Numerical simulation of direct methanol fuel cells using computational fluid dynamics
Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realisti...
Saved in:
| Published in: | International journal of hydrogen energy Vol. 108; pp. 87 - 98 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
12.03.2025
|
| Subjects: | |
| ISSN: | 0360-3199 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realistic numerical simulation is crucial to test different designs and conditions. In this paper, the fluid dynamics and electrochemical reactions in direct methanol fuel cells (DMFC) are mathematically modeled and numerically simulated using computational fluid dynamics (CFD) techniques within the OpenFOAM software. The profiles of temperature, reactants, and products flow through the anodic and cathodic chambers of DMFC are derived from the equations of continuity, momentum, species transport, and electrochemical reactions are simulated to study two flow field geometries of a DMFC, parallel channels, and a serpentine channel. A methodology to obtain the crossover current density is presented, and its effect is evaluated on the DMFC behavior. The accuracy and confidence of the results are validated with a case reported in the literature.
•A 3D simulation of Direct Methanol Fuel Cells.•A model incorporating crossover current density and different fuel cell components.•The model is implemented in the OpenFOAM software.•The simulations are consistent with physical measurements.•Modeling the influence of the flow field in the performance of the fuel cell. |
|---|---|
| AbstractList | Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realistic numerical simulation is crucial to test different designs and conditions. In this paper, the fluid dynamics and electrochemical reactions in direct methanol fuel cells (DMFC) are mathematically modeled and numerically simulated using computational fluid dynamics (CFD) techniques within the OpenFOAM software. The profiles of temperature, reactants, and products flow through the anodic and cathodic chambers of DMFC are derived from the equations of continuity, momentum, species transport, and electrochemical reactions are simulated to study two flow field geometries of a DMFC, parallel channels, and a serpentine channel. A methodology to obtain the crossover current density is presented, and its effect is evaluated on the DMFC behavior. The accuracy and confidence of the results are validated with a case reported in the literature.
•A 3D simulation of Direct Methanol Fuel Cells.•A model incorporating crossover current density and different fuel cell components.•The model is implemented in the OpenFOAM software.•The simulations are consistent with physical measurements.•Modeling the influence of the flow field in the performance of the fuel cell. |
| Author | Blanco-Cocom, Luis Botello-Rionda, Salvador Ordoñez, L.C. Valdez, S. Ivvan |
| Author_xml | – sequence: 1 givenname: Luis orcidid: 0000-0003-3217-2109 surname: Blanco-Cocom fullname: Blanco-Cocom, Luis email: luis.blanco@cimat.mx organization: Centro de Investigación en Matemáticas, A.C., Jalisco S/N, Col. Valenciana CP: 36023, Guanajuato, Gto, México, Apartado Postal 402, CP 36000, México – sequence: 2 givenname: Salvador surname: Botello-Rionda fullname: Botello-Rionda, Salvador organization: Centro de Investigación en Matemáticas, A.C., Jalisco S/N, Col. Valenciana CP: 36023, Guanajuato, Gto, México, Apartado Postal 402, CP 36000, México – sequence: 3 givenname: L.C. orcidid: 0000-0003-1110-1934 surname: Ordoñez fullname: Ordoñez, L.C. organization: Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán. Parque Científico Tecnológico de Yucatán, Mérida, Yucatán, México, CP 97302, México – sequence: 4 givenname: S. Ivvan orcidid: 0000-0002-5996-992X surname: Valdez fullname: Valdez, S. Ivvan organization: CONACYT-Centro de Investigación en Ciencias de Información Geoespacial, CENTROGEO, A.C., C.P. 76703, Querétaro, México |
| BookMark | eNqFkMtOwzAQRb0oEm3hF5B_IMGOEzeRWIAqXlIFG7q2HHtMHTlOZSdI-XtSAhs2Xc1i5lzNPSu08J0HhG4oSSmh_LZJbXMYNXhIM5LlKWEp4eUCLQnjJGG0qi7RKsaGELohebVE-7ehhWCVdDjadnCyt53HncHaBlA9bqE_SN85bAZwWIFzEQ_R-k-suvY49D_3E2zcYDXWo5etVfEKXRjpIlz_zjXaPz1-bF-S3fvz6_ZhlyhGsz4xRcbZRpmi1AUvORSszrmiRlbl9D0tKa2pLklmstIQqXhd1Trnp31tKpYptkZ8zlWhizGAEcdgWxlGQYk4CRGN-BMiTkIEYWISMoF3_0Bl5y59kNadx-9nHKZyXxaCiMqCVzBbE7qz5yK-AepIh24 |
| CitedBy_id | crossref_primary_10_3390_molecules30081752 crossref_primary_10_1016_j_ijhydene_2024_09_084 |
| Cites_doi | 10.3390/en15030885 10.1016/j.cherd.2018.05.037 10.1016/j.ijhydene.2012.09.014 10.1016/S0378-7753(99)00181-0 10.1016/j.finel.2021.103703 10.1016/j.ijhydene.2013.05.118 10.1002/fuce.200290005 10.1016/j.ijhydene.2020.10.114 10.1016/j.egyr.2023.07.002 10.1149/1.1559061 10.3390/computation6020038 10.1016/j.ijhydene.2020.04.202 10.1016/S0378-7753(99)00182-2 10.1016/j.ijhydene.2021.10.033 10.1016/j.ijhydene.2011.07.105 10.1016/j.ijhydene.2024.01.187 10.1016/j.cattod.2012.08.013 10.1016/j.jpowsour.2006.02.001 10.1016/j.ijhydene.2006.06.049 10.1016/j.ijhydene.2023.09.004 10.1016/j.cpc.2015.10.007 10.1016/j.ijhydene.2018.11.089 10.1016/j.eng.2018.05.007 10.1016/j.jpowsour.2006.04.147 10.3390/pr9040688 10.1016/j.ijhydene.2024.01.015 10.1016/j.ijhydene.2009.12.111 10.1016/j.ijhydene.2022.03.146 10.1016/j.applthermaleng.2019.114589 |
| ContentType | Journal Article |
| Copyright | 2024 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2024 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2024.03.068 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 98 |
| ExternalDocumentID | 10_1016_j_ijhydene_2024_03_068 S0360319924008978 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF M41 R2- SAC SCB T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-f52637cf58d5686e53b46c1fa982021811b1d802f28f0ac6b9bd461fa9bf932c3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435900800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Sat Nov 29 08:09:08 EST 2025 Tue Nov 18 22:21:28 EST 2025 Sat Mar 08 15:46:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | OpenFOAM Crossover current density Numerical simulation Direct alcohol fuel cells Computational fluid dynamics method (CFD) Polarization curve |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-f52637cf58d5686e53b46c1fa982021811b1d802f28f0ac6b9bd461fa9bf932c3 |
| ORCID | 0000-0003-3217-2109 0000-0003-1110-1934 0000-0002-5996-992X |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2024_03_068 crossref_citationtrail_10_1016_j_ijhydene_2024_03_068 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_03_068 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-12 |
| PublicationDateYYYYMMDD | 2025-03-12 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | d’Adamo A, Haslinger M, Corda G, Höflinger J, Fontanesi S, Lauer T. Modelling methods and validation techniques for cfd simulations of pem fuel cells. Processes 9(4). Argyropoulos, Scott, Taama (b37) 1999; 79 Pinto, Oliveira, Falcão (b9) 2018 Sun, Zhang, Guo, Che, Jiao, Huang (b25) 2020; 165 Okech, Emam, Mori, Ahmed (b6) 2024; 57 Pinto, Oliveira, Falcão (b10) 2018 Khajeh-Hosseini-Dalasm, Kermani, Moghaddam, Stockie (b14) 2010; 35 OpenFOAM. Openfoam: Open-source application Wang, Wang (b34) 2003; 150 Gomes, De Souza, De Bortoli (b24) 2018; 136 Rahim Malik, Yuan, Moran, Tippayawong (b2) 2023; 43 Yu, Yang, Kianimanesh, Freiheit, Park, Zhao, Xue (b22) 2013; 38 URL. Poling, Prausnitz, O’Connell (b31) 2001 Giacoppo, Cipitì, Barbera (b13) 2020 Alias, Kamarudin, Zainoodin, Masdar (b11) 2020; 45 Wang, Yin, Yang, Cheng, Wen, Liu, Dong, Wang (b18) 2021; 46 Edwards, Pereira, Gharaie, Omrani, Shabani (b19) 2024; 50 Beale, Choi, Pharoah, Roth, Jasak, Jeon (b27) 2016; 200 Ge, Liu (b16) 2006; 160 Yagiz M, Çelik S, Topcu A. Performance comparison of bio-inspired flow field designs for direct methanol fuel cell and proton exchange membrane fuel cell. Int J Hydrog Energy Fadzillah, Kamarudin, Zainoodin, Masdar (b1) 2019; 44 Oliveira, Falcão, Rangel, Pinto (b20) 2007; 32 Argyropoulos, Scott, Shukla, Jackson (b21) 2002; 2 Suresh, Jayanti (b32) 2011; 36 Yang, He, Li (b23) 2012; 37 Argyropoulos, Scott, Taama (b38) 1999; 79 Ramasamy, Palaniswamy, Kumaresan, Chandran, Chen (b12) 2022; 47 . Scott, Jackson, Argyropoulos (b7) 2006; 161 Duarte (b29) 2021 Wang, Wang, Fan (b3) 2018; 4 de Sá, Pinto, Oliveira (b4) 2022; 47 Yaws (b35) 1999 Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b17) 2022; 201 Braunchweig, Hibbitts, Neurock, Wieckowski (b36) 2013; 202 Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b8) 2023; 10 Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b15) 2022; 15 Kone, Zhang, Yan, Adegbite (b28) 2000; 6 Paraview. Open-source, multi-platform data analysis and visualization application Giacoppo (10.1016/j.ijhydene.2024.03.068_b13) 2020 Oliveira (10.1016/j.ijhydene.2024.03.068_b20) 2007; 32 Suresh (10.1016/j.ijhydene.2024.03.068_b32) 2011; 36 Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b17) 2022; 201 Poling (10.1016/j.ijhydene.2024.03.068_b31) 2001 10.1016/j.ijhydene.2024.03.068_b33 Wang (10.1016/j.ijhydene.2024.03.068_b18) 2021; 46 Yaws (10.1016/j.ijhydene.2024.03.068_b35) 1999 Khajeh-Hosseini-Dalasm (10.1016/j.ijhydene.2024.03.068_b14) 2010; 35 10.1016/j.ijhydene.2024.03.068_b30 Argyropoulos (10.1016/j.ijhydene.2024.03.068_b37) 1999; 79 Edwards (10.1016/j.ijhydene.2024.03.068_b19) 2024; 50 Ge (10.1016/j.ijhydene.2024.03.068_b16) 2006; 160 Wang (10.1016/j.ijhydene.2024.03.068_b3) 2018; 4 Rahim Malik (10.1016/j.ijhydene.2024.03.068_b2) 2023; 43 Duarte (10.1016/j.ijhydene.2024.03.068_b29) 2021 Pinto (10.1016/j.ijhydene.2024.03.068_b10) 2018 Sun (10.1016/j.ijhydene.2024.03.068_b25) 2020; 165 Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b8) 2023; 10 de Sá (10.1016/j.ijhydene.2024.03.068_b4) 2022; 47 10.1016/j.ijhydene.2024.03.068_b26 Beale (10.1016/j.ijhydene.2024.03.068_b27) 2016; 200 Fadzillah (10.1016/j.ijhydene.2024.03.068_b1) 2019; 44 Gomes (10.1016/j.ijhydene.2024.03.068_b24) 2018; 136 Ramasamy (10.1016/j.ijhydene.2024.03.068_b12) 2022; 47 Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b15) 2022; 15 Argyropoulos (10.1016/j.ijhydene.2024.03.068_b21) 2002; 2 Braunchweig (10.1016/j.ijhydene.2024.03.068_b36) 2013; 202 Pinto (10.1016/j.ijhydene.2024.03.068_b9) 2018 Yu (10.1016/j.ijhydene.2024.03.068_b22) 2013; 38 Argyropoulos (10.1016/j.ijhydene.2024.03.068_b38) 1999; 79 10.1016/j.ijhydene.2024.03.068_b5 Scott (10.1016/j.ijhydene.2024.03.068_b7) 2006; 161 Wang (10.1016/j.ijhydene.2024.03.068_b34) 2003; 150 Yang (10.1016/j.ijhydene.2024.03.068_b23) 2012; 37 Okech (10.1016/j.ijhydene.2024.03.068_b6) 2024; 57 Alias (10.1016/j.ijhydene.2024.03.068_b11) 2020; 45 Kone (10.1016/j.ijhydene.2024.03.068_b28) 2000; 6 |
| References_xml | – start-page: 81 year: 2018 end-page: 112 ident: b10 article-title: 3 - direct alcohol fuel cells (dafcs) basic modeling publication-title: Direct alcohol fuel cells for portable applications – volume: 202 start-page: 197 year: 2013 end-page: 209 ident: b36 article-title: Electrocatalysis: A direct alcohol fuel cell and surface science perspective publication-title: Catal Today – volume: 200 start-page: 15 year: 2016 end-page: 26 ident: b27 article-title: Open-source computational model of a solid oxide fuel cell publication-title: Comput Phys Comm – volume: 35 start-page: 2417 year: 2010 end-page: 2427 ident: b14 article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a pem fuel cell publication-title: Int J Hydrogen Energy – volume: 79 start-page: 169 year: 1999 end-page: 183 ident: b37 article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part I. model development publication-title: J Power Sources – volume: 160 start-page: 413 year: 2006 end-page: 421 ident: b16 article-title: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells publication-title: J Power Sources – reference: Paraview. Open-source, multi-platform data analysis and visualization application, – volume: 57 start-page: 161 year: 2024 end-page: 175 ident: b6 article-title: Enhancing the performance of direct methanol fuel cells using new cathode flow field designs: An experimental investigation publication-title: Int J Hydrogen Energy – volume: 45 start-page: 19620 year: 2020 end-page: 19641 ident: b11 article-title: Active direct methanol fuel cell: An overview publication-title: Int J Hydrogen Energy – volume: 201 year: 2022 ident: b17 article-title: A reaction–convection–diffusion model for pem fuel cells publication-title: Finite Elem Anal Des – volume: 2 start-page: 78 year: 2002 end-page: 82 ident: b21 article-title: Empirical model equations for the direct methanol fuel cell dmfcs publication-title: Fuel Cells – year: 2021 ident: b29 article-title: Simulación de una celda de combustible de metanol directo en openfoam – volume: 44 start-page: 3031 year: 2019 end-page: 3054 ident: b1 article-title: Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview publication-title: Int J Hydrogen Energy – volume: 50 start-page: 682 year: 2024 end-page: 710 ident: b19 article-title: Computational fluid dynamics modelling of proton exchange membrane fuel cells: Accuracy and time efficiency publication-title: Int J Hydrogen Energy – reference: OpenFOAM. Openfoam: Open-source application, – volume: 79 start-page: 184 year: 1999 end-page: 198 ident: b38 article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part II. model based parametric analysis and predicted temperature profiles publication-title: J Power Sources – volume: 32 start-page: 415 year: 2007 end-page: 424 ident: b20 article-title: A comparative study of approaches to direct methanol fuel cells modelling publication-title: Int J Hydrogen Energy – volume: 6 year: 2000 ident: b28 article-title: An open-source toolbox for pem fuel cell simulation publication-title: Computation – volume: 46 start-page: 2594 year: 2021 end-page: 2605 ident: b18 article-title: Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 161 start-page: 885 year: 2006 end-page: 892 ident: b7 article-title: A semi empirical model of the direct methanol fuel cell. part II. parametric analysis publication-title: J Power Sources – start-page: 423 year: 2020 end-page: 441 ident: b13 article-title: 14 - Mathematical modeling approaches in direct methanol fuel cells publication-title: Direct methanol fuel cell technology – volume: 15 start-page: 885 year: 2022 ident: b15 article-title: A self-validating method via the unification of multiple models for consistent parameter identification in pem fuel cells publication-title: Energies – volume: 36 start-page: 14648 year: 2011 end-page: 14658 ident: b32 article-title: Cross-over and performance modeling of liquid-feed polymer electrolyte membrane direct ethanol fuel cells publication-title: Int J Hydrogen Energy – volume: 4 start-page: 352 year: 2018 end-page: 360 ident: b3 article-title: Techno-economic challenges of fuel cell commercialization publication-title: Engineering – reference: , URL. – volume: 150 start-page: A508 year: 2003 ident: b34 article-title: Mathematical modeling of liquid-feed direct methanol fuel cells publication-title: J Electrochem Soc – volume: 47 start-page: 16552 year: 2022 end-page: 16567 ident: b4 article-title: Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – an overview publication-title: Int J Hydrogen Energy – volume: 10 start-page: 451 year: 2023 end-page: 459 ident: b8 article-title: Parameter estimation for empirical and semi-empirical models in a direct ethanol fuel cell publication-title: Energy Rep – volume: 136 start-page: 371 year: 2018 end-page: 384 ident: b24 article-title: Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration publication-title: Chem Eng Res Des – volume: 165 year: 2020 ident: b25 article-title: Effect of anisotropy in cathode diffusion layers on direct methanol fuel cell publication-title: Appl Therm Eng – volume: 47 start-page: 595 year: 2022 end-page: 609 ident: b12 article-title: Study of novel flow channels influence on the performance of direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 43 year: 2023 ident: b2 article-title: Overview of hydrogen production technologies for fuel cell utilization publication-title: Eng Sci Technol Int J – reference: d’Adamo A, Haslinger M, Corda G, Höflinger J, Fontanesi S, Lauer T. Modelling methods and validation techniques for cfd simulations of pem fuel cells. Processes 9(4). – reference: . – year: 1999 ident: b35 article-title: Chemical properties handbook – reference: Yagiz M, Çelik S, Topcu A. Performance comparison of bio-inspired flow field designs for direct methanol fuel cell and proton exchange membrane fuel cell. Int J Hydrog Energy – year: 2001 ident: b31 article-title: The properties of gases and liquids – volume: 37 start-page: 18412 year: 2012 end-page: 18424 ident: b23 article-title: Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 38 start-page: 9873 year: 2013 end-page: 9885 ident: b22 article-title: A cfd model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on dmfc performance publication-title: Int J Hydrogen Energy – start-page: 17 year: 2018 end-page: 80 ident: b9 article-title: 2 - direct alcohol fuel cells basic science publication-title: Direct alcohol fuel cells for portable applications – volume: 15 start-page: 885 year: 2022 ident: 10.1016/j.ijhydene.2024.03.068_b15 article-title: A self-validating method via the unification of multiple models for consistent parameter identification in pem fuel cells publication-title: Energies doi: 10.3390/en15030885 – volume: 136 start-page: 371 year: 2018 ident: 10.1016/j.ijhydene.2024.03.068_b24 article-title: Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2018.05.037 – volume: 37 start-page: 18412 issue: 23 year: 2012 ident: 10.1016/j.ijhydene.2024.03.068_b23 article-title: Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.014 – volume: 79 start-page: 169 issue: 2 year: 1999 ident: 10.1016/j.ijhydene.2024.03.068_b37 article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part I. model development publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00181-0 – volume: 201 year: 2022 ident: 10.1016/j.ijhydene.2024.03.068_b17 article-title: A reaction–convection–diffusion model for pem fuel cells publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2021.103703 – volume: 38 start-page: 9873 issue: 23 year: 2013 ident: 10.1016/j.ijhydene.2024.03.068_b22 article-title: A cfd model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on dmfc performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.118 – volume: 2 start-page: 78 issue: 2 year: 2002 ident: 10.1016/j.ijhydene.2024.03.068_b21 article-title: Empirical model equations for the direct methanol fuel cell dmfcs publication-title: Fuel Cells doi: 10.1002/fuce.200290005 – start-page: 423 year: 2020 ident: 10.1016/j.ijhydene.2024.03.068_b13 article-title: 14 - Mathematical modeling approaches in direct methanol fuel cells – volume: 46 start-page: 2594 issue: 2 year: 2021 ident: 10.1016/j.ijhydene.2024.03.068_b18 article-title: Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.114 – ident: 10.1016/j.ijhydene.2024.03.068_b30 – volume: 10 start-page: 451 year: 2023 ident: 10.1016/j.ijhydene.2024.03.068_b8 article-title: Parameter estimation for empirical and semi-empirical models in a direct ethanol fuel cell publication-title: Energy Rep doi: 10.1016/j.egyr.2023.07.002 – volume: 150 start-page: A508 issue: 4 year: 2003 ident: 10.1016/j.ijhydene.2024.03.068_b34 article-title: Mathematical modeling of liquid-feed direct methanol fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.1559061 – volume: 6 issue: 2 year: 2000 ident: 10.1016/j.ijhydene.2024.03.068_b28 article-title: An open-source toolbox for pem fuel cell simulation publication-title: Computation doi: 10.3390/computation6020038 – volume: 45 start-page: 19620 issue: 38 year: 2020 ident: 10.1016/j.ijhydene.2024.03.068_b11 article-title: Active direct methanol fuel cell: An overview publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.202 – volume: 79 start-page: 184 issue: 2 year: 1999 ident: 10.1016/j.ijhydene.2024.03.068_b38 article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part II. model based parametric analysis and predicted temperature profiles publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00182-2 – volume: 47 start-page: 595 issue: 1 year: 2022 ident: 10.1016/j.ijhydene.2024.03.068_b12 article-title: Study of novel flow channels influence on the performance of direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.033 – volume: 43 year: 2023 ident: 10.1016/j.ijhydene.2024.03.068_b2 article-title: Overview of hydrogen production technologies for fuel cell utilization publication-title: Eng Sci Technol Int J – volume: 36 start-page: 14648 issue: 22 year: 2011 ident: 10.1016/j.ijhydene.2024.03.068_b32 article-title: Cross-over and performance modeling of liquid-feed polymer electrolyte membrane direct ethanol fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.105 – ident: 10.1016/j.ijhydene.2024.03.068_b5 doi: 10.1016/j.ijhydene.2024.01.187 – year: 2021 ident: 10.1016/j.ijhydene.2024.03.068_b29 – volume: 202 start-page: 197 year: 2013 ident: 10.1016/j.ijhydene.2024.03.068_b36 article-title: Electrocatalysis: A direct alcohol fuel cell and surface science perspective publication-title: Catal Today doi: 10.1016/j.cattod.2012.08.013 – volume: 160 start-page: 413 issue: 1 year: 2006 ident: 10.1016/j.ijhydene.2024.03.068_b16 article-title: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.02.001 – ident: 10.1016/j.ijhydene.2024.03.068_b33 – volume: 32 start-page: 415 issue: 3 year: 2007 ident: 10.1016/j.ijhydene.2024.03.068_b20 article-title: A comparative study of approaches to direct methanol fuel cells modelling publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.049 – start-page: 81 year: 2018 ident: 10.1016/j.ijhydene.2024.03.068_b10 article-title: 3 - direct alcohol fuel cells (dafcs) basic modeling – volume: 50 start-page: 682 year: 2024 ident: 10.1016/j.ijhydene.2024.03.068_b19 article-title: Computational fluid dynamics modelling of proton exchange membrane fuel cells: Accuracy and time efficiency publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.09.004 – volume: 200 start-page: 15 year: 2016 ident: 10.1016/j.ijhydene.2024.03.068_b27 article-title: Open-source computational model of a solid oxide fuel cell publication-title: Comput Phys Comm doi: 10.1016/j.cpc.2015.10.007 – year: 1999 ident: 10.1016/j.ijhydene.2024.03.068_b35 – volume: 44 start-page: 3031 issue: 5 year: 2019 ident: 10.1016/j.ijhydene.2024.03.068_b1 article-title: Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.089 – volume: 4 start-page: 352 issue: 3 year: 2018 ident: 10.1016/j.ijhydene.2024.03.068_b3 article-title: Techno-economic challenges of fuel cell commercialization publication-title: Engineering doi: 10.1016/j.eng.2018.05.007 – volume: 161 start-page: 885 issue: 2 year: 2006 ident: 10.1016/j.ijhydene.2024.03.068_b7 article-title: A semi empirical model of the direct methanol fuel cell. part II. parametric analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.04.147 – start-page: 17 year: 2018 ident: 10.1016/j.ijhydene.2024.03.068_b9 article-title: 2 - direct alcohol fuel cells basic science – ident: 10.1016/j.ijhydene.2024.03.068_b26 doi: 10.3390/pr9040688 – volume: 57 start-page: 161 year: 2024 ident: 10.1016/j.ijhydene.2024.03.068_b6 article-title: Enhancing the performance of direct methanol fuel cells using new cathode flow field designs: An experimental investigation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.015 – volume: 35 start-page: 2417 issue: 6 year: 2010 ident: 10.1016/j.ijhydene.2024.03.068_b14 article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a pem fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.111 – volume: 47 start-page: 16552 issue: 37 year: 2022 ident: 10.1016/j.ijhydene.2024.03.068_b4 article-title: Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – an overview publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.146 – volume: 165 year: 2020 ident: 10.1016/j.ijhydene.2024.03.068_b25 article-title: Effect of anisotropy in cathode diffusion layers on direct methanol fuel cell publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114589 – year: 2001 ident: 10.1016/j.ijhydene.2024.03.068_b31 |
| SSID | ssj0017049 |
| Score | 2.4728599 |
| Snippet | Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 87 |
| SubjectTerms | Computational fluid dynamics method (CFD) Crossover current density Direct alcohol fuel cells Numerical simulation OpenFOAM Polarization curve |
| Title | Numerical simulation of direct methanol fuel cells using computational fluid dynamics |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2024.03.068 |
| Volume | 108 |
| WOSCitedRecordID | wos001435900800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017049 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDtyilztM5LtUiFq0Kgt1Vb1Fix5AqxFXbRMtf4lcyju00hRXLHrhEbSI7teerZ-azZwah18TnoDRiz80EC9wgBJ81ge9uwVWpnJzlpEspdHEaz-d0sUg-jUY_bSxMW8V1TS8vk9V_FTXcA2Gr0NkbiLvvFG7AZxA6XEHscP0nwc8bvQlTOZvyuynOpUxCrby6ktFZLStHNEXlKN5-4zQ29HbVbC05KKqm5A7XBes3Qxt2n0QcpJ749oOv5VdVNqALKOw9_QqQJd2ZhBd0NEBT7rh5qaJYpPsZOuOZpqirNuOyPzP8cc2l2s1_SzTXfTqZTeyzi6wyDPiXiXPStgbphsTwQnWKiwx5TT9S6kDXSuoX5ikdLK1GL2slrStX_7H8ayZiOSmXMGIYK_j_XtAlsdW1e_bzbf-mB_vTifbg2zK1_aSqn3Tqp9DPLXTgxWFCx-jg6OR48aHfs4qNs2WHMohHv_oXXW0KDcybs_vonvFL8JHG0wM0KuqH6O4gW-UjdN4jC--QhaXAGlnYIgsrZOEOWbhDFt5DFu6QhS2yHqPzd8dns_euqcrhMp94W1eEXuTHTISUhxGNitDPg4gRkSVgTCqDkeSE06knPCqmGYvyJOdBpJ7nApwF5j9B41rWxVOEwfUvRJwnNIyVX09oxrKEqFhxDm75lB6i0E5QykzKelU5pUr_LqJD9KZvt9JJW65tkdj5T43pqecuBWhd0_bZjd_2HN3Z_QleoPF23RQv0W3WbsvN-pXB1S8MWqya |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+direct+methanol+fuel+cells+using+computational+fluid+dynamics&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Blanco-Cocom%2C+Luis&rft.au=Botello-Rionda%2C+Salvador&rft.au=Ordo%C3%B1ez%2C+L.C.&rft.au=Valdez%2C+S.+Ivvan&rft.date=2025-03-12&rft.issn=0360-3199&rft.volume=108&rft.spage=87&rft.epage=98&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.03.068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2024_03_068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |