Event-triggered robust neural control for unmanned sail-assisted vehicles subject to actuator failures
This note focus on the waypoints-based path-following control for the unmanned sail-assisted vehicles (USAV), aiming to release the constraints of the actuator failures and gain uncertainties. The proposed scheme is formulated as two components, i.e., the composite guidance part and the control part...
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 216; s. 107754 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.11.2020
|
| Témata: | |
| ISSN: | 0029-8018, 1873-5258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This note focus on the waypoints-based path-following control for the unmanned sail-assisted vehicles (USAV), aiming to release the constraints of the actuator failures and gain uncertainties. The proposed scheme is formulated as two components, i.e., the composite guidance part and the control part. By utilizing the sign self-selection algorithm, the composite Logic Virtual Ship (LVS) guidance law is developed in the scheme to program the real-time heading angle for the USAV. The main superiorities of this design are to ensure the USAV navigating efficiently and choose the corresponding sailing mode: upwind mode, downwind mode or crosswind mode. Furthermore, to improve the effectiveness of the closed-loop control system, an event-triggered robust neural control algorithm is targetly designed for the rudder actuator and the sail actuator by fusing the robust neural damping technique and the input event-triggered mechanism. In this algorithm, the unknown terms of the system are tackled requiring no information of the system model and the external disturbances. The transmission burden from the controller to the actuator is reduced. And the unknown actuator failures and the gain uncertainties are compensated through four adaptive updated parameters. Based on the Lyapunov analysis, sufficient effort has been made to guarantee that all the signals of the closed-loop control system are the semi-global uniform ultimate bounded (SGUUB). Finally, the simulated results demonstrate the validity of the proposed control strategy.
•An event-triggered robust neural algorithm is proposed for the unmanned sail-assisted vehicles.•The composited LVS guidance law could generate a real-time reference for the upwind, crosswind and downwind conditions.•The energy consumption and transmission burden of the actuators are largely reduced by the input event-triggered mechanism.•The form of the control law becomes concise by employing robust neural damping techniques. |
|---|---|
| AbstractList | This note focus on the waypoints-based path-following control for the unmanned sail-assisted vehicles (USAV), aiming to release the constraints of the actuator failures and gain uncertainties. The proposed scheme is formulated as two components, i.e., the composite guidance part and the control part. By utilizing the sign self-selection algorithm, the composite Logic Virtual Ship (LVS) guidance law is developed in the scheme to program the real-time heading angle for the USAV. The main superiorities of this design are to ensure the USAV navigating efficiently and choose the corresponding sailing mode: upwind mode, downwind mode or crosswind mode. Furthermore, to improve the effectiveness of the closed-loop control system, an event-triggered robust neural control algorithm is targetly designed for the rudder actuator and the sail actuator by fusing the robust neural damping technique and the input event-triggered mechanism. In this algorithm, the unknown terms of the system are tackled requiring no information of the system model and the external disturbances. The transmission burden from the controller to the actuator is reduced. And the unknown actuator failures and the gain uncertainties are compensated through four adaptive updated parameters. Based on the Lyapunov analysis, sufficient effort has been made to guarantee that all the signals of the closed-loop control system are the semi-global uniform ultimate bounded (SGUUB). Finally, the simulated results demonstrate the validity of the proposed control strategy.
•An event-triggered robust neural algorithm is proposed for the unmanned sail-assisted vehicles.•The composited LVS guidance law could generate a real-time reference for the upwind, crosswind and downwind conditions.•The energy consumption and transmission burden of the actuators are largely reduced by the input event-triggered mechanism.•The form of the control law becomes concise by employing robust neural damping techniques. |
| ArticleNumber | 107754 |
| Author | Li, Jiqiang Zhang, Weidong Zhang, Guoqing Yu, Wei |
| Author_xml | – sequence: 1 givenname: Guoqing surname: Zhang fullname: Zhang, Guoqing email: zhanggq87@dlmu.edu.cn organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, People's Republic of China – sequence: 2 givenname: Jiqiang surname: Li fullname: Li, Jiqiang email: ljqdlmu@dlmu.edu.cn organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, People's Republic of China – sequence: 3 givenname: Wei surname: Yu fullname: Yu, Wei organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, People's Republic of China – sequence: 4 givenname: Weidong surname: Zhang fullname: Zhang, Weidong email: wdzhang@sjtu.edu.cn organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, People's Republic of China |
| BookMark | eNqFkM9KAzEQh4NUsK2-guQFtibZze4GPCil_oGCFz2HbDKpWbaJJNmCb--W6sVLT8MMv2-Y-RZo5oMHhG4pWVFC67t-FTQoD363YoQdh03Dqws0p21TFpzxdobmhDBRtIS2V2iRUk8IqWtSzpHdHMDnIke320EEg2PoxpSxhzGqAevgcwwDtiHi0e-V91MkKTcUKiWX8tQd4NPpARJOY9eDzjgHrHQeVZ4YO0XHCOkaXVo1JLj5rUv08bR5X78U27fn1_XjttAlZbmwregso40xbSlq0hhemZJUlnfQtMZyIwQXzLZEE2Y0Z1CJyghuqYbKNArKJbo_7dUxpBTBSu2yyu74xnSKpEQencle_jmTR2fy5GzC63_4V3R7Fb_Pgw8nEKbnDg6iTNqB12BcnJxIE9y5FT-oiI-l |
| CitedBy_id | crossref_primary_10_1109_TIV_2024_3386964 crossref_primary_10_1109_TIV_2023_3339852 crossref_primary_10_1016_j_oceaneng_2023_114636 crossref_primary_10_1016_j_oceaneng_2023_113860 crossref_primary_10_1016_j_ast_2025_110088 crossref_primary_10_1002_acs_3870 crossref_primary_10_1016_j_oceaneng_2021_108620 crossref_primary_10_3390_jmse13040668 crossref_primary_10_1016_j_oceaneng_2023_114879 crossref_primary_10_1109_TCYB_2021_3091580 |
| Cites_doi | 10.1109/JOE.2017.2777638 10.1109/TAC.2013.2251795 10.1109/TCST.2006.883211 10.1016/j.oceaneng.2019.01.043 10.1109/TCYB.2017.2655053 10.1109/TITS.2015.2483022 10.1109/TNNLS.2017.2678922 10.1109/TIE.2018.2793207 10.1016/j.cor.2016.09.017 10.1016/j.automatica.2017.07.061 10.1017/S0373463319000353 10.1017/S0373463310000263 10.1109/TNNLS.2017.2650238 10.1016/j.ifacol.2016.10.490 10.1016/j.oceaneng.2010.04.007 10.1002/rnc.4473 10.1109/JOE.2013.2247276 10.1016/S0888-613X(96)00132-6 10.1109/JOE.2018.2809018 10.1016/j.robot.2012.08.004 10.1007/s11432-010-0031-y 10.1007/s11432-013-5043-y 10.1016/j.automatica.2016.01.064 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2020.107754 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2020_107754 S0029801820307356 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-f89bf217dd839607d54d304f5be78df5d99592f80c02dc52e494d95f1ce4d7ae3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596863000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:29:38 EST 2025 Tue Nov 18 20:42:58 EST 2025 Fri Feb 23 02:45:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Event-triggered inputs LVS guidance Path-following control Adaptive neural control Sail-assisted vehicles |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-f89bf217dd839607d54d304f5be78df5d99592f80c02dc52e494d95f1ce4d7ae3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2020_107754 crossref_primary_10_1016_j_oceaneng_2020_107754 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2020_107754 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-15 |
| PublicationDateYYYYMMDD | 2020-11-15 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Deng, Zhang, Zhang (bib9) 2019; 121 Garcia, Antsaklis (bib12) 2011 Xiao, Sliwka, Jaulin (bib29) 2012 Qiao, Zhang (bib20) 2018; 44 Santos, Junior (bib21) 2016 Szanto, Narayanan, Jagannathan (bib24) 2017; 29 Cai, Wen, Su, Liu (bib4) 2013; 58 Jin (bib15) 2016; 68 Shukla, Ghosh (bib22) 2009; 13 Stelzer, Proll, John (bib23) 2007 Tong, Li (bib25) 2010; 53 Xu, Sun (bib35) 2017; 48 Fossen (bib11) 2011 Xing, Wen, Liu, Su, Cai (bib33) 2017; 85 Cruz, Alves (bib8) 2009 Pêtrès, Romero-Ramirez, Plumet (bib18) 2012; 60 Xu, Shou (bib34) 2018; 65 Jin (bib16) 2019; 29 Briere (bib3) 2008 Guo, Romero, Ieng, Plumet, Benosman, Gas (bib13) 2011 Carter, Carter (bib5) 2010; 63 Zhang, Li, Li, Zhang (bib37) 2019; 72 Tong, Li (bib26) 2014; 57 Corradini, Orlando (bib7) 2006; 15 Yeh, Bin (bib36) 1992 Xiao, Alves, Cruz, Jouffroy (bib30) 2012 Xiang, Yu, Zhang (bib28) 2017; 84 Li, Yang (bib17) 2017; 29 Xiao, Jouffroy (bib32) 2014; 39 Corno, Formentin, Savaresi (bib6) 2015; 17 Abril, Salom, Calvo (bib1) 1997; 16 Xiao, Jouffroy (bib31) 2011 Zhang, Jia (bib38) 2001; 35 Qiao, Zhang (bib19) 2018; 44 Wille, Hassani, Sprenger (bib27) 2016; 49 Alves, Cruz (bib2) 2014 Do (bib10) 2010; 37 Huang, Zhang, Zhang (bib14) 2019; 174 Corno (10.1016/j.oceaneng.2020.107754_bib6) 2015; 17 Cai (10.1016/j.oceaneng.2020.107754_bib4) 2013; 58 Abril (10.1016/j.oceaneng.2020.107754_bib1) 1997; 16 Zhang (10.1016/j.oceaneng.2020.107754_bib37) 2019; 72 Carter (10.1016/j.oceaneng.2020.107754_bib5) 2010; 63 Qiao (10.1016/j.oceaneng.2020.107754_bib19) 2018; 44 Xu (10.1016/j.oceaneng.2020.107754_bib35) 2017; 48 Tong (10.1016/j.oceaneng.2020.107754_bib25) 2010; 53 Fossen (10.1016/j.oceaneng.2020.107754_bib11) 2011 Guo (10.1016/j.oceaneng.2020.107754_bib13) 2011 Xiao (10.1016/j.oceaneng.2020.107754_bib30) 2012 Briere (10.1016/j.oceaneng.2020.107754_bib3) 2008 Li (10.1016/j.oceaneng.2020.107754_bib17) 2017; 29 Deng (10.1016/j.oceaneng.2020.107754_bib9) 2019; 121 Jin (10.1016/j.oceaneng.2020.107754_bib15) 2016; 68 Yeh (10.1016/j.oceaneng.2020.107754_bib36) 1992 Cruz (10.1016/j.oceaneng.2020.107754_bib8) 2009 Do (10.1016/j.oceaneng.2020.107754_bib10) 2010; 37 Xing (10.1016/j.oceaneng.2020.107754_bib33) 2017; 85 Zhang (10.1016/j.oceaneng.2020.107754_bib38) 2001; 35 Corradini (10.1016/j.oceaneng.2020.107754_bib7) 2006; 15 Huang (10.1016/j.oceaneng.2020.107754_bib14) 2019; 174 Xiao (10.1016/j.oceaneng.2020.107754_bib32) 2014; 39 Qiao (10.1016/j.oceaneng.2020.107754_bib20) 2018; 44 Xu (10.1016/j.oceaneng.2020.107754_bib34) 2018; 65 Stelzer (10.1016/j.oceaneng.2020.107754_bib23) 2007 Alves (10.1016/j.oceaneng.2020.107754_bib2) 2014 Garcia (10.1016/j.oceaneng.2020.107754_bib12) 2011 Wille (10.1016/j.oceaneng.2020.107754_bib27) 2016; 49 Xiao (10.1016/j.oceaneng.2020.107754_bib31) 2011 Jin (10.1016/j.oceaneng.2020.107754_bib16) 2019; 29 Xiang (10.1016/j.oceaneng.2020.107754_bib28) 2017; 84 Tong (10.1016/j.oceaneng.2020.107754_bib26) 2014; 57 Xiao (10.1016/j.oceaneng.2020.107754_bib29) 2012 Pêtrès (10.1016/j.oceaneng.2020.107754_bib18) 2012; 60 Szanto (10.1016/j.oceaneng.2020.107754_bib24) 2017; 29 Santos (10.1016/j.oceaneng.2020.107754_bib21) 2016 Shukla (10.1016/j.oceaneng.2020.107754_bib22) 2009; 13 |
| References_xml | – year: 2009 ident: bib8 article-title: Autonomous sailboats: an emerging technology for ocean sampling and surveillance publication-title: OCEANS – volume: 58 start-page: 2388 year: 2013 end-page: 2394 ident: bib4 article-title: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems publication-title: IEEE Trans. Automat. Contr. – volume: 13 start-page: 388 year: 2009 end-page: 393 ident: bib22 article-title: Revival of the modern wing sails for the propulsion of commercial ships publication-title: Int. J. Civ. Environ. Eng. – start-page: 445 year: 2011 end-page: 450 ident: bib13 article-title: Reactive path planning for autonomous sailboat using an omni-directional camera for obstacle detection publication-title: 2011 IEEE International Conference on Mechatronics – year: 2012 ident: bib30 article-title: Online speed optimization for sailing yachts using extremum seeking publication-title: Oceans – volume: 35 start-page: 20 year: 2001 end-page: 25 ident: bib38 article-title: A kind of transfigured loop shaping controller and its application publication-title: Automat. Contr. Comput. Sci. – year: 2014 ident: bib2 article-title: A mission programming system for an autonomous sailboat publication-title: Oceans 14 Mts/ieee – volume: 121 start-page: 300 year: 2019 end-page: 310 ident: bib9 article-title: Line-of-sight-based guidance and adaptive neural path-following control for sailboats publication-title: IEEE J. Ocean. Eng. – volume: 174 start-page: 117 year: 2019 end-page: 124 ident: bib14 article-title: Improved decentralized finite-time formation control of underactuated usvs via a novel disturbance observer publication-title: Ocean. Eng. – volume: 49 start-page: 532 year: 2016 end-page: 539 ident: bib27 article-title: Modeling and course control of sailboats publication-title: IFAC-PapersOnLine – volume: 44 start-page: 363 year: 2018 end-page: 385 ident: bib19 article-title: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles publication-title: IEEE J. Ocean. Eng. – year: 2011 ident: bib31 article-title: Modeling and nonlinear heading control for sailing yachts publication-title: Oceans – volume: 68 start-page: 228 year: 2016 end-page: 236 ident: bib15 article-title: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with los range and angle constraints publication-title: Automatica – volume: 29 start-page: 1033 year: 2017 end-page: 1045 ident: bib17 article-title: Model-based adaptive event-triggered control of strict-feedback nonlinear systems publication-title: IEEE transactions on neural networks and learning systems – volume: 37 start-page: 1111 year: 2010 end-page: 1119 ident: bib10 article-title: Practical control of underactuated ships publication-title: Ocean. Eng. – volume: 48 start-page: 730 year: 2017 end-page: 741 ident: bib35 article-title: Composite intelligent learning control of strict-feedback systems with disturbance publication-title: IEEE transactions on cybernetics – volume: 16 start-page: 359 year: 1997 end-page: 375 ident: bib1 article-title: Fuzzy control of a sailboat publication-title: Int. J. Approx. Reason. – year: 2008 ident: bib3 article-title: An autonomous robot for long-term offshore operation publication-title: 14th IEEE Mediterranean Electrotechnical Conference – volume: 17 start-page: 762 year: 2015 end-page: 771 ident: bib6 article-title: Data-driven online speed optimization in autonomous sailboats publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 57 start-page: 1 year: 2014 end-page: 14 ident: bib26 article-title: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems publication-title: Sci. China Inf. Sci. – year: 2007 ident: bib23 article-title: Fuzzy logic control system for autonomous sailboats publication-title: IEEE International Fuzzy Systems Conference – volume: 60 start-page: 1520 year: 2012 end-page: 1527 ident: bib18 article-title: A potential field approach for reactive navigation of autonomous sailboats publication-title: Robot. Autonom. Syst. – volume: 15 start-page: 184 year: 2006 end-page: 190 ident: bib7 article-title: Actuator failure identification and compensation through sliding modes publication-title: IEEE Trans. Contr. Syst. Technol. – volume: 29 start-page: 1941 year: 2019 end-page: 1955 ident: bib16 article-title: Nonrepetitive trajectory tracking for nonlinear autonomous agents with asymmetric output constraints using parametric iterative learning control publication-title: Int. J. Robust Nonlinear Control – volume: 85 start-page: 129 year: 2017 end-page: 136 ident: bib33 article-title: Adaptive compensation for actuator failures with event-triggered input publication-title: Automatica – start-page: 1 year: 2016 end-page: 5 ident: bib21 article-title: Design and Implementation of a Control System for a Sailboat Robot 5 – volume: 29 start-page: 1850 year: 2017 end-page: 1863 ident: bib24 article-title: Event-sampled direct adaptive nn output-and state-feedback control of uncertain strict-feedback system publication-title: IEEE transactions on neural networks and learning systems – start-page: 110 year: 2012 end-page: 124 ident: bib29 article-title: A wind-independent control strategy for autonomous sailboats based on voronoi diagram publication-title: Field Robotics – volume: 84 start-page: 165 year: 2017 end-page: 177 ident: bib28 article-title: Robust fuzzy 3d path following for autonomous underwater vehicle subject to uncertainties publication-title: Comput. Oper. Res. – start-page: 1339 year: 1992 end-page: 1344 ident: bib36 article-title: Fuzzy control for self-steering of a sailboat publication-title: Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992] – volume: 65 start-page: 6414 year: 2018 end-page: 6424 ident: bib34 article-title: Composite learning control of mimo systems with applications publication-title: IEEE Trans. Ind. Electron. – volume: 39 start-page: 256 year: 2014 end-page: 268 ident: bib32 article-title: Modeling and nonlinear heading control of sailing yachts publication-title: IEEE J. Ocean. Eng. – start-page: 1650 year: 2011 end-page: 1655 ident: bib12 article-title: Model-based event-triggered control with time-varying network delays publication-title: 2011 50th IEEE Conference on Decision and Control and European Control Conference – volume: 63 start-page: 717 year: 2010 end-page: 731 ident: bib5 article-title: The age of sail: a time when the fortunes of nations and lives of seamen literally turned with the winds their ships encountered at sea publication-title: J. Navig. – volume: 53 start-page: 307 year: 2010 end-page: 3248 ident: bib25 article-title: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties publication-title: Sci. China Inf. Sci. – year: 2011 ident: bib11 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control – volume: 72 start-page: 1378 year: 2019 end-page: 1398 ident: bib37 article-title: Improved integral los guidance and path-following control for an unmanned robot sailboat via the robust neural damping technique publication-title: J. Navig. – volume: 44 start-page: 29 year: 2018 end-page: 53 ident: bib20 article-title: Double-loop integral terminal sliding mode tracking control for uuvs with adaptive dynamic compensation of uncertainties and disturbances publication-title: IEEE J. Ocean. Eng. – volume: 44 start-page: 29 year: 2018 ident: 10.1016/j.oceaneng.2020.107754_bib20 article-title: Double-loop integral terminal sliding mode tracking control for uuvs with adaptive dynamic compensation of uncertainties and disturbances publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2017.2777638 – volume: 58 start-page: 2388 year: 2013 ident: 10.1016/j.oceaneng.2020.107754_bib4 article-title: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2013.2251795 – volume: 15 start-page: 184 year: 2006 ident: 10.1016/j.oceaneng.2020.107754_bib7 article-title: Actuator failure identification and compensation through sliding modes publication-title: IEEE Trans. Contr. Syst. Technol. doi: 10.1109/TCST.2006.883211 – start-page: 1650 year: 2011 ident: 10.1016/j.oceaneng.2020.107754_bib12 article-title: Model-based event-triggered control with time-varying network delays – start-page: 110 year: 2012 ident: 10.1016/j.oceaneng.2020.107754_bib29 article-title: A wind-independent control strategy for autonomous sailboats based on voronoi diagram – volume: 174 start-page: 117 year: 2019 ident: 10.1016/j.oceaneng.2020.107754_bib14 article-title: Improved decentralized finite-time formation control of underactuated usvs via a novel disturbance observer publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2019.01.043 – volume: 48 start-page: 730 year: 2017 ident: 10.1016/j.oceaneng.2020.107754_bib35 article-title: Composite intelligent learning control of strict-feedback systems with disturbance publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2017.2655053 – volume: 17 start-page: 762 year: 2015 ident: 10.1016/j.oceaneng.2020.107754_bib6 article-title: Data-driven online speed optimization in autonomous sailboats publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2015.2483022 – volume: 29 start-page: 1850 year: 2017 ident: 10.1016/j.oceaneng.2020.107754_bib24 article-title: Event-sampled direct adaptive nn output-and state-feedback control of uncertain strict-feedback system publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2017.2678922 – year: 2011 ident: 10.1016/j.oceaneng.2020.107754_bib31 article-title: Modeling and nonlinear heading control for sailing yachts – volume: 65 start-page: 6414 year: 2018 ident: 10.1016/j.oceaneng.2020.107754_bib34 article-title: Composite learning control of mimo systems with applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2793207 – start-page: 1339 year: 1992 ident: 10.1016/j.oceaneng.2020.107754_bib36 article-title: Fuzzy control for self-steering of a sailboat – volume: 84 start-page: 165 year: 2017 ident: 10.1016/j.oceaneng.2020.107754_bib28 article-title: Robust fuzzy 3d path following for autonomous underwater vehicle subject to uncertainties publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.09.017 – year: 2012 ident: 10.1016/j.oceaneng.2020.107754_bib30 article-title: Online speed optimization for sailing yachts using extremum seeking – year: 2008 ident: 10.1016/j.oceaneng.2020.107754_bib3 article-title: An autonomous robot for long-term offshore operation – volume: 85 start-page: 129 year: 2017 ident: 10.1016/j.oceaneng.2020.107754_bib33 article-title: Adaptive compensation for actuator failures with event-triggered input publication-title: Automatica doi: 10.1016/j.automatica.2017.07.061 – year: 2014 ident: 10.1016/j.oceaneng.2020.107754_bib2 article-title: A mission programming system for an autonomous sailboat – year: 2009 ident: 10.1016/j.oceaneng.2020.107754_bib8 article-title: Autonomous sailboats: an emerging technology for ocean sampling and surveillance – volume: 72 start-page: 1378 year: 2019 ident: 10.1016/j.oceaneng.2020.107754_bib37 article-title: Improved integral los guidance and path-following control for an unmanned robot sailboat via the robust neural damping technique publication-title: J. Navig. doi: 10.1017/S0373463319000353 – volume: 63 start-page: 717 year: 2010 ident: 10.1016/j.oceaneng.2020.107754_bib5 article-title: The age of sail: a time when the fortunes of nations and lives of seamen literally turned with the winds their ships encountered at sea publication-title: J. Navig. doi: 10.1017/S0373463310000263 – volume: 29 start-page: 1033 year: 2017 ident: 10.1016/j.oceaneng.2020.107754_bib17 article-title: Model-based adaptive event-triggered control of strict-feedback nonlinear systems publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2017.2650238 – volume: 49 start-page: 532 year: 2016 ident: 10.1016/j.oceaneng.2020.107754_bib27 article-title: Modeling and course control of sailboats publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.490 – volume: 37 start-page: 1111 year: 2010 ident: 10.1016/j.oceaneng.2020.107754_bib10 article-title: Practical control of underactuated ships publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2010.04.007 – volume: 29 start-page: 1941 year: 2019 ident: 10.1016/j.oceaneng.2020.107754_bib16 article-title: Nonrepetitive trajectory tracking for nonlinear autonomous agents with asymmetric output constraints using parametric iterative learning control publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4473 – volume: 35 start-page: 20 year: 2001 ident: 10.1016/j.oceaneng.2020.107754_bib38 article-title: A kind of transfigured loop shaping controller and its application publication-title: Automat. Contr. Comput. Sci. – volume: 121 start-page: 300 year: 2019 ident: 10.1016/j.oceaneng.2020.107754_bib9 article-title: Line-of-sight-based guidance and adaptive neural path-following control for sailboats publication-title: IEEE J. Ocean. Eng. – start-page: 445 year: 2011 ident: 10.1016/j.oceaneng.2020.107754_bib13 article-title: Reactive path planning for autonomous sailboat using an omni-directional camera for obstacle detection – volume: 39 start-page: 256 year: 2014 ident: 10.1016/j.oceaneng.2020.107754_bib32 article-title: Modeling and nonlinear heading control of sailing yachts publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2013.2247276 – volume: 16 start-page: 359 year: 1997 ident: 10.1016/j.oceaneng.2020.107754_bib1 article-title: Fuzzy control of a sailboat publication-title: Int. J. Approx. Reason. doi: 10.1016/S0888-613X(96)00132-6 – volume: 13 start-page: 388 year: 2009 ident: 10.1016/j.oceaneng.2020.107754_bib22 article-title: Revival of the modern wing sails for the propulsion of commercial ships publication-title: Int. J. Civ. Environ. Eng. – volume: 44 start-page: 363 year: 2018 ident: 10.1016/j.oceaneng.2020.107754_bib19 article-title: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2809018 – start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2020.107754_bib21 – volume: 60 start-page: 1520 year: 2012 ident: 10.1016/j.oceaneng.2020.107754_bib18 article-title: A potential field approach for reactive navigation of autonomous sailboats publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2012.08.004 – volume: 53 start-page: 307 year: 2010 ident: 10.1016/j.oceaneng.2020.107754_bib25 article-title: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-010-0031-y – volume: 57 start-page: 1 year: 2014 ident: 10.1016/j.oceaneng.2020.107754_bib26 article-title: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-013-5043-y – volume: 68 start-page: 228 year: 2016 ident: 10.1016/j.oceaneng.2020.107754_bib15 article-title: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with los range and angle constraints publication-title: Automatica doi: 10.1016/j.automatica.2016.01.064 – year: 2011 ident: 10.1016/j.oceaneng.2020.107754_bib11 – year: 2007 ident: 10.1016/j.oceaneng.2020.107754_bib23 article-title: Fuzzy logic control system for autonomous sailboats |
| SSID | ssj0006603 |
| Score | 2.3714464 |
| Snippet | This note focus on the waypoints-based path-following control for the unmanned sail-assisted vehicles (USAV), aiming to release the constraints of the actuator... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107754 |
| SubjectTerms | Adaptive neural control Event-triggered inputs LVS guidance Path-following control Sail-assisted vehicles |
| Title | Event-triggered robust neural control for unmanned sail-assisted vehicles subject to actuator failures |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2020.107754 |
| Volume | 216 |
| WOSCitedRecordID | wos000596863000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwGQEAwQGz_kA7coJXWcOD5OqPyY0OAwpHKKHNthnUqytUm1y_533kucNtsqxg5crOopduq-r8_vWZ8_E_JOJpkK40T53GoGTRb4SrDIz2DptRxVnzLTXDYhjo6S6VR-Hwwuu7Mwq7koiuTiQp79V1eDDZyNR2fv4O71oGCAz-B0aMHt0P6T4yfIYPQrqLp_4T2c3qLM6mXloXBlowXSUtORXVgXvxWGWW-pZnMfsmh0ufFW9qThynnLOsNdGkxPFZ4zgfLcy-HReuGIhy6p_aZxO99ulA1v7EZ_qsvznv1rQyE4nJ0DNtfGn3XD97OzG73BZkr3oNuggGoUSXJRP-gyiQth0g-6bNwPm-NGiG9rRG83F05HJU4FZjLCV4w2Ha5KaF9b2taEw47Ldpp246Q4TtqOc4_sMBHJZEh2Dr5MpofrpTyOg7DjCOEMekfMt3-j7dlNL2M5fkIeu1KDHrQQeUoGttglD3sClLvkUeM6p1r-jOTXsENb7NAWO9RhhwJ2aIcdegU7tMMOddihVUk77NAOO8_Jj4-T4w-ffXcRh6_DMav8PJFZDrWrMZBOx4EwETdhwPMosyIxeWRQtI7lSaADZnTELJfcyCgfa8uNUDZ8QYZFWdiXhIpA2yjnUHXIhHOVZULrmAujTBwqqdkeibofMNVOpR4vS5mnf3fhHnm_7nfW6rTc2kN2_kldttlmkSlA75a--3d-2yvyYPPfeE2G1aK2b8h9vapmy8Vbh7s_Koqo6w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-triggered+robust+neural+control+for+unmanned+sail-assisted+vehicles+subject+to+actuator+failures&rft.jtitle=Ocean+engineering&rft.au=Zhang%2C+Guoqing&rft.au=Li%2C+Jiqiang&rft.au=Yu%2C+Wei&rft.au=Zhang%2C+Weidong&rft.date=2020-11-15&rft.issn=0029-8018&rft.volume=216&rft.spage=107754&rft_id=info:doi/10.1016%2Fj.oceaneng.2020.107754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2020_107754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |