2024.109461_b16) 2013
Zhao (10.1016/j.engappai.2024.109461_b38) 2023; 36
Wada (10.1016/j.engappai.2024.109461_b28) 2024; 421
Li (10.1016/j.engappai.2024.109461_b18) 2022; 134
Chen (10.1016/j.engappai.2024.109461_b6) 2020; 58
Yonekura (10.1016/j.engappai.2024.109461_b36) 2022; 108
Drela (10.1016/j.engappai.2024.109461_b9) 1989; vol. 54
Yilmaz (10.1016/j.engappai.2024.109461_b33) 2020
10.1016/j.engappai.2024.109461_b1
Kim (10.1016/j.engappai.2024.109461_b15) 2022; 266
Selig (10.1016/j.engappai.2024.109461_b25) 1996
Hui (10.1016/j.engappai.2024.109461_b13) 2020; 105
Sekar (10.1016/j.engappai.2024.109461_b23) 2019; 31
Goodfellow (10.1016/j.engappai.2024.109461_b11) 2014; vol. 27
Sun (10.1016/j.engappai.2024.109461_b27) 2015; 42
Yonekura (10.1016/j.engappai.2024.109461_b34) 2021
Xie (10.1016/j.engappai.2024.109461_b32) 2022
Kulfan (10.1016/j.engappai.2024.109461_b17) 2008; 45
10.1016/j.engappai.2024.109461_b22
Wang (10.1016/j.engappai.2024.109461_b31) 2023; 10
Hines (10.1016/j.engappai.2024.109461_b12) 2023; 137
Du (10.1016/j.engappai.2024.109461_b10) 2020
Sekar (10.1016/j.engappai.2024.109461_b24) 2019; 57
Chen (10.1016/j.engappai.2024.109461_b7) 2018
Sobieczky (10.1016/j.engappai.2024.109461_b26) 1999; vol. 65
Wallach (10.1016/j.engappai.2024.109461_b29) 2006
Asgarkhani (10.1016/j.engappai.2024.109461_b3) 2024; 128
Savitzky (10.1016/j.engappai.2024.109461_b21) 1964; 36
Yonekura (10.1016/j.engappai.2024.109461_b35) 2021
Achour (10.1016/j.engappai.2024.109461_b2) 2020
Balla (10.1016/j.engappai.2024.109461_b4) 2021; 96
Wang (10.1016/j.engappai.2024.109461_b30) 2023; 34
Chen (10.1016/j.engappai.2024.109461_b5) 2019
Kharal (10.1016/j.engappai.2024.109461_b14) 2012; 23
Sabater (10.1016/j.engappai.2024.109461_b20) 2022; 60
References_xml – volume: vol. 27
  year: 2014
  ident: b11
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  year: 2023
  ident: b38
  article-title: Learning mappings from iced airfoils to aerodynamic coefficients using a deep operator network
  publication-title: J. Aerosp. Eng.
– volume: 12
  start-page: 544
  year: 2020
  ident: b8
  article-title: Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network
  publication-title: Symmetry
– volume: 45
  start-page: 142
  year: 2008
  end-page: 158
  ident: b17
  article-title: Universal parametric geometry representation method
  publication-title: J. Aircr.
– volume: 42
  start-page: 415
  year: 2015
  end-page: 428
  ident: b27
  article-title: Artificial neural network based inverse design: Airfoils and wings
  publication-title: Aerosp. Sci. Technol.
– volume: vol. 65
  start-page: 71
  year: 1999
  end-page: 87
  ident: b26
  article-title: Parametric airfoils and wings
  publication-title: Recent Development of Aerodynamic Design Methodologies
– year: 1996
  ident: b25
  article-title: UIUC airfoil coordinates database
– volume: 108
  year: 2022
  ident: b36
  article-title: Generating various airfoils with required lift coefficients by combining NACA and joukowski airfoils using conditional variational autoencoders
  publication-title: Eng. Appl. Artif. Intell.
– volume: 60
  start-page: 5249
  year: 2022
  end-page: 5261
  ident: b20
  article-title: Fast predictions of aircraft aerodynamics using deep-learning techniques
  publication-title: AIAA J.
– volume: 57
  start-page: 993
  year: 2019
  end-page: 1003
  ident: b24
  article-title: Inverse design of airfoil using a deep convolutional neural network
  publication-title: AIAA J.
