Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications
This paper proposes a novel swarm intelligence bioinspired optimization algorithm, called the Dandelion Optimizer (DO), for solving continuous optimization problems. DO simulates the process of dandelion seed long-distance flight relying on wind, which is divided into three stages. In the rising sta...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 114; s. 105075 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2022
|
| Predmet: | |
| ISSN: | 0952-1976 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a novel swarm intelligence bioinspired optimization algorithm, called the Dandelion Optimizer (DO), for solving continuous optimization problems. DO simulates the process of dandelion seed long-distance flight relying on wind, which is divided into three stages. In the rising stage, seeds raise in a spiral manner due to the eddies from above or drift locally in communities according to different weather conditions. In the descending stage, flying seeds steadily descend by constantly adjusting their direction in global space. In the landing stage, seeds land in randomly selected positions so that they grow. The moving trajectory of a seed in the descending stage and landing stage are described by Brownian motion and a Levy random walk. CEC2017 benchmark functions are utilized to evaluate the performance of DO, including the optimization accuracy, stability, convergence, and scalability, through a comparison with 9 well-known nature-inspired metaheuristic algorithms. Finally, the applicability of DO is verified by solving 4 real-world optimization problems. The experimental results indicate that the proposed DO method is a higher performing optimizer with outstanding iterative optimization and strong robustness compared with well-established algorithms. Source codes of DO are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/114680-dandelion-optimizer. |
|---|---|
| AbstractList | This paper proposes a novel swarm intelligence bioinspired optimization algorithm, called the Dandelion Optimizer (DO), for solving continuous optimization problems. DO simulates the process of dandelion seed long-distance flight relying on wind, which is divided into three stages. In the rising stage, seeds raise in a spiral manner due to the eddies from above or drift locally in communities according to different weather conditions. In the descending stage, flying seeds steadily descend by constantly adjusting their direction in global space. In the landing stage, seeds land in randomly selected positions so that they grow. The moving trajectory of a seed in the descending stage and landing stage are described by Brownian motion and a Levy random walk. CEC2017 benchmark functions are utilized to evaluate the performance of DO, including the optimization accuracy, stability, convergence, and scalability, through a comparison with 9 well-known nature-inspired metaheuristic algorithms. Finally, the applicability of DO is verified by solving 4 real-world optimization problems. The experimental results indicate that the proposed DO method is a higher performing optimizer with outstanding iterative optimization and strong robustness compared with well-established algorithms. Source codes of DO are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/114680-dandelion-optimizer. |
| ArticleNumber | 105075 |
| Author | Ma, Shilin Chen, Miao Zhang, Tianran Zhao, Shijie |
| Author_xml | – sequence: 1 givenname: Shijie surname: Zhao fullname: Zhao, Shijie email: zhaoshijie@lntu.edu.cn organization: Institute of Intelligence Science and Optimization, Liaoning Technical University, Fuxin, 123000, China – sequence: 2 givenname: Tianran surname: Zhang fullname: Zhang, Tianran organization: Institute of Intelligence Science and Optimization, Liaoning Technical University, Fuxin, 123000, China – sequence: 3 givenname: Shilin surname: Ma fullname: Ma, Shilin organization: Institute of Intelligence Science and Optimization, Liaoning Technical University, Fuxin, 123000, China – sequence: 4 givenname: Miao surname: Chen fullname: Chen, Miao organization: Institute of Intelligence Science and Optimization, Liaoning Technical University, Fuxin, 123000, China |
| BookMark | eNqFkE1PwzAMhnMYEtvgL6D-gY4k_UYcmManNGkXOHGIvNTdPLVplWRI8OvJGFy47GTZ0vPafiZsZHqDjF0JPhNc5Ne7GZoNDAPQTHIpwzDjRTZiY15lMhZVkZ-ziXM7znlSpvmYvd-DqbGl3kSrwVNHX2hvonlkwO8txmTcQBbrqEMPW9xbcp50BO2mt-S3XdT0NgorySBaMpso7G5Jgw-B7oKdNdA6vPytU_b2-PC6eI6Xq6eXxXwZ60RIHzc6laWsRZVU65xjyisJmc7XecNDl4saEoS6KKEQUidVmYqmKEQmYF1CWnFIpuz2mKtt75zFRmnyPyd4C9QqwdVBjtqpPznqIEcd5QQ8_4cPljqwn6fBuyOI4bkPQqucJjQa66BMe1X3dCriG3qIiN8 |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10578_y crossref_primary_10_3390_math12071111 crossref_primary_10_1016_j_nahs_2024_101535 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_3390_biomimetics9050298 crossref_primary_10_3390_math10193487 crossref_primary_10_1016_j_enconman_2024_119465 crossref_primary_10_1016_j_eswa_2024_123734 crossref_primary_10_3390_pr12071321 crossref_primary_10_1016_j_engappai_2024_108149 crossref_primary_10_1007_s40996_023_01074_1 crossref_primary_10_1038_s41598_024_54829_9 crossref_primary_10_1088_1402_4896_ad91f2 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1007_s00607_023_01157_x crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1063_5_0213886 crossref_primary_10_3390_pr11082493 crossref_primary_10_1016_j_eswa_2023_119877 crossref_primary_10_1007_s40747_024_01553_6 crossref_primary_10_1016_j_cma_2022_115676 crossref_primary_10_3390_math12172604 crossref_primary_10_1016_j_cma_2025_118208 crossref_primary_10_1088_1402_4896_adbfd6 crossref_primary_10_1109_ACCESS_2024_3378749 crossref_primary_10_1515_ijeeps_2023_0025 crossref_primary_10_1088_1402_4896_ad91ef crossref_primary_10_1016_j_apenergy_2024_124439 crossref_primary_10_1016_j_tsep_2024_102519 crossref_primary_10_3390_biomimetics9090524 crossref_primary_10_1515_mt_2023_0082 crossref_primary_10_1093_jcde_qwae001 crossref_primary_10_3390_math10234539 crossref_primary_10_1109_ACCESS_2025_3562367 crossref_primary_10_1016_j_eswa_2024_125815 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1007_s10666_025_10039_9 crossref_primary_10_1371_journal_pone_0329630 crossref_primary_10_1016_j_asoc_2024_112561 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1016_j_egyr_2024_05_018 crossref_primary_10_1109_ACCESS_2025_3554505 crossref_primary_10_1371_journal_pone_0316326 crossref_primary_10_1007_s10723_024_09779_x crossref_primary_10_1007_s13042_024_02197_1 crossref_primary_10_1016_j_compeleceng_2025_110617 crossref_primary_10_1016_j_rineng_2025_104553 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_3390_technologies12090156 crossref_primary_10_1186_s40537_025_01174_x crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_3390_en16135228 crossref_primary_10_1002_nme_7386 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_3390_biomimetics8060454 crossref_primary_10_1016_j_knosys_2024_111737 crossref_primary_10_1007_s10586_024_04678_y crossref_primary_10_1016_j_engappai_2023_106236 crossref_primary_10_1088_1402_4896_ad86f7 crossref_primary_10_7717_peerj_cs_1919 crossref_primary_10_3390_en16093617 crossref_primary_10_1007_s13369_023_08654_3 crossref_primary_10_1016_j_knosys_2025_113420 crossref_primary_10_3390_pr13051284 crossref_primary_10_1007_s12667_024_00709_0 crossref_primary_10_3390_biomimetics8050411 crossref_primary_10_1007_s11581_025_06284_3 crossref_primary_10_1007_s00521_024_09816_6 crossref_primary_10_1007_s00521_025_11166_w crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1007_s11227_024_06279_3 crossref_primary_10_1016_j_eswa_2025_128375 crossref_primary_10_1038_s41598_025_00076_5 crossref_primary_10_1038_s41598_025_13565_4 crossref_primary_10_3390_biomimetics9080500 crossref_primary_10_1007_s42243_025_01489_2 crossref_primary_10_1016_j_apm_2025_116423 crossref_primary_10_1016_j_rineng_2025_105813 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1016_j_engappai_2024_109436 crossref_primary_10_3390_math13142251 crossref_primary_10_3390_su15097499 crossref_primary_10_3390_en17164104 crossref_primary_10_47134_ppm_v2i2_1480 crossref_primary_10_1002_ese3_1605 crossref_primary_10_1016_j_asoc_2023_110479 crossref_primary_10_3390_sym15091765 crossref_primary_10_1109_ACCESS_2024_3362638 crossref_primary_10_1007_s12008_024_02039_y crossref_primary_10_3390_app142311320 crossref_primary_10_1016_j_ref_2024_100563 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_1016_j_aej_2025_06_002 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_3390_biomimetics8060482 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_37394_23205_2025_24_7 crossref_primary_10_3390_asi7050075 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_1016_j_bspc_2024_107350 crossref_primary_10_1108_MEQ_02_2024_0061 crossref_primary_10_1109_JSEN_2023_3311872 crossref_primary_10_1109_ACCESS_2023_3327732 crossref_primary_10_3390_biomimetics10080496 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_3390_biomimetics10070454 crossref_primary_10_3846_aviation_2024_22577 crossref_primary_10_3390_math10224383 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1007_s10462_025_11289_5 crossref_primary_10_1016_j_istruc_2024_106239 crossref_primary_10_1016_j_rineng_2025_105705 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1155_int_5054424 crossref_primary_10_1038_s41598_024_70222_y crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1007_s10462_024_10723_4 crossref_primary_10_1016_j_est_2023_109974 crossref_primary_10_3390_en17040777 crossref_primary_10_1007_s10586_024_04819_3 crossref_primary_10_1007_s42235_024_00545_z crossref_primary_10_3390_en16052086 crossref_primary_10_3390_biomimetics7040204 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_3390_math12070965 crossref_primary_10_1007_s42235_023_00416_z crossref_primary_10_1109_ACCESS_2022_3210165 crossref_primary_10_1109_TR_2024_3488122 crossref_primary_10_1016_j_engappai_2023_106549 crossref_primary_10_1038_s41598_025_07328_4 crossref_primary_10_32604_cmes_2024_055171 crossref_primary_10_1016_j_mtcomm_2024_109922 crossref_primary_10_1007_s11227_024_06078_w crossref_primary_10_1016_j_ymssp_2023_110582 crossref_primary_10_3390_math13111895 crossref_primary_10_1016_j_eswa_2023_123115 crossref_primary_10_1016_j_sna_2024_115651 crossref_primary_10_1049_rpg2_13167 crossref_primary_10_1016_j_knosys_2023_111257 crossref_primary_10_3390_biomimetics8020162 crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_1007_s00521_023_08623_9 crossref_primary_10_1007_s42235_022_00298_7 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1038_s41598_025_16513_4 crossref_primary_10_1038_s41598_024_71672_0 crossref_primary_10_3390_math13091500 crossref_primary_10_1186_s40537_025_01080_2 crossref_primary_10_3390_en17184742 crossref_primary_10_1002_cbh2_70003 crossref_primary_10_3390_math11081854 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1016_j_jksuci_2023_101779 crossref_primary_10_1007_s11760_024_03017_3 crossref_primary_10_1093_jcde_qwac127 crossref_primary_10_1007_s00477_024_02884_z crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1016_j_energy_2024_134154 crossref_primary_10_1007_s00202_024_02252_8 crossref_primary_10_3390_eng6080174 crossref_primary_10_1016_j_enconman_2024_118899 crossref_primary_10_1080_03081079_2025_2526086 crossref_primary_10_1016_j_est_2025_118425 crossref_primary_10_32604_cmes_2024_052001 crossref_primary_10_3390_computers12100196 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1016_j_aei_2024_102354 crossref_primary_10_1007_s11053_024_10333_5 crossref_primary_10_3390_su141912162 crossref_primary_10_1016_j_engappai_2023_106778 crossref_primary_10_1002_oca_3284 crossref_primary_10_1088_1742_6596_3000_1_012013 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_1007_s41870_023_01691_z crossref_primary_10_1016_j_rineng_2025_104385 crossref_primary_10_3390_math11061298 crossref_primary_10_1080_0305215X_2025_2501647 crossref_primary_10_1515_mt_2024_0098 crossref_primary_10_3390_su152416707 crossref_primary_10_7717_peerj_cs_1661 crossref_primary_10_1016_j_eswa_2025_127660 crossref_primary_10_1049_cit2_12367 crossref_primary_10_1016_j_mseb_2024_117506 crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_3390_en15228499 crossref_primary_10_3390_app13053273 crossref_primary_10_1016_j_compbiomed_2024_109011 crossref_primary_10_3390_math12071059 crossref_primary_10_3390_math13071021 crossref_primary_10_1007_s00607_024_01287_w crossref_primary_10_1016_j_enconman_2023_117621 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_1016_j_isatra_2025_06_012 crossref_primary_10_1007_s10586_024_04976_5 crossref_primary_10_3390_sym17050667 crossref_primary_10_1007_s12652_025_04981_5 crossref_primary_10_1515_mt_2023_0015 crossref_primary_10_1515_mt_2024_0186 crossref_primary_10_1038_s41598_024_52416_6 crossref_primary_10_1038_s41598_024_65867_8 crossref_primary_10_3390_en17122968 crossref_primary_10_3390_math12233709 crossref_primary_10_1016_j_cma_2023_116200 crossref_primary_10_1007_s12293_025_00445_7 crossref_primary_10_1088_1402_4896_adb706 crossref_primary_10_1016_j_asoc_2025_112691 crossref_primary_10_1109_TIM_2024_3493878 crossref_primary_10_3390_math11061387 crossref_primary_10_1109_ACCESS_2025_3575496 crossref_primary_10_48084_etasr_10505 crossref_primary_10_3390_en16020850 crossref_primary_10_1088_2631_8695_adad39 crossref_primary_10_1016_j_aei_2024_102464 crossref_primary_10_3390_su15108407 crossref_primary_10_1007_s11227_023_05605_5 crossref_primary_10_1007_s13369_023_08689_6 crossref_primary_10_1016_j_engappai_2023_107014 crossref_primary_10_3390_jtaer18040103 crossref_primary_10_1007_s13296_025_00994_0 crossref_primary_10_1016_j_measurement_2023_113854 crossref_primary_10_1007_s00202_024_02501_w crossref_primary_10_3390_sym16091173 crossref_primary_10_1016_j_matcom_2023_03_007 crossref_primary_10_1007_s10586_025_05287_z crossref_primary_10_1016_j_ins_2024_121417 crossref_primary_10_1093_jcde_qwaf024 crossref_primary_10_3390_pr10112254 crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1016_j_epsr_2023_109768 crossref_primary_10_21595_jmeacs_2025_24865 crossref_primary_10_3390_biomimetics10050343 crossref_primary_10_1016_j_apm_2024_115865 crossref_primary_10_1038_s41598_025_01678_9 crossref_primary_10_3390_biomimetics8050395 crossref_primary_10_1016_j_asoc_2025_113641 crossref_primary_10_1109_ACCESS_2024_3427008 crossref_primary_10_1007_s10586_024_04969_4 crossref_primary_10_1016_j_bspc_2023_104740 crossref_primary_10_1007_s11227_024_06616_6 crossref_primary_10_1016_j_measurement_2025_118361 crossref_primary_10_1016_j_est_2024_112488 crossref_primary_10_1515_mt_2023_0201 crossref_primary_10_3390_electronics13214215 crossref_primary_10_1007_s11356_023_26329_2 crossref_primary_10_1016_j_jestch_2023_101408 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1109_ACCESS_2023_3341507 crossref_primary_10_1016_j_advengsoft_2024_103665 crossref_primary_10_1038_s41598_024_55040_6 crossref_primary_10_1016_j_egyr_2024_01_073 crossref_primary_10_1016_j_engappai_2023_106389 crossref_primary_10_1093_jcde_qwad060 crossref_primary_10_1109_ACCESS_2024_3372851 crossref_primary_10_1002_oca_3274 crossref_primary_10_2166_hydro_2024_262 crossref_primary_10_1038_s41598_025_88080_7 crossref_primary_10_1007_s10462_025_11291_x crossref_primary_10_1111_exsy_70110 crossref_primary_10_1016_j_eswa_2024_123958 crossref_primary_10_1007_s00500_023_09473_2 crossref_primary_10_3390_math11112591 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1016_j_egyr_2024_09_020 crossref_primary_10_1038_s41598_025_09875_2 crossref_primary_10_3390_biomimetics9110701 crossref_primary_10_3390_s24227161 crossref_primary_10_1016_j_advengsoft_2025_103866 crossref_primary_10_1016_j_heliyon_2024_e37458 crossref_primary_10_1007_s13369_024_08861_6 crossref_primary_10_1007_s42235_023_00469_0 crossref_primary_10_1007_s13042_025_02609_w crossref_primary_10_1016_j_advengsoft_2024_103793 crossref_primary_10_1016_j_eswa_2023_123082 crossref_primary_10_1007_s42405_025_00900_2 crossref_primary_10_3390_biomimetics9080474 crossref_primary_10_1007_s10586_025_05518_3 crossref_primary_10_1109_LSENS_2023_3234400 crossref_primary_10_1007_s11831_025_10385_7 crossref_primary_10_1007_s41939_024_00425_3 crossref_primary_10_1016_j_ijepes_2023_109250 crossref_primary_10_1007_s12065_024_00943_6 crossref_primary_10_1007_s41939_024_00453_z crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_3390_jcs6100310 crossref_primary_10_1007_s10462_024_10957_2 crossref_primary_10_1016_j_swevo_2024_101766 crossref_primary_10_3390_biomimetics10090581 crossref_primary_10_1007_s00521_024_10694_1 |
| Cites_doi | 10.1016/j.asoc.2019.106018 10.1016/j.apm.2020.12.021 10.1080/0952813X.2017.1413142 10.1016/j.cie.2021.107250 10.1103/PhysRevE.49.4677 10.1016/j.eswa.2021.115351 10.1038/s41586-018-0604-2 10.1111/j.1365-2435.2007.01338.x 10.1109/TNNLS.2013.2286175 10.1890/03-0522 10.1371/journal.pone.0125040 10.1007/s10489-020-01893-z 10.1007/s10898-007-9149-x 10.1007/s00521-015-1870-7 10.1007/s11047-008-9098-4 10.1016/j.cie.2020.107050 10.1016/j.tcs.2005.05.020 10.1007/s10107-006-0086-0 10.1007/s10462-020-09867-w 10.1016/j.advengsoft.2017.05.014 10.1038/scientificamerican0792-66 10.1016/j.swevo.2018.02.013 10.1016/j.engappai.2016.04.004 10.1016/j.future.2019.02.028 10.1007/s00500-019-03949-w 10.1007/s10462-020-09906-6 10.1364/AO.385552 10.1016/j.eswa.2020.113377 10.1016/j.engappai.2021.104410 10.1016/j.eswa.2016.02.016 10.1016/j.asoc.2020.106339 10.1109/4235.585893 10.1016/j.eswa.2021.115079 10.1016/j.knosys.2018.11.024 10.1023/A:1008202821328 10.1016/j.knosys.2020.105709 10.1016/j.engappai.2020.103541 10.1162/evco.1995.3.1.1 10.1111/j.1469-8137.1973.tb04415.x 10.1016/j.future.2019.07.015 10.1016/j.advengsoft.2016.01.008 10.1016/j.knosys.2022.108320 10.1016/j.engappai.2020.104015 10.1016/j.epsr.2016.09.025 10.1016/j.engappai.2006.03.003 10.3390/s22031280 10.1016/j.eswa.2020.114522 10.1080/03052150410001647966 10.1016/j.knosys.2020.106711 10.1145/937503.937505 10.1007/s00521-018-3592-0 10.1016/j.engappai.2020.103731 10.1016/j.cma.2022.114570 10.1002/adfm.201602596 10.1016/j.eswa.2020.113338 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2021.107517 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2022.105075 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2022_105075 S0952197622002305 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-fc4282d1939b60e4092a5c6b6f00e461da3ead78a712c39841f77151ab8a490a3 |
| ISICitedReferencesCount | 332 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838697900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:11:23 EST 2025 Tue Nov 18 21:01:37 EST 2025 Sun Apr 06 06:54:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dandelion optimizer Swarm intelligence Nature-inspired metaheuristic algorithm Real-world optimization problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-fc4282d1939b60e4092a5c6b6f00e461da3ead78a712c39841f77151ab8a490a3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2022_105075 crossref_primary_10_1016_j_engappai_2022_105075 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105075 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gong, Han, Li, Zhao, Liu (b26) 2018; 30 Cornuéjols (b15) 2008; 112 Awad, Ali, Suganthan, Liang, Qu (b5) 2017 Fogel (b23) 1998 Coello Coello, Becerra (b14) 2004; 36 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b22) 2020; 152 Azizi (b6) 2021; 93 Zahedi, Akbari, Shokouhifar, Safaei, Jalali (b66) 2016; 55 Wolpert, Macready (b65) 1997; 1 Kamboj, Nandi, Bhadoria, Sehgal (b38) 2020; 89 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b30) 2021; 51 Hashim, Hussien (b31) 2022; 242 Mirjalili, Lewis (b49) 2016; 95 Dhiman, Kumar (b18) 2019; 165 Einstein (b21) 1956 Punnathanam, Kotecha (b57) 2016; 54 Askari, Younas, Saeed (b4) 2020; 195 Jain, Singh, Rani (b37) 2019; 44 Storn, Price (b61) 1997; 11 Blum, Roli (b9) 2003; 35 Agushaka, Ezugwu, Abualigah (b2) 2022; 391 Chou, Nguyen (b13) 2020; 93 Bianchi, Dorigo, Gambardella, Gutjahr (b8) 2009; 8 Dhiman, Kumar (b17) 2017; 114 Mantegna (b45) 1994; 49 Dorigo, Stützle (b20) 2019 Wilcoxon (b64) 1992 Fonseca, Fleming (b24) 1995; 3 Halim, Ismail, Das (b28) 2021; 54 Casseau, De Croon, Izzo, Pandolfi (b10) 2015; 10 He, Wang (b32) 2007; 20 Soons, Heil, Nathan, Katul (b59) 2004; 85 Pereira, Francisco, Diniz, Oliver, Cunha, Gomes (b55) 2021; 170 Nand, Sharma, Chaudhary (b53) 2021; 109 Cavieres, Quiroz, Molina-Montenegro (b11) 2008; 22 Dorigo, Blum (b19) 2005; 344 Meng, Wang, Zhao, Wang, Liu, Liu, Jiang (b46) 2016; 26 Hussain, Salleh, Cheng, Shi (b36) 2019; 31 Holland (b34) 1992; 267 Kennedy, Eberhart (b41) 1995 Mirjalili (b48) 2016; 96 Mohamed, Mohamed, El-Gaafary, Hemeida (b51) 2017; 142 Talatahari, Azizi (b62) 2021; 54 Karaboga, Basturk (b39) 2007; 39 Houssein, Saad, Hashim, Shaban, Hassaballah (b35) 2020; 94 Sheldon, Burrows (b58) 1973; 72 MiarNaeimi, Azizyan, Rashki (b47) 2021; 213 Nematollahi, Rahiminejad, Vahidi (b54) 2020; 24 Li, Han, Zhao, Gong, Liu (b44) 2017 Pu, Zhou, Zhang, Zhang, Huang, Siarry (b56) 2013; 26 Mirjalili, Mirjalili, Hatamlou (b50) 2016; 27 Cummins, Seale, Macente, Certini, Mastropaolo, Viola, Nakayama (b16) 2018; 562 Gupta, Abderazek, Yıldız, Yildiz, Mirjalili, Sait (b27) 2021; 183 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b29) 2019; 101 Khishe, Mosavi (b42) 2020; 149 Kaur, Awasthi, Sangal, Dhiman (b40) 2020; 90 Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (b52) 2021; 152 Ahmadianfar, Heidari, Gandomi, Chu, Chen (b3) 2021; 181 Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (b67) 2021; 97 Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (b1) 2021; 157 Back (b7) 1996 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b33) 2019; 97 Kurban, Durmus, Karakose (b43) 2021; 105 Chan-Ley, Olague (b12) 2020; 59 Tan, Zhu (b63) 2010 Galli, Lin (b25) 2021 Soubervielle-Montalvo, Perez-Cham, Puente, Gonzalez-Galvan, Olague, Aguirre-Salado, Cuevas-Tello, Ontanon-Garcia (b60) 2022; 22 Storn (10.1016/j.engappai.2022.105075_b61) 1997; 11 Kennedy (10.1016/j.engappai.2022.105075_b41) 1995 Holland (10.1016/j.engappai.2022.105075_b34) 1992; 267 Cornuéjols (10.1016/j.engappai.2022.105075_b15) 2008; 112 Mantegna (10.1016/j.engappai.2022.105075_b45) 1994; 49 Chan-Ley (10.1016/j.engappai.2022.105075_b12) 2020; 59 Punnathanam (10.1016/j.engappai.2022.105075_b57) 2016; 54 Karaboga (10.1016/j.engappai.2022.105075_b39) 2007; 39 Einstein (10.1016/j.engappai.2022.105075_b21) 1956 Houssein (10.1016/j.engappai.2022.105075_b35) 2020; 94 Dhiman (10.1016/j.engappai.2022.105075_b17) 2017; 114 Galli (10.1016/j.engappai.2022.105075_b25) 2021 Fogel (10.1016/j.engappai.2022.105075_b23) 1998 Wolpert (10.1016/j.engappai.2022.105075_b65) 1997; 1 Talatahari (10.1016/j.engappai.2022.105075_b62) 2021; 54 Mirjalili (10.1016/j.engappai.2022.105075_b48) 2016; 96 Hussain (10.1016/j.engappai.2022.105075_b36) 2019; 31 Mirjalili (10.1016/j.engappai.2022.105075_b50) 2016; 27 Meng (10.1016/j.engappai.2022.105075_b46) 2016; 26 Casseau (10.1016/j.engappai.2022.105075_b10) 2015; 10 Dorigo (10.1016/j.engappai.2022.105075_b19) 2005; 344 Halim (10.1016/j.engappai.2022.105075_b28) 2021; 54 Dorigo (10.1016/j.engappai.2022.105075_b20) 2019 Khishe (10.1016/j.engappai.2022.105075_b42) 2020; 149 Back (10.1016/j.engappai.2022.105075_b7) 1996 Faramarzi (10.1016/j.engappai.2022.105075_b22) 2020; 152 Fonseca (10.1016/j.engappai.2022.105075_b24) 1995; 3 Li (10.1016/j.engappai.2022.105075_b44) 2017 Gupta (10.1016/j.engappai.2022.105075_b27) 2021; 183 Cummins (10.1016/j.engappai.2022.105075_b16) 2018; 562 Awad (10.1016/j.engappai.2022.105075_b5) 2017 Heidari (10.1016/j.engappai.2022.105075_b33) 2019; 97 Mirjalili (10.1016/j.engappai.2022.105075_b49) 2016; 95 Pereira (10.1016/j.engappai.2022.105075_b55) 2021; 170 Soubervielle-Montalvo (10.1016/j.engappai.2022.105075_b60) 2022; 22 Cavieres (10.1016/j.engappai.2022.105075_b11) 2008; 22 Nand (10.1016/j.engappai.2022.105075_b53) 2021; 109 He (10.1016/j.engappai.2022.105075_b32) 2007; 20 Mohammadi-Balani (10.1016/j.engappai.2022.105075_b52) 2021; 152 Coello Coello (10.1016/j.engappai.2022.105075_b14) 2004; 36 Abualigah (10.1016/j.engappai.2022.105075_b1) 2021; 157 Azizi (10.1016/j.engappai.2022.105075_b6) 2021; 93 Tan (10.1016/j.engappai.2022.105075_b63) 2010 Nematollahi (10.1016/j.engappai.2022.105075_b54) 2020; 24 Pu (10.1016/j.engappai.2022.105075_b56) 2013; 26 Askari (10.1016/j.engappai.2022.105075_b4) 2020; 195 Zahedi (10.1016/j.engappai.2022.105075_b66) 2016; 55 Hashim (10.1016/j.engappai.2022.105075_b31) 2022; 242 Bianchi (10.1016/j.engappai.2022.105075_b8) 2009; 8 Wilcoxon (10.1016/j.engappai.2022.105075_b64) 1992 Kamboj (10.1016/j.engappai.2022.105075_b38) 2020; 89 Hashim (10.1016/j.engappai.2022.105075_b30) 2021; 51 Hashim (10.1016/j.engappai.2022.105075_b29) 2019; 101 Sheldon (10.1016/j.engappai.2022.105075_b58) 1973; 72 Zhou (10.1016/j.engappai.2022.105075_b67) 2021; 97 Kaur (10.1016/j.engappai.2022.105075_b40) 2020; 90 Mohamed (10.1016/j.engappai.2022.105075_b51) 2017; 142 MiarNaeimi (10.1016/j.engappai.2022.105075_b47) 2021; 213 Soons (10.1016/j.engappai.2022.105075_b59) 2004; 85 Chou (10.1016/j.engappai.2022.105075_b13) 2020; 93 Dhiman (10.1016/j.engappai.2022.105075_b18) 2019; 165 Agushaka (10.1016/j.engappai.2022.105075_b2) 2022; 391 Ahmadianfar (10.1016/j.engappai.2022.105075_b3) 2021; 181 Jain (10.1016/j.engappai.2022.105075_b37) 2019; 44 Blum (10.1016/j.engappai.2022.105075_b9) 2003; 35 Gong (10.1016/j.engappai.2022.105075_b26) 2018; 30 Kurban (10.1016/j.engappai.2022.105075_b43) 2021; 105 |
| References_xml | – volume: 59 start-page: 4437 year: 2020 end-page: 4447 ident: b12 article-title: Categorization of digitized artworks by media with brain programming publication-title: Appl. Opt. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b33 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – year: 2017 ident: b5 article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC) – year: 1956 ident: b21 article-title: Investigations on the Theory of the Brownian Movement – volume: 72 start-page: 665 year: 1973 end-page: 675 ident: b58 article-title: The dispersal effectiveness of the achene–pappus units of selected compositae in steady winds with convection publication-title: New Phytol. – volume: 93 start-page: 657 year: 2021 end-page: 683 ident: b6 article-title: Atomic orbital search: A novel metaheuristic algorithm publication-title: Appl. Math. Model. – volume: 54 start-page: 917 year: 2021 end-page: 1004 ident: b62 article-title: Chaos game optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b65 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 242 year: 2022 ident: b31 article-title: Snake optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl.-Based Syst. – volume: 97 year: 2021 ident: b67 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. – volume: 149 year: 2020 ident: b42 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. – volume: 157 year: 2021 ident: b1 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. – volume: 36 start-page: 219 year: 2004 end-page: 236 ident: b14 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b49 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 195 year: 2020 ident: b4 article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowl.-Based Syst. – volume: 105 year: 2021 ident: b43 article-title: A comparison of novel metaheuristic algorithms on color aerial image multilevel thresholding publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 653 year: 2013 end-page: 662 ident: b56 article-title: Fractional extreme value adaptive training method: fractional steepest descent approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 90 year: 2020 ident: b40 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 89 year: 2020 ident: b38 article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems publication-title: Appl. Soft Comput. – volume: 24 start-page: 1117 year: 2020 end-page: 1151 ident: b54 article-title: A novel meta-heuristic optimization method based on golden ratio in nature publication-title: Soft Comput. – volume: 213 year: 2021 ident: b47 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl.-Based Syst. – start-page: 311 year: 2019 end-page: 351 ident: b20 article-title: Ant colony optimization: overview and recent advances publication-title: Handbook of Metaheuristics – volume: 35 start-page: 268 year: 2003 end-page: 308 ident: b9 article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison publication-title: ACM Comput. Surv. (CSUR) – volume: 152 year: 2021 ident: b52 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. – volume: 94 year: 2020 ident: b35 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 183 year: 2021 ident: b27 article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems publication-title: Expert Syst. Appl. – volume: 8 start-page: 239 year: 2009 end-page: 287 ident: b8 article-title: A survey on metaheuristics for stochastic combinatorial optimization publication-title: Nat. Comput. – volume: 181 year: 2021 ident: b3 article-title: RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. – volume: 49 start-page: 4677 year: 1994 ident: b45 article-title: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes publication-title: Phys. Rev. E – volume: 344 start-page: 243 year: 2005 end-page: 278 ident: b19 article-title: Ant colony optimization theory: A survey publication-title: Theoret. Comput. Sci. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b39 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. – volume: 54 start-page: 62 year: 2016 end-page: 79 ident: b57 article-title: Yin-Yang-pair optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b29 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – start-page: 2017 year: 2017 ident: b44 article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems publication-title: Comput. Intel. Neurosci. – year: 2021 ident: b25 article-title: A study on truncated Newton methods for linear classification publication-title: IEEE Trans. Neural Netw. Learn. – volume: 142 start-page: 190 year: 2017 end-page: 206 ident: b51 article-title: Optimal power flow using moth swarm algorithm publication-title: Electr. Power Syst. Res. – start-page: 355 year: 2010 end-page: 364 ident: b63 article-title: Fireworks algorithm for optimization publication-title: International Conference in Swarm Intelligence – volume: 3 start-page: 1 year: 1995 end-page: 16 ident: b24 article-title: An overview of evolutionary algorithms in multiobjective optimization publication-title: Evol. Comput. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b18 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. – start-page: 196 year: 1992 end-page: 202 ident: b64 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in Statistics – volume: 22 start-page: 148 year: 2008 end-page: 156 ident: b11 article-title: Facilitation of the non-native taraxacum officinale by native nurse cushion species in the high andes of central Chile: are there differences between nurses? publication-title: Funct. Ecol. – volume: 152 year: 2020 ident: b22 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 31 start-page: 7665 year: 2019 end-page: 7683 ident: b36 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b32 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. – volume: 170 year: 2021 ident: b55 article-title: Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization publication-title: Expert Syst. Appl. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b48 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b50 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 391 year: 2022 ident: b2 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b17 article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – volume: 112 start-page: 3 year: 2008 end-page: 44 ident: b15 article-title: Valid inequalities for mixed integer linear programs publication-title: Math. Program. – volume: 562 start-page: 414 year: 2018 end-page: 418 ident: b16 article-title: A separated vortex ring underlies the flight of the dandelion publication-title: Nature – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b34 article-title: Genetic algorithms publication-title: Sci. Am. – volume: 30 start-page: 39 year: 2018 end-page: 52 ident: b26 article-title: A new dandelion algorithm and optimization for extreme learning machine publication-title: J. Exp. Theor. Artif. Intell. – volume: 55 start-page: 313 year: 2016 end-page: 328 ident: b66 article-title: Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks publication-title: Expert Syst. Appl. – start-page: 227 year: 1998 end-page: 296 ident: b23 article-title: Artificial Intelligence Through Simulated Evolution – start-page: 1942 year: 1995 end-page: 1948 ident: b41 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4 – volume: 22 start-page: 1280 year: 2022 ident: b60 article-title: Design of a low-power embedded system based on a SoC-FPGA and the honeybee search algorithm for real-time video tracking publication-title: Sensors – volume: 26 start-page: 7378 year: 2016 end-page: 7385 ident: b46 article-title: Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self-controllable transport behavior publication-title: Adv. Funct. Mater. – volume: 93 year: 2020 ident: b13 article-title: FBI inspired meta-optimization publication-title: Appl. Soft Comput. – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b30 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b37 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm Evol. Comput. – year: 1996 ident: b7 article-title: Evolutionary Algorithms in Theory and Practice: evolution strategies, evolutionary programming, genetic algorithms – volume: 10 year: 2015 ident: b10 article-title: Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal publication-title: PLoS One – volume: 54 start-page: 2323 year: 2021 end-page: 2409 ident: b28 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif. Intell. Rev. – volume: 109 year: 2021 ident: b53 article-title: Stepping ahead firefly algorithm and hybridization with evolution strategy for global optimization problems publication-title: Appl. Soft Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b61 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 85 start-page: 3056 year: 2004 end-page: 3068 ident: b59 article-title: Determinants of long-distance seed dispersal by wind in grasslands publication-title: Ecology – start-page: 1942 year: 1995 ident: 10.1016/j.engappai.2022.105075_b41 article-title: Particle swarm optimization – volume: 89 year: 2020 ident: 10.1016/j.engappai.2022.105075_b38 article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106018 – volume: 93 start-page: 657 year: 2021 ident: 10.1016/j.engappai.2022.105075_b6 article-title: Atomic orbital search: A novel metaheuristic algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.021 – volume: 30 start-page: 39 issue: 1 year: 2018 ident: 10.1016/j.engappai.2022.105075_b26 article-title: A new dandelion algorithm and optimization for extreme learning machine publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2017.1413142 – volume: 157 year: 2021 ident: 10.1016/j.engappai.2022.105075_b1 article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – start-page: 196 year: 1992 ident: 10.1016/j.engappai.2022.105075_b64 article-title: Individual comparisons by ranking methods – start-page: 2017 year: 2017 ident: 10.1016/j.engappai.2022.105075_b44 article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems publication-title: Comput. Intel. Neurosci. – volume: 49 start-page: 4677 issue: 5 year: 1994 ident: 10.1016/j.engappai.2022.105075_b45 article-title: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.4677 – volume: 183 year: 2021 ident: 10.1016/j.engappai.2022.105075_b27 article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115351 – volume: 562 start-page: 414 issue: 7727 year: 2018 ident: 10.1016/j.engappai.2022.105075_b16 article-title: A separated vortex ring underlies the flight of the dandelion publication-title: Nature doi: 10.1038/s41586-018-0604-2 – volume: 22 start-page: 148 issue: 1 year: 2008 ident: 10.1016/j.engappai.2022.105075_b11 article-title: Facilitation of the non-native taraxacum officinale by native nurse cushion species in the high andes of central Chile: are there differences between nurses? publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2007.01338.x – volume: 26 start-page: 653 issue: 4 year: 2013 ident: 10.1016/j.engappai.2022.105075_b56 article-title: Fractional extreme value adaptive training method: fractional steepest descent approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2286175 – volume: 85 start-page: 3056 issue: 11 year: 2004 ident: 10.1016/j.engappai.2022.105075_b59 article-title: Determinants of long-distance seed dispersal by wind in grasslands publication-title: Ecology doi: 10.1890/03-0522 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.engappai.2022.105075_b10 article-title: Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal publication-title: PLoS One doi: 10.1371/journal.pone.0125040 – year: 2021 ident: 10.1016/j.engappai.2022.105075_b25 article-title: A study on truncated Newton methods for linear classification publication-title: IEEE Trans. Neural Netw. Learn. – start-page: 311 year: 2019 ident: 10.1016/j.engappai.2022.105075_b20 article-title: Ant colony optimization: overview and recent advances – year: 1996 ident: 10.1016/j.engappai.2022.105075_b7 – volume: 51 start-page: 1531 issue: 3 year: 2021 ident: 10.1016/j.engappai.2022.105075_b30 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.engappai.2022.105075_b39 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.engappai.2022.105075_b50 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 8 start-page: 239 issue: 2 year: 2009 ident: 10.1016/j.engappai.2022.105075_b8 article-title: A survey on metaheuristics for stochastic combinatorial optimization publication-title: Nat. Comput. doi: 10.1007/s11047-008-9098-4 – volume: 152 year: 2021 ident: 10.1016/j.engappai.2022.105075_b52 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107050 – volume: 344 start-page: 243 issue: 2–3 year: 2005 ident: 10.1016/j.engappai.2022.105075_b19 article-title: Ant colony optimization theory: A survey publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2005.05.020 – volume: 112 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.engappai.2022.105075_b15 article-title: Valid inequalities for mixed integer linear programs publication-title: Math. Program. doi: 10.1007/s10107-006-0086-0 – year: 1956 ident: 10.1016/j.engappai.2022.105075_b21 – volume: 54 start-page: 917 issue: 2 year: 2021 ident: 10.1016/j.engappai.2022.105075_b62 article-title: Chaos game optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09867-w – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.engappai.2022.105075_b17 article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.engappai.2022.105075_b34 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.engappai.2022.105075_b37 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – volume: 54 start-page: 62 year: 2016 ident: 10.1016/j.engappai.2022.105075_b57 article-title: Yin-Yang-pair optimization: A novel lightweight optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.04.004 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.engappai.2022.105075_b33 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 24 start-page: 1117 issue: 2 year: 2020 ident: 10.1016/j.engappai.2022.105075_b54 article-title: A novel meta-heuristic optimization method based on golden ratio in nature publication-title: Soft Comput. doi: 10.1007/s00500-019-03949-w – volume: 54 start-page: 2323 issue: 3 year: 2021 ident: 10.1016/j.engappai.2022.105075_b28 article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09906-6 – volume: 59 start-page: 4437 issue: 14 year: 2020 ident: 10.1016/j.engappai.2022.105075_b12 article-title: Categorization of digitized artworks by media with brain programming publication-title: Appl. Opt. doi: 10.1364/AO.385552 – volume: 152 year: 2020 ident: 10.1016/j.engappai.2022.105075_b22 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 105 year: 2021 ident: 10.1016/j.engappai.2022.105075_b43 article-title: A comparison of novel metaheuristic algorithms on color aerial image multilevel thresholding publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104410 – volume: 55 start-page: 313 year: 2016 ident: 10.1016/j.engappai.2022.105075_b66 article-title: Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.016 – volume: 93 year: 2020 ident: 10.1016/j.engappai.2022.105075_b13 article-title: FBI inspired meta-optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106339 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.engappai.2022.105075_b65 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 181 year: 2021 ident: 10.1016/j.engappai.2022.105075_b3 article-title: RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.engappai.2022.105075_b18 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.engappai.2022.105075_b61 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 195 year: 2020 ident: 10.1016/j.engappai.2022.105075_b4 article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105709 – start-page: 227 year: 1998 ident: 10.1016/j.engappai.2022.105075_b23 – volume: 90 year: 2020 ident: 10.1016/j.engappai.2022.105075_b40 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 3 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.engappai.2022.105075_b24 article-title: An overview of evolutionary algorithms in multiobjective optimization publication-title: Evol. Comput. doi: 10.1162/evco.1995.3.1.1 – volume: 72 start-page: 665 issue: 3 year: 1973 ident: 10.1016/j.engappai.2022.105075_b58 article-title: The dispersal effectiveness of the achene–pappus units of selected compositae in steady winds with convection publication-title: New Phytol. doi: 10.1111/j.1469-8137.1973.tb04415.x – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.engappai.2022.105075_b29 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2022.105075_b49 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – start-page: 355 year: 2010 ident: 10.1016/j.engappai.2022.105075_b63 article-title: Fireworks algorithm for optimization – volume: 242 year: 2022 ident: 10.1016/j.engappai.2022.105075_b31 article-title: Snake optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108320 – volume: 97 year: 2021 ident: 10.1016/j.engappai.2022.105075_b67 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104015 – volume: 142 start-page: 190 year: 2017 ident: 10.1016/j.engappai.2022.105075_b51 article-title: Optimal power flow using moth swarm algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.09.025 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.engappai.2022.105075_b32 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – volume: 22 start-page: 1280 issue: 3 year: 2022 ident: 10.1016/j.engappai.2022.105075_b60 article-title: Design of a low-power embedded system based on a SoC-FPGA and the honeybee search algorithm for real-time video tracking publication-title: Sensors doi: 10.3390/s22031280 – volume: 170 year: 2021 ident: 10.1016/j.engappai.2022.105075_b55 article-title: Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114522 – volume: 36 start-page: 219 issue: 2 year: 2004 ident: 10.1016/j.engappai.2022.105075_b14 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. doi: 10.1080/03052150410001647966 – volume: 213 year: 2021 ident: 10.1016/j.engappai.2022.105075_b47 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106711 – volume: 35 start-page: 268 issue: 3 year: 2003 ident: 10.1016/j.engappai.2022.105075_b9 article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/937503.937505 – volume: 31 start-page: 7665 issue: 11 year: 2019 ident: 10.1016/j.engappai.2022.105075_b36 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3592-0 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2022.105075_b35 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – volume: 391 year: 2022 ident: 10.1016/j.engappai.2022.105075_b2 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114570 – year: 2017 ident: 10.1016/j.engappai.2022.105075_b5 article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization – volume: 26 start-page: 7378 issue: 41 year: 2016 ident: 10.1016/j.engappai.2022.105075_b46 article-title: Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self-controllable transport behavior publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602596 – volume: 149 year: 2020 ident: 10.1016/j.engappai.2022.105075_b42 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.engappai.2022.105075_b48 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 109 year: 2021 ident: 10.1016/j.engappai.2022.105075_b53 article-title: Stepping ahead firefly algorithm and hybridization with evolution strategy for global optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107517 |
| SSID | ssj0003846 |
| Score | 2.7101052 |
| Snippet | This paper proposes a novel swarm intelligence bioinspired optimization algorithm, called the Dandelion Optimizer (DO), for solving continuous optimization... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105075 |
| SubjectTerms | Dandelion optimizer Nature-inspired metaheuristic algorithm Real-world optimization problems Swarm intelligence |
| Title | Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.105075 |
| Volume | 114 |
| WOSCitedRecordID | wos000838697900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvfCPGAPmBt8klid0k3ls1hgCxgUSRKvEQ2bFDXaXplGXTxB_C38slzoc7BmMPvETtKbab3K-Xu4vvdwi9yiAE8KXyiZKaEabCgIhJkBIpuMc19WWqGsr8j9HxcTyf88-j0c-uFuY8j4oivrjgJ_9V1SADZdelszdQdz8pCOAzKB2OoHY4_pPi39Rp4bzW6icwByvzQ5e2_NxyeBJT1C_Xwc9c6Uos9Jmlat4T-fd1aarFypKADzSFe-477o1E_h_OabYWlM0epKYjiEP66aSpmxTtl4VZGldqLc-sZiEaYHsk2nNz08sO2qqSIyPWbuYCgt5ua9aQggyIz23_l94a-8yxp-D9ebazym-m3mYdlmO4IXCNwozrJcbDgE1u7UvPvH4nYrfJbZl08yT1PImd5xbaDqIJB2u5PX1_OP_QP-NpbEvAuitwas-v_kVXuz2OKzO7j-62MQieWuw8QCNdPET32ngEt9b-FERdy49O9gh969GFe3Tt4ym-hC28gS3cYwsDtrCDLezi5jH6-vZwdvCOtP05SEr9oCJZCrFroCAE4DL0NPN4ICZpKMPMg2-hrwQFOxXFIvKDlPKY-VkUgYcpZCwY9wR9graKdaGfIpxJJUXMNA0VZZIzQeMMPEsaq4ilsMYOmnS3L0lb8vq6h0qe_F2BO-h1P-7E0rdcO4J32klaJ9Q6lwkA75qxz2682i66M_wznqOtqjzTL9Dt9Lwyp-XLFnW_ACIdsOI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dandelion+Optimizer%3A+A+nature-inspired+metaheuristic+algorithm+for+engineering+applications&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhao%2C+Shijie&rft.au=Zhang%2C+Tianran&rft.au=Ma%2C+Shilin&rft.au=Chen%2C+Miao&rft.date=2022-09-01&rft.issn=0952-1976&rft.volume=114&rft.spage=105075&rft_id=info:doi/10.1016%2Fj.engappai.2022.105075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |