Efficient Software Verification: Statistical Testing Using Automated Search

Statistical testing has been shown to be more efficient at detecting faults in software than other methods of dynamic testing such as random and structural testing. Test data are generated by sampling from a probability distribution chosen so that each element of the software's structure is exe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on software engineering Ročník 36; číslo 6; s. 763 - 777
Hlavní autoři: Poulding, Simon, Clark, John A
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2010
IEEE Computer Society
Témata:
ISSN:0098-5589, 1939-3520
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Statistical testing has been shown to be more efficient at detecting faults in software than other methods of dynamic testing such as random and structural testing. Test data are generated by sampling from a probability distribution chosen so that each element of the software's structure is exercised with a high probability. However, deriving a suitable distribution is difficult for all but the simplest of programs. This paper demonstrates that automated search is a practical method of finding near-optimal probability distributions for real-world programs, and that test sets generated from these distributions continue to show superior efficiency in detecting faults in the software.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2010.24