– year: 2020
  ident: b33
  article-title: Conditional generative adversarial network framework for airfoil inverse design
  publication-title: AIAA AVIATION 2020 FORUM
– volume: 137
  year: 2023
  ident: b12
  article-title: Graph neural networks for the prediction of aircraft surface pressure distributions
  publication-title: Aerosp. Sci. Technol.
– reference: Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. pp. 151–160.
– volume: 421
  year: 2024
  ident: b28
  article-title: Physics-guided training of GAN to improve accuracy in airfoil design synthesis
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2019
  ident: b5
  article-title: Aerodynamic design optimization and shape exploration using generative adversarial networks
  publication-title: AIAA Scitech 2019 Forum
– volume: 266
  year: 2022
  ident: b15
  article-title: Geometric modification for the enhancement of an airfoil performance using deep CNN
  publication-title: Ocean Eng.
– year: 2021
  ident: b34
  article-title: Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-GP
– year: 2013
  ident: b16
  article-title: Auto-encoding variational Bayes
– year: 2006
  ident: b29
  article-title: Aerodynamic coefficient prediction of transport aircraft using neural network
  publication-title: 44th AIAA Aerospace Sciences Meeting and Exhibit
– year: 2021
  ident: b35
  article-title: Generating various airfoil shapes with required lift coefficient using conditional variational autoencoders
– volume: 128
  year: 2024
  ident: b3
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng. Appl. Artif. Intell.
– volume: vol. 54
  start-page: 1
  year: 1989
  end-page: 12
  ident: b9
  article-title: XFOIL: An analysis and design system for low Reynolds number airfoils
  publication-title: Low Reynolds Number Aerodynamics
– year: 2020
  ident: b10
  article-title: A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization
  publication-title: AIAA Scitech 2020 Forum
– volume: 34
  start-page: 3538
  year: 2023
  end-page: 3552
  ident: b30
  article-title: An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 58
  start-page: 4723
  year: 2020
  end-page: 4735
  ident: b6
  article-title: Airfoil design parameterization and optimization using Bézier generative adversarial networks
  publication-title: AIAA J.
– year: 2020
  ident: b2
  article-title: Development of a conditional generative adversarial network for airfoil shape optimization
  publication-title: AIAA Scitech 2020 Forum
– volume: 105
  year: 2020
  ident: b13
  article-title: Fast pressure distribution prediction of airfoils using deep learning
  publication-title: Aerosp. Sci. Technol.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b21
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– start-page: 600
  year: 2022
  end-page: 605
  ident: b19
  article-title: CST-GANs: A generative adversarial network based on CST parameterization for the generation of smooth airfoils
  publication-title: 2022 IEEE International Conference on Unmanned Systems
– year: 2018
  ident: b37
  article-title: Application of convolutional neural network to predict airfoil lift coefficient
  publication-title: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
– volume: 31
  year: 2019
  ident: b23
  article-title: Fast flow field prediction over airfoils using deep learning approach
  publication-title: Phys. Fluids
– volume: 10
  start-page: 1350
  year: 2023
  end-page: 1362
  ident: b31
  article-title: Airfoil GAN: Encoding and synthesizing airfoils for aerodynamic shape optimization
  publication-title: J. Comput. Des. Eng.
– reference: Abbott, I.H., Von Doenhoff, A.E., Stivers, L., 1945. Summary of Airfoil Data. Technical Report.
– year: 2018
  ident: b7
  article-title: BézierGAN: Automatic generation of smooth curves from interpretable low-dimensional parameters
– volume: 23
  start-page: 330
  year: 2012
  end-page: 344
  ident: b14
  article-title: Neural networks based airfoil generation for a given using Bezier–PARSEC parameterization
  publication-title: Aerosp. Sci. Technol.
– volume: 96
  start-page: 456
  year: 2021
  end-page: 479
  ident: b4
  article-title: An application of neural networks to the prediction of aerodynamic coefficients of aerofoils and wings
  publication-title: Appl. Math. Model.
– volume: 134
  year: 2022
  ident: b18
  article-title: Machine learning in aerodynamic shape optimization
  publication-title: Prog. Aerosp. Sci.
– year: 2022
  ident: b32
  article-title: Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils
– year: 1996
  ident: 10.1016/j.engappai.2024.109461_b25
– year: 2020
  ident: 10.1016/j.engappai.2024.109461_b2
  article-title: Development of a conditional generative adversarial network for airfoil shape optimization
– ident: 10.1016/j.engappai.2024.109461_b22
  doi: 10.1145/15922.15903
– volume: 128
  year: 2024
  ident: 10.1016/j.engappai.2024.109461_b3
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107388
– volume: 34
  start-page: 3538
  issue: 7
  year: 2023
  ident: 10.1016/j.engappai.2024.109461_b30
  article-title: An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3111911
– year: 2021
  ident: 10.1016/j.engappai.2024.109461_b35
– volume: vol. 27
  year: 2014
  ident: 10.1016/j.engappai.2024.109461_b11
  article-title: Generative adversarial nets
– year: 2013
  ident: 10.1016/j.engappai.2024.109461_b16
– volume: 31
  year: 2019
  ident: 10.1016/j.engappai.2024.109461_b23
  article-title: Fast flow field prediction over airfoils using deep learning approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5094943
– volume: 45
  start-page: 142
  year: 2008
  ident: 10.1016/j.engappai.2024.109461_b17
  article-title: Universal parametric geometry representation method
  publication-title: J. Aircr.
  doi: 10.2514/1.29958
– volume: 96
  start-page: 456
  year: 2021
  ident: 10.1016/j.engappai.2024.109461_b4
  article-title: An application of neural networks to the prediction of aerodynamic coefficients of aerofoils and wings
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.03.019
– volume: 137
  year: 2023
  ident: 10.1016/j.engappai.2024.109461_b12
  article-title: Graph neural networks for the prediction of aircraft surface pressure distributions
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108268
– volume: 421
  year: 2024
  ident: 10.1016/j.engappai.2024.109461_b28
  article-title: Physics-guided training of GAN to improve accuracy in airfoil design synthesis
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2024.116746
– year: 2022
  ident: 10.1016/j.engappai.2024.109461_b32
– volume: 58
  start-page: 4723
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2024.109461_b6
  article-title: Airfoil design parameterization and optimization using Bézier generative adversarial networks
  publication-title: AIAA J.
  doi: 10.2514/1.J059317
– volume: 266
  year: 2022
  ident: 10.1016/j.engappai.2024.109461_b15
  article-title: Geometric modification for the enhancement of an airfoil performance using deep CNN
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113000
– year: 2018
  ident: 10.1016/j.engappai.2024.109461_b37
  article-title: Application of convolutional neural network to predict airfoil lift coefficient
– volume: 12
  start-page: 544
  year: 2020
  ident: 10.1016/j.engappai.2024.109461_b8
  article-title: Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network
  publication-title: Symmetry
  doi: 10.3390/sym12040544
– year: 2020
  ident: 10.1016/j.engappai.2024.109461_b33
  article-title: Conditional generative adversarial network framework for airfoil inverse design
– volume: vol. 65
  start-page: 71
  year: 1999
  ident: 10.1016/j.engappai.2024.109461_b26
  article-title: Parametric airfoils and wings
– year: 2006
  ident: 10.1016/j.engappai.2024.109461_b29
  article-title: Aerodynamic coefficient prediction of transport aircraft using neural network
– year: 2018
  ident: 10.1016/j.engappai.2024.109461_b7
– volume: 36
  year: 2023
  ident: 10.1016/j.engappai.2024.109461_b38
  article-title: Learning mappings from iced airfoils to aerodynamic coefficients using a deep operator network
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/JAEEEZ.ASENG-4508
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.engappai.2024.109461_b21
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 42
  start-page: 415
  year: 2015
  ident: 10.1016/j.engappai.2024.109461_b27
  article-title: Artificial neural network based inverse design: Airfoils and wings
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.01.030
– start-page: 600
  year: 2022
  ident: 10.1016/j.engappai.2024.109461_b19
  article-title: CST-GANs: A generative adversarial network based on CST parameterization for the generation of smooth airfoils
– volume: 10
  start-page: 1350
  year: 2023
  ident: 10.1016/j.engappai.2024.109461_b31
  article-title: Airfoil GAN: Encoding and synthesizing airfoils for aerodynamic shape optimization
  publication-title: J. Comput. Des. Eng.
– volume: 60
  start-page: 5249
  year: 2022
  ident: 10.1016/j.engappai.2024.109461_b20
  article-title: Fast predictions of aircraft aerodynamics using deep-learning techniques
  publication-title: AIAA J.
  doi: 10.2514/1.J061234
– year: 2019
  ident: 10.1016/j.engappai.2024.109461_b5
  article-title: Aerodynamic design optimization and shape exploration using generative adversarial networks
– volume: vol. 54
  start-page: 1
  year: 1989
  ident: 10.1016/j.engappai.2024.109461_b9
  article-title: XFOIL: An analysis and design system for low Reynolds number airfoils
– volume: 23
  start-page: 330
  year: 2012
  ident: 10.1016/j.engappai.2024.109461_b14
  article-title: Neural networks based airfoil generation for a given using Bezier–PARSEC parameterization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2011.08.010
– volume: 57
  start-page: 993
  year: 2019
  ident: 10.1016/j.engappai.2024.109461_b24
  article-title: Inverse design of airfoil using a deep convolutional neural network
  publication-title: AIAA J.
  doi: 10.2514/1.J057894
– volume: 134
  year: 2022
  ident: 10.1016/j.engappai.2024.109461_b18
  article-title: Machine learning in aerodynamic shape optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2022.100849
– volume: 108
  year: 2022
  ident: 10.1016/j.engappai.2024.109461_b36
  article-title: Generating various airfoils with required lift coefficients by combining NACA and joukowski airfoils using conditional variational autoencoders
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104560
– year: 2021
  ident: 10.1016/j.engappai.2024.109461_b34
– ident: 10.1016/j.engappai.2024.109461_b1
– year: 2020
  ident: 10.1016/j.engappai.2024.109461_b10
  article-title: A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization
– volume: 105
  year: 2020
  ident: 10.1016/j.engappai.2024.109461_b13
  article-title: Fast pressure distribution prediction of airfoils using deep learning
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105949
SSID ssj0003846
Score 2.4687774
Snippet The challenges in multi-objective and multi-dimensional optimization design of airfoils, marked by prolonged optimization cycles and low accuracy, call for an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109461
SubjectTerms Airfoil design
Conditional variational autoencoder
Deep learning
Generative model
Variational autoencoder
Title A generative design method of airfoil based on conditional variational autoencoder
URI https://dx.doi.org/10.1016/j.engappai.2024.109461
Volume 139
WOSCitedRecordID wos001343767000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_cqpTEcR4-rqqiwqFCaBF7i5J4jFytkrLdXfXML2cc24mBitIDlyiy1rObzLdjz2f7G0Leqpy3ooUiAimziOOHoobnTZSqJhNGgE0BH4pNFGdn5XIpPs1mP_xZmN2q6Lry6kpc_FdXYxs62xydvYW7R6PYgPfodLyi2_H6T46fm6rI4AS95bBBw9WJHtb89Vr1enVoRi9pVgowH5baEYI7TJw9OVhvN70RuZRu-65n7yf9wsNw8XuwvR42Hg1lQAKlz4mzt3FluR3ZVm3p16-gv-uAwh7o28V2xO2xO0JyWuuQpWBZwFJ4upFFibC1XsbIa3WMXOxMMNO0wux_hHXLMJwfQfcNH63WmNczfjR1-FVH-7fxbdx16De0nVfeTmXsVNbOHbLPikxgZNyffzhZfhzH87S0x738EwTnzK__RddPcYJpy-Ihue_yDTq3OHlEZtA9Jg9c7kFdZL_EJl_ew7c9IZ_ndEIStUiiFkm0V9QhiQ5Ion1HAyTRAEk0QNJT8uX9yeL4NHIlOKI2TdgmUsBiVaZlnkheM6lYDrzmTEKbAYMY0rjBwR5KxqWARJZtLoo2V20sU1HKWKXPyF7Xd_Cc0LpWBeOZiKVseCzAyBapogFs5mihOCCZf2tV6_TpTZmUVfV3vx2Qd2O_C6vQcmMP4Z1SuXmmnT9WiLcb-r649be9JPemP8QrsrdZb-E1udvuNvpy_caB7Sd-kqbP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generative+design+method+of+airfoil+based+on+conditional+variational+autoencoder&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Xu&rft.au=Qian%2C+Weiqi&rft.au=Zhao%2C+Tun&rft.au=Chen%2C+Hai&rft.date=2025-01-01&rft.issn=0952-1976&rft.volume=139&rft.spage=109461&rft_id=info:doi/10.1016%2Fj.engappai.2024.109461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_109461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon