Strong digraph groups

A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each suc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian mathematical bulletin Ročník 67; číslo 4; s. 991 - 1000
Hlavní autoři: Cihan, Mehmet Sefa, Williams, Gerald
Médium: Journal Article
Jazyk:angličtina
Vydáno: Canada Canadian Mathematical Society 01.12.2024
Cambridge University Press
Témata:
ISSN:0008-4395, 1496-4287
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439524000390