Numerical simulation of direct methanol fuel cells using computational fluid dynamics

Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realisti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of hydrogen energy Ročník 108; s. 87 - 98
Hlavní autoři: Blanco-Cocom, Luis, Botello-Rionda, Salvador, Ordoñez, L.C., Valdez, S. Ivvan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 12.03.2025
Témata:
ISSN:0360-3199
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realistic numerical simulation is crucial to test different designs and conditions. In this paper, the fluid dynamics and electrochemical reactions in direct methanol fuel cells (DMFC) are mathematically modeled and numerically simulated using computational fluid dynamics (CFD) techniques within the OpenFOAM software. The profiles of temperature, reactants, and products flow through the anodic and cathodic chambers of DMFC are derived from the equations of continuity, momentum, species transport, and electrochemical reactions are simulated to study two flow field geometries of a DMFC, parallel channels, and a serpentine channel. A methodology to obtain the crossover current density is presented, and its effect is evaluated on the DMFC behavior. The accuracy and confidence of the results are validated with a case reported in the literature. •A 3D simulation of Direct Methanol Fuel Cells.•A model incorporating crossover current density and different fuel cell components.•The model is implemented in the OpenFOAM software.•The simulations are consistent with physical measurements.•Modeling the influence of the flow field in the performance of the fuel cell.
AbstractList Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However, the efficiency level depends on the design, and physical experiments are time-consuming requiring expensive materials; therefore, a realistic numerical simulation is crucial to test different designs and conditions. In this paper, the fluid dynamics and electrochemical reactions in direct methanol fuel cells (DMFC) are mathematically modeled and numerically simulated using computational fluid dynamics (CFD) techniques within the OpenFOAM software. The profiles of temperature, reactants, and products flow through the anodic and cathodic chambers of DMFC are derived from the equations of continuity, momentum, species transport, and electrochemical reactions are simulated to study two flow field geometries of a DMFC, parallel channels, and a serpentine channel. A methodology to obtain the crossover current density is presented, and its effect is evaluated on the DMFC behavior. The accuracy and confidence of the results are validated with a case reported in the literature. •A 3D simulation of Direct Methanol Fuel Cells.•A model incorporating crossover current density and different fuel cell components.•The model is implemented in the OpenFOAM software.•The simulations are consistent with physical measurements.•Modeling the influence of the flow field in the performance of the fuel cell.
Author Blanco-Cocom, Luis
Botello-Rionda, Salvador
Ordoñez, L.C.
Valdez, S. Ivvan
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0003-3217-2109
  surname: Blanco-Cocom
  fullname: Blanco-Cocom, Luis
  email: luis.blanco@cimat.mx
  organization: Centro de Investigación en Matemáticas, A.C., Jalisco S/N, Col. Valenciana CP: 36023, Guanajuato, Gto, México, Apartado Postal 402, CP 36000, México
– sequence: 2
  givenname: Salvador
  surname: Botello-Rionda
  fullname: Botello-Rionda, Salvador
  organization: Centro de Investigación en Matemáticas, A.C., Jalisco S/N, Col. Valenciana CP: 36023, Guanajuato, Gto, México, Apartado Postal 402, CP 36000, México
– sequence: 3
  givenname: L.C.
  orcidid: 0000-0003-1110-1934
  surname: Ordoñez
  fullname: Ordoñez, L.C.
  organization: Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán. Parque Científico Tecnológico de Yucatán, Mérida, Yucatán, México, CP 97302, México
– sequence: 4
  givenname: S. Ivvan
  orcidid: 0000-0002-5996-992X
  surname: Valdez
  fullname: Valdez, S. Ivvan
  organization: CONACYT-Centro de Investigación en Ciencias de Información Geoespacial, CENTROGEO, A.C., C.P. 76703, Querétaro, México
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMGOEzeRWIAqXlIFG7q2HHtMHTlOZSdI-XtSAhs2Xc1i5lzNPSu08J0HhG4oSSmh_LZJbXMYNXhIM5LlKWEp4eUCLQnjJGG0qi7RKsaGELohebVE-7ehhWCVdDjadnCyt53HncHaBlA9bqE_SN85bAZwWIFzEQ_R-k-suvY49D_3E2zcYDXWo5etVfEKXRjpIlz_zjXaPz1-bF-S3fvz6_ZhlyhGsz4xRcbZRpmi1AUvORSszrmiRlbl9D0tKa2pLklmstIQqXhd1Trnp31tKpYptkZ8zlWhizGAEcdgWxlGQYk4CRGN-BMiTkIEYWISMoF3_0Bl5y59kNadx-9nHKZyXxaCiMqCVzBbE7qz5yK-AepIh24
CitedBy_id crossref_primary_10_3390_molecules30081752
crossref_primary_10_1016_j_ijhydene_2024_09_084
Cites_doi 10.3390/en15030885
10.1016/j.cherd.2018.05.037
10.1016/j.ijhydene.2012.09.014
10.1016/S0378-7753(99)00181-0
10.1016/j.finel.2021.103703
10.1016/j.ijhydene.2013.05.118
10.1002/fuce.200290005
10.1016/j.ijhydene.2020.10.114
10.1016/j.egyr.2023.07.002
10.1149/1.1559061
10.3390/computation6020038
10.1016/j.ijhydene.2020.04.202
10.1016/S0378-7753(99)00182-2
10.1016/j.ijhydene.2021.10.033
10.1016/j.ijhydene.2011.07.105
10.1016/j.ijhydene.2024.01.187
10.1016/j.cattod.2012.08.013
10.1016/j.jpowsour.2006.02.001
10.1016/j.ijhydene.2006.06.049
10.1016/j.ijhydene.2023.09.004
10.1016/j.cpc.2015.10.007
10.1016/j.ijhydene.2018.11.089
10.1016/j.eng.2018.05.007
10.1016/j.jpowsour.2006.04.147
10.3390/pr9040688
10.1016/j.ijhydene.2024.01.015
10.1016/j.ijhydene.2009.12.111
10.1016/j.ijhydene.2022.03.146
10.1016/j.applthermaleng.2019.114589
ContentType Journal Article
Copyright 2024 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2024 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2024.03.068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 98
ExternalDocumentID 10_1016_j_ijhydene_2024_03_068
S0360319924008978
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
M41
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c312t-f52637cf58d5686e53b46c1fa982021811b1d802f28f0ac6b9bd461fa9bf932c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435900800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 08:09:08 EST 2025
Tue Nov 18 22:21:28 EST 2025
Sat Mar 08 15:46:48 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords OpenFOAM
Crossover current density
Numerical simulation
Direct alcohol fuel cells
Computational fluid dynamics method (CFD)
Polarization curve
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-f52637cf58d5686e53b46c1fa982021811b1d802f28f0ac6b9bd461fa9bf932c3
ORCID 0000-0003-3217-2109
0000-0003-1110-1934
0000-0002-5996-992X
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2024_03_068
crossref_citationtrail_10_1016_j_ijhydene_2024_03_068
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_03_068
PublicationCentury 2000
PublicationDate 2025-03-12
PublicationDateYYYYMMDD 2025-03-12
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-12
  day: 12
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References d’Adamo A, Haslinger M, Corda G, Höflinger J, Fontanesi S, Lauer T. Modelling methods and validation techniques for cfd simulations of pem fuel cells. Processes 9(4).
Argyropoulos, Scott, Taama (b37) 1999; 79
Pinto, Oliveira, Falcão (b9) 2018
Sun, Zhang, Guo, Che, Jiao, Huang (b25) 2020; 165
Okech, Emam, Mori, Ahmed (b6) 2024; 57
Pinto, Oliveira, Falcão (b10) 2018
Khajeh-Hosseini-Dalasm, Kermani, Moghaddam, Stockie (b14) 2010; 35
OpenFOAM. Openfoam: Open-source application
Wang, Wang (b34) 2003; 150
Gomes, De Souza, De Bortoli (b24) 2018; 136
Rahim Malik, Yuan, Moran, Tippayawong (b2) 2023; 43
Yu, Yang, Kianimanesh, Freiheit, Park, Zhao, Xue (b22) 2013; 38
URL.
Poling, Prausnitz, O’Connell (b31) 2001
Giacoppo, Cipitì, Barbera (b13) 2020
Alias, Kamarudin, Zainoodin, Masdar (b11) 2020; 45
Wang, Yin, Yang, Cheng, Wen, Liu, Dong, Wang (b18) 2021; 46
Edwards, Pereira, Gharaie, Omrani, Shabani (b19) 2024; 50
Beale, Choi, Pharoah, Roth, Jasak, Jeon (b27) 2016; 200
Ge, Liu (b16) 2006; 160
Yagiz M, Çelik S, Topcu A. Performance comparison of bio-inspired flow field designs for direct methanol fuel cell and proton exchange membrane fuel cell. Int J Hydrog Energy
Fadzillah, Kamarudin, Zainoodin, Masdar (b1) 2019; 44
Oliveira, Falcão, Rangel, Pinto (b20) 2007; 32
Argyropoulos, Scott, Shukla, Jackson (b21) 2002; 2
Suresh, Jayanti (b32) 2011; 36
Yang, He, Li (b23) 2012; 37
Argyropoulos, Scott, Taama (b38) 1999; 79
Ramasamy, Palaniswamy, Kumaresan, Chandran, Chen (b12) 2022; 47
.
Scott, Jackson, Argyropoulos (b7) 2006; 161
Duarte (b29) 2021
Wang, Wang, Fan (b3) 2018; 4
de Sá, Pinto, Oliveira (b4) 2022; 47
Yaws (b35) 1999
Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b17) 2022; 201
Braunchweig, Hibbitts, Neurock, Wieckowski (b36) 2013; 202
Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b8) 2023; 10
Blanco-Cocom, Botello-Rionda, Ordoñez, Valdez (b15) 2022; 15
Kone, Zhang, Yan, Adegbite (b28) 2000; 6
Paraview. Open-source, multi-platform data analysis and visualization application
Giacoppo (10.1016/j.ijhydene.2024.03.068_b13) 2020
Oliveira (10.1016/j.ijhydene.2024.03.068_b20) 2007; 32
Suresh (10.1016/j.ijhydene.2024.03.068_b32) 2011; 36
Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b17) 2022; 201
Poling (10.1016/j.ijhydene.2024.03.068_b31) 2001
10.1016/j.ijhydene.2024.03.068_b33
Wang (10.1016/j.ijhydene.2024.03.068_b18) 2021; 46
Yaws (10.1016/j.ijhydene.2024.03.068_b35) 1999
Khajeh-Hosseini-Dalasm (10.1016/j.ijhydene.2024.03.068_b14) 2010; 35
10.1016/j.ijhydene.2024.03.068_b30
Argyropoulos (10.1016/j.ijhydene.2024.03.068_b37) 1999; 79
Edwards (10.1016/j.ijhydene.2024.03.068_b19) 2024; 50
Ge (10.1016/j.ijhydene.2024.03.068_b16) 2006; 160
Wang (10.1016/j.ijhydene.2024.03.068_b3) 2018; 4
Rahim Malik (10.1016/j.ijhydene.2024.03.068_b2) 2023; 43
Duarte (10.1016/j.ijhydene.2024.03.068_b29) 2021
Pinto (10.1016/j.ijhydene.2024.03.068_b10) 2018
Sun (10.1016/j.ijhydene.2024.03.068_b25) 2020; 165
Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b8) 2023; 10
de Sá (10.1016/j.ijhydene.2024.03.068_b4) 2022; 47
10.1016/j.ijhydene.2024.03.068_b26
Beale (10.1016/j.ijhydene.2024.03.068_b27) 2016; 200
Fadzillah (10.1016/j.ijhydene.2024.03.068_b1) 2019; 44
Gomes (10.1016/j.ijhydene.2024.03.068_b24) 2018; 136
Ramasamy (10.1016/j.ijhydene.2024.03.068_b12) 2022; 47
Blanco-Cocom (10.1016/j.ijhydene.2024.03.068_b15) 2022; 15
Argyropoulos (10.1016/j.ijhydene.2024.03.068_b21) 2002; 2
Braunchweig (10.1016/j.ijhydene.2024.03.068_b36) 2013; 202
Pinto (10.1016/j.ijhydene.2024.03.068_b9) 2018
Yu (10.1016/j.ijhydene.2024.03.068_b22) 2013; 38
Argyropoulos (10.1016/j.ijhydene.2024.03.068_b38) 1999; 79
10.1016/j.ijhydene.2024.03.068_b5
Scott (10.1016/j.ijhydene.2024.03.068_b7) 2006; 161
Wang (10.1016/j.ijhydene.2024.03.068_b34) 2003; 150
Yang (10.1016/j.ijhydene.2024.03.068_b23) 2012; 37
Okech (10.1016/j.ijhydene.2024.03.068_b6) 2024; 57
Alias (10.1016/j.ijhydene.2024.03.068_b11) 2020; 45
Kone (10.1016/j.ijhydene.2024.03.068_b28) 2000; 6
References_xml – start-page: 81
  year: 2018
  end-page: 112
  ident: b10
  article-title: 3 - direct alcohol fuel cells (dafcs) basic modeling
  publication-title: Direct alcohol fuel cells for portable applications
– volume: 202
  start-page: 197
  year: 2013
  end-page: 209
  ident: b36
  article-title: Electrocatalysis: A direct alcohol fuel cell and surface science perspective
  publication-title: Catal Today
– volume: 200
  start-page: 15
  year: 2016
  end-page: 26
  ident: b27
  article-title: Open-source computational model of a solid oxide fuel cell
  publication-title: Comput Phys Comm
– volume: 35
  start-page: 2417
  year: 2010
  end-page: 2427
  ident: b14
  article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a pem fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 79
  start-page: 169
  year: 1999
  end-page: 183
  ident: b37
  article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part I. model development
  publication-title: J Power Sources
– volume: 160
  start-page: 413
  year: 2006
  end-page: 421
  ident: b16
  article-title: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells
  publication-title: J Power Sources
– reference: Paraview. Open-source, multi-platform data analysis and visualization application,
– volume: 57
  start-page: 161
  year: 2024
  end-page: 175
  ident: b6
  article-title: Enhancing the performance of direct methanol fuel cells using new cathode flow field designs: An experimental investigation
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 19620
  year: 2020
  end-page: 19641
  ident: b11
  article-title: Active direct methanol fuel cell: An overview
  publication-title: Int J Hydrogen Energy
– volume: 201
  year: 2022
  ident: b17
  article-title: A reaction–convection–diffusion model for pem fuel cells
  publication-title: Finite Elem Anal Des
– volume: 2
  start-page: 78
  year: 2002
  end-page: 82
  ident: b21
  article-title: Empirical model equations for the direct methanol fuel cell dmfcs
  publication-title: Fuel Cells
– year: 2021
  ident: b29
  article-title: Simulación de una celda de combustible de metanol directo en openfoam
– volume: 44
  start-page: 3031
  year: 2019
  end-page: 3054
  ident: b1
  article-title: Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview
  publication-title: Int J Hydrogen Energy
– volume: 50
  start-page: 682
  year: 2024
  end-page: 710
  ident: b19
  article-title: Computational fluid dynamics modelling of proton exchange membrane fuel cells: Accuracy and time efficiency
  publication-title: Int J Hydrogen Energy
– reference: OpenFOAM. Openfoam: Open-source application,
– volume: 79
  start-page: 184
  year: 1999
  end-page: 198
  ident: b38
  article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part II. model based parametric analysis and predicted temperature profiles
  publication-title: J Power Sources
– volume: 32
  start-page: 415
  year: 2007
  end-page: 424
  ident: b20
  article-title: A comparative study of approaches to direct methanol fuel cells modelling
  publication-title: Int J Hydrogen Energy
– volume: 6
  year: 2000
  ident: b28
  article-title: An open-source toolbox for pem fuel cell simulation
  publication-title: Computation
– volume: 46
  start-page: 2594
  year: 2021
  end-page: 2605
  ident: b18
  article-title: Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 161
  start-page: 885
  year: 2006
  end-page: 892
  ident: b7
  article-title: A semi empirical model of the direct methanol fuel cell. part II. parametric analysis
  publication-title: J Power Sources
– start-page: 423
  year: 2020
  end-page: 441
  ident: b13
  article-title: 14 - Mathematical modeling approaches in direct methanol fuel cells
  publication-title: Direct methanol fuel cell technology
– volume: 15
  start-page: 885
  year: 2022
  ident: b15
  article-title: A self-validating method via the unification of multiple models for consistent parameter identification in pem fuel cells
  publication-title: Energies
– volume: 36
  start-page: 14648
  year: 2011
  end-page: 14658
  ident: b32
  article-title: Cross-over and performance modeling of liquid-feed polymer electrolyte membrane direct ethanol fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 4
  start-page: 352
  year: 2018
  end-page: 360
  ident: b3
  article-title: Techno-economic challenges of fuel cell commercialization
  publication-title: Engineering
– reference: , URL.
– volume: 150
  start-page: A508
  year: 2003
  ident: b34
  article-title: Mathematical modeling of liquid-feed direct methanol fuel cells
  publication-title: J Electrochem Soc
– volume: 47
  start-page: 16552
  year: 2022
  end-page: 16567
  ident: b4
  article-title: Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – an overview
  publication-title: Int J Hydrogen Energy
– volume: 10
  start-page: 451
  year: 2023
  end-page: 459
  ident: b8
  article-title: Parameter estimation for empirical and semi-empirical models in a direct ethanol fuel cell
  publication-title: Energy Rep
– volume: 136
  start-page: 371
  year: 2018
  end-page: 384
  ident: b24
  article-title: Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration
  publication-title: Chem Eng Res Des
– volume: 165
  year: 2020
  ident: b25
  article-title: Effect of anisotropy in cathode diffusion layers on direct methanol fuel cell
  publication-title: Appl Therm Eng
– volume: 47
  start-page: 595
  year: 2022
  end-page: 609
  ident: b12
  article-title: Study of novel flow channels influence on the performance of direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 43
  year: 2023
  ident: b2
  article-title: Overview of hydrogen production technologies for fuel cell utilization
  publication-title: Eng Sci Technol Int J
– reference: d’Adamo A, Haslinger M, Corda G, Höflinger J, Fontanesi S, Lauer T. Modelling methods and validation techniques for cfd simulations of pem fuel cells. Processes 9(4).
– reference: .
– year: 1999
  ident: b35
  article-title: Chemical properties handbook
– reference: Yagiz M, Çelik S, Topcu A. Performance comparison of bio-inspired flow field designs for direct methanol fuel cell and proton exchange membrane fuel cell. Int J Hydrog Energy
– year: 2001
  ident: b31
  article-title: The properties of gases and liquids
– volume: 37
  start-page: 18412
  year: 2012
  end-page: 18424
  ident: b23
  article-title: Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 9873
  year: 2013
  end-page: 9885
  ident: b22
  article-title: A cfd model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on dmfc performance
  publication-title: Int J Hydrogen Energy
– start-page: 17
  year: 2018
  end-page: 80
  ident: b9
  article-title: 2 - direct alcohol fuel cells basic science
  publication-title: Direct alcohol fuel cells for portable applications
– volume: 15
  start-page: 885
  year: 2022
  ident: 10.1016/j.ijhydene.2024.03.068_b15
  article-title: A self-validating method via the unification of multiple models for consistent parameter identification in pem fuel cells
  publication-title: Energies
  doi: 10.3390/en15030885
– volume: 136
  start-page: 371
  year: 2018
  ident: 10.1016/j.ijhydene.2024.03.068_b24
  article-title: Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2018.05.037
– volume: 37
  start-page: 18412
  issue: 23
  year: 2012
  ident: 10.1016/j.ijhydene.2024.03.068_b23
  article-title: Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.014
– volume: 79
  start-page: 169
  issue: 2
  year: 1999
  ident: 10.1016/j.ijhydene.2024.03.068_b37
  article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part I. model development
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00181-0
– volume: 201
  year: 2022
  ident: 10.1016/j.ijhydene.2024.03.068_b17
  article-title: A reaction–convection–diffusion model for pem fuel cells
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2021.103703
– volume: 38
  start-page: 9873
  issue: 23
  year: 2013
  ident: 10.1016/j.ijhydene.2024.03.068_b22
  article-title: A cfd model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on dmfc performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.118
– volume: 2
  start-page: 78
  issue: 2
  year: 2002
  ident: 10.1016/j.ijhydene.2024.03.068_b21
  article-title: Empirical model equations for the direct methanol fuel cell dmfcs
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200290005
– start-page: 423
  year: 2020
  ident: 10.1016/j.ijhydene.2024.03.068_b13
  article-title: 14 - Mathematical modeling approaches in direct methanol fuel cells
– volume: 46
  start-page: 2594
  issue: 2
  year: 2021
  ident: 10.1016/j.ijhydene.2024.03.068_b18
  article-title: Evaluation of structural aspects and operation environments on the performance of passive micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.114
– ident: 10.1016/j.ijhydene.2024.03.068_b30
– volume: 10
  start-page: 451
  year: 2023
  ident: 10.1016/j.ijhydene.2024.03.068_b8
  article-title: Parameter estimation for empirical and semi-empirical models in a direct ethanol fuel cell
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.07.002
– volume: 150
  start-page: A508
  issue: 4
  year: 2003
  ident: 10.1016/j.ijhydene.2024.03.068_b34
  article-title: Mathematical modeling of liquid-feed direct methanol fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1559061
– volume: 6
  issue: 2
  year: 2000
  ident: 10.1016/j.ijhydene.2024.03.068_b28
  article-title: An open-source toolbox for pem fuel cell simulation
  publication-title: Computation
  doi: 10.3390/computation6020038
– volume: 45
  start-page: 19620
  issue: 38
  year: 2020
  ident: 10.1016/j.ijhydene.2024.03.068_b11
  article-title: Active direct methanol fuel cell: An overview
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.202
– volume: 79
  start-page: 184
  issue: 2
  year: 1999
  ident: 10.1016/j.ijhydene.2024.03.068_b38
  article-title: One-dimensional thermal model for direct methanol fuel cell stacks: Part II. model based parametric analysis and predicted temperature profiles
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00182-2
– volume: 47
  start-page: 595
  issue: 1
  year: 2022
  ident: 10.1016/j.ijhydene.2024.03.068_b12
  article-title: Study of novel flow channels influence on the performance of direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.033
– volume: 43
  year: 2023
  ident: 10.1016/j.ijhydene.2024.03.068_b2
  article-title: Overview of hydrogen production technologies for fuel cell utilization
  publication-title: Eng Sci Technol Int J
– volume: 36
  start-page: 14648
  issue: 22
  year: 2011
  ident: 10.1016/j.ijhydene.2024.03.068_b32
  article-title: Cross-over and performance modeling of liquid-feed polymer electrolyte membrane direct ethanol fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.105
– ident: 10.1016/j.ijhydene.2024.03.068_b5
  doi: 10.1016/j.ijhydene.2024.01.187
– year: 2021
  ident: 10.1016/j.ijhydene.2024.03.068_b29
– volume: 202
  start-page: 197
  year: 2013
  ident: 10.1016/j.ijhydene.2024.03.068_b36
  article-title: Electrocatalysis: A direct alcohol fuel cell and surface science perspective
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2012.08.013
– volume: 160
  start-page: 413
  issue: 1
  year: 2006
  ident: 10.1016/j.ijhydene.2024.03.068_b16
  article-title: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.02.001
– ident: 10.1016/j.ijhydene.2024.03.068_b33
– volume: 32
  start-page: 415
  issue: 3
  year: 2007
  ident: 10.1016/j.ijhydene.2024.03.068_b20
  article-title: A comparative study of approaches to direct methanol fuel cells modelling
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.06.049
– start-page: 81
  year: 2018
  ident: 10.1016/j.ijhydene.2024.03.068_b10
  article-title: 3 - direct alcohol fuel cells (dafcs) basic modeling
– volume: 50
  start-page: 682
  year: 2024
  ident: 10.1016/j.ijhydene.2024.03.068_b19
  article-title: Computational fluid dynamics modelling of proton exchange membrane fuel cells: Accuracy and time efficiency
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.09.004
– volume: 200
  start-page: 15
  year: 2016
  ident: 10.1016/j.ijhydene.2024.03.068_b27
  article-title: Open-source computational model of a solid oxide fuel cell
  publication-title: Comput Phys Comm
  doi: 10.1016/j.cpc.2015.10.007
– year: 1999
  ident: 10.1016/j.ijhydene.2024.03.068_b35
– volume: 44
  start-page: 3031
  issue: 5
  year: 2019
  ident: 10.1016/j.ijhydene.2024.03.068_b1
  article-title: Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.089
– volume: 4
  start-page: 352
  issue: 3
  year: 2018
  ident: 10.1016/j.ijhydene.2024.03.068_b3
  article-title: Techno-economic challenges of fuel cell commercialization
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.05.007
– volume: 161
  start-page: 885
  issue: 2
  year: 2006
  ident: 10.1016/j.ijhydene.2024.03.068_b7
  article-title: A semi empirical model of the direct methanol fuel cell. part II. parametric analysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.04.147
– start-page: 17
  year: 2018
  ident: 10.1016/j.ijhydene.2024.03.068_b9
  article-title: 2 - direct alcohol fuel cells basic science
– ident: 10.1016/j.ijhydene.2024.03.068_b26
  doi: 10.3390/pr9040688
– volume: 57
  start-page: 161
  year: 2024
  ident: 10.1016/j.ijhydene.2024.03.068_b6
  article-title: Enhancing the performance of direct methanol fuel cells using new cathode flow field designs: An experimental investigation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.015
– volume: 35
  start-page: 2417
  issue: 6
  year: 2010
  ident: 10.1016/j.ijhydene.2024.03.068_b14
  article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a pem fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.111
– volume: 47
  start-page: 16552
  issue: 37
  year: 2022
  ident: 10.1016/j.ijhydene.2024.03.068_b4
  article-title: Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – an overview
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.146
– volume: 165
  year: 2020
  ident: 10.1016/j.ijhydene.2024.03.068_b25
  article-title: Effect of anisotropy in cathode diffusion layers on direct methanol fuel cell
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114589
– year: 2001
  ident: 10.1016/j.ijhydene.2024.03.068_b31
SSID ssj0017049
Score 2.4729366
Snippet Recently, there has been a research trend towards clean energy sources such as fuel cells, owing to their high efficiency and close-to-zero emissions. However,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms Computational fluid dynamics method (CFD)
Crossover current density
Direct alcohol fuel cells
Numerical simulation
OpenFOAM
Polarization curve
Title Numerical simulation of direct methanol fuel cells using computational fluid dynamics
URI https://dx.doi.org/10.1016/j.ijhydene.2024.03.068
Volume 108
WOSCitedRecordID wos001435900800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017049
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQc4IFbRssgHblGGbE6cYxkVUVQNiLZobpGXuGQUktHMJGp_C38WO7aTFCoVhLhEUSLH1nuf8vb3AHiTUI96RIX-BUJuxDzmpl7AXRQiQQX1KSZdd_2TZLHAy2X6eTL5YWth2jKpKnx5ma7_K6vlM8lsVTr7F-zuPyofyHvJdHmVbJfXP2L8otFBmNLZFt_NcC6lEmrh1Y2MJlVdOqLJS0f57bdOY0tv183OOgdF2RTc4Xpg_Xasw153Io5aT3y74pv6Qo0N6AoKe0u_lMiq3XktN-jcAE0x-OZrVcVSu1_kxzjRLuqyJbzuc4Y_bXitovnvfO3rPpnNZ_bdV1IaD_jpzDluW4N048QIkMri8geTt6-uGVKZdEWXkhF6gFL_t_bw6H9rhLWW3Hqc9W8yQbsnVrNiJckgCTCTB4i6zrZ6oM8v_bZP1bZqV5Vdi6WRfQfsBQlK8RTsHR4fLT_2QarEWFf2mKMC9Jt3u1n3GekzZw_BA2OIwEMNoEdgklePwf1Re8on4LyHEhygBGsBNZSghRJUUIIdlGAHJXgNSrCDErRQegrO3x-dzT-4ZgyHy0I_2LkCBXGYMIEwRzGOcxTSKGa-IKnUHpWG6FOfYy8QARYeYTFNKY9i9Z4KaR2w8BmYVnWVPwdQEBoiLEKmuhASTrBANMq9hKpgOPXRPkCWQBkzPerVqJQys8mIq8wSNlOEzbwwk4TdB2_7dWvdpeXWFamlf2Z0TU27TMLmlrUH_7D2Bbg34P8lmO42Tf4K3GXtrthuXhuE_QTM_qxP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+direct+methanol+fuel+cells+using+computational+fluid+dynamics&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Blanco-Cocom%2C+Luis&rft.au=Botello-Rionda%2C+Salvador&rft.au=Ordo%C3%B1ez%2C+L.C.&rft.au=Valdez%2C+S.+Ivvan&rft.date=2025-03-12&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=108&rft.spage=87&rft.epage=98&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.03.068&rft.externalDocID=S0360319924008978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon