Strong digraph groups

A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin Jg. 67; H. 4; S. 991 - 1000
Hauptverfasser: Cihan, Mehmet Sefa, Williams, Gerald
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Canada Canadian Mathematical Society 01.12.2024
Cambridge University Press
Schlagworte:
ISSN:0008-4395, 1496-4287
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
AbstractList A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b . Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
A digraph group is a group defined by non-empty presentation with the property that each relator is of the form \(R(x, y)\), where x and y are distinct generators and \(R(\cdot , \cdot )\) is determined by some fixed cyclically reduced word \(R(a, b)\) that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
Author Williams, Gerald
Cihan, Mehmet Sefa
Author_xml – sequence: 1
  givenname: Mehmet Sefa
  orcidid: 0000-0002-4303-9023
  surname: Cihan
  fullname: Cihan, Mehmet Sefa
  email: msefacihan@cumhuriyet.edu.tr
  organization: Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey e-mail: msefacihan@cumhuriyet.edu.tr
– sequence: 2
  givenname: Gerald
  orcidid: 0000-0002-2785-2268
  surname: Williams
  fullname: Williams, Gerald
  email: gerald.williams@essex.ac.uk
  organization: School of Mathematics, Statistics, and Actuarial Science, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
BookMark eNp1jzFPwzAQhS1UJNLCyMBWiTng89mJM6IKClIlhna34tgOqWgc7GTg3-OqlRgQ093pfe-d3pzMet9bQu6APnAQ-LillEqOlWA8bVjRC5IBr4qcM1nOSHaU86N-ReYx7imFUpQiI7fbMfi-XZquDfXwsWyDn4Z4TS5d_RntzXkuyO7lebd6zTfv67fV0yZvENiYOy65AwEaKoGFZs4U1KLhjAFwUQuTbtQGbeWstJJTwzTTrmwSWhiKC3J_ih2C_5psHNXeT6FPHxUCB4SKgUwUnKgm-BiDdWoI3aEO3wqoOpZXf8onD5499UGHzrT2N_p_1w-gYFrd
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society
The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society
– notice: The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.4153/S0008439524000390
DatabaseName Cambridge University Press Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList CrossRef

Engineering Database
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Open Access
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 1000
ExternalDocumentID 10_4153_S0008439524000390
GroupedDBID --Z
-~X
09C
09E
0R~
5.9
69Q
6J9
8FQ
AABWE
AAGFV
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABGDZ
ABJCF
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACDLN
ACGFO
ACIPV
ACKIV
ACNCT
ACYZP
ACZWT
ADDNB
ADIYS
ADOVH
ADVJH
AEBAK
AENCP
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IKXGN
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
XJT
ZCG
ZMEZD
AAXMD
AAYXX
ABUFD
ABXHF
ADKIL
AETEA
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c312t-f484f151b19536b2fd60e3d4221145a5dd603bd3e9fe8e840d2b2bf7cb2f6d03
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313367300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4395
IngestDate Tue Dec 02 09:53:21 EST 2025
Sat Nov 29 05:31:07 EST 2025
Sat Dec 07 02:05:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Digraph group
digraph products
05C20
Cayley digraph
05C40
20F05
05C25
05C38
strong digraph
circulant digraph
Language English
License https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-f484f151b19536b2fd60e3d4221145a5dd603bd3e9fe8e840d2b2bf7cb2f6d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4303-9023
0000-0002-2785-2268
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0008439524000390/type/journal_article
PQID 3141319218
PQPubID 4573633
PageCount 10
ParticipantIDs proquest_journals_3141319218
crossref_primary_10_4153_S0008439524000390
cambridge_journals_10_4153_S0008439524000390
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationTitleAlternate Can. Math. Bull
PublicationYear 2024
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – sequence: 0
  name: Canadian Mathematical Society
– name: Cambridge University Press
References 2010; 23
1963; 14
1987; 36
1979; 19
1966; 14
2024; 228
1967; 2
1962; 14
2022; 41
2020; 224
2024; 27
1959; 10
2016; 284
1976; 19
References_xml – volume: 284
  start-page: 507
  issue: 1–2
  year: 2016
  end-page: 535
  article-title: Efficient finite groups arising in the study of relative asphericity
  publication-title: Math. Z.
– volume: 19
  start-page: 247
  issue: 2
  year: 1976
  end-page: 248
  article-title: On a group presentation due to Fox
  publication-title: Canad. Math. Bull.
– volume: 23
  start-page: 796
  issue: 7
  year: 2010
  end-page: 800
  article-title: Cyclic arc-connectivity in a Cartesian product digraph
  publication-title: Appl. Math. Lett.
– volume: 228
  start-page: 107499
  issue: 4
  year: 2024
  article-title: Finite groups defined by presentations in which each defining relator involves exactly two generators
  publication-title: J. Pure Appl. Algebra
– volume: 14
  start-page: 600
  year: 1963
  end-page: 606
  article-title: On the product of directed graphs
  publication-title: Proc. Amer. Math. Soc.
– volume: 19
  start-page: 59
  issue: 1
  year: 1979
  end-page: 61
  article-title: A new class of $3$ -generator finite groups of deficiency zero
  publication-title: J. Lond. Math. Soc. (2)
– volume: 14
  start-page: 250
  year: 1966
  end-page: 254
  article-title: Connectedness of products of two directed graphs
  publication-title: SIAM J. Appl. Math.
– volume: 41
  start-page: 31
  year: 2022
  end-page: 35
  article-title: Digraph groups corresponding to digraphs with one more vertex than arcs
  publication-title: Avrupa Bilim ve Teknoloji Dergisi
– volume: 27
  start-page: 549
  issue: 3
  year: 2024
  end-page: 594
  article-title: Structure of the Macdonald groups in one parameter
  publication-title: J. Group Theory
– volume: 36
  start-page: 245
  issue: 2
  year: 1987
  end-page: 256
  article-title: Groups with presentations in which each defining relator involves exactly two generators
  publication-title: J. Lond. Math. Soc. (2)
– volume: 14
  start-page: 602
  year: 1962
  end-page: 613
  article-title: On a class of finitely presented groups
  publication-title: Canad. J. Math.
– volume: 10
  start-page: 409
  year: 1959
  end-page: 418
  article-title: Einige endliche Gruppen mit drei Erzeugenden und drei Relationen
  publication-title: Arch. Math.
– volume: 2
  start-page: 393
  year: 1967
  article-title: Research problem 2-10
  publication-title: J. Combin. Theory
– volume: 224
  start-page: 106342
  issue: 8
  year: 2020
  article-title: A class of digraph groups defined by balanced presentations
  publication-title: J. Pure Appl. Algebra
SSID ssj0017575
Score 2.3210292
Snippet A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct...
A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$ , where x and y are distinct...
A digraph group is a group defined by non-empty presentation with the property that each relator is of the form \(R(x, y)\), where x and y are distinct...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 991
SubjectTerms Apexes
Graph theory
SummonAdditionalLinks – databaseName: Cambridge University Press Open Access
  dbid: IKXGN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS8MwED7m5oM--FucTumDT2JY2jRt-ijiVNQhOKRvpWkS2csc6_Tv99J01TEQfPCxJVzJlzR3l7v7DuBcaqp1mFMi8pyTMGGa5InihBcF12EsfVO1ZHl9jIdDkabJcwvSRS2MTatsOA6qSH7VH23q6E_7Y-VyaPTM1vhSgeqU2yxIiq57315a9uslyGrg16CDFkyAv2zn_iG9HTYRhpjHrrsBFcRKcRFPVGdsVfJP3oVl_bV8fFc6abD9f7PZga3aTvWu3JtdaOnJHmw-NSSv5T4cvNhr9DdPjSvWa68qECkPYDS4GV3fkbrLAikQmDkxoQgN6n1pA2qRDIyKqGYqDNA1DHnOFT4zqZhOjBYa_UEVyECauMChkaLsENqT94k-As9X6CwKkftc4vmLckUi_SLATRIJY2LWhcsGjKyeWZmhF2JRz1YQ6MLFAuls6qg3fhvcW6zFt2jmo4q2hG_i-G-fPoGNAI0Xl7bSg_Z89qFPYb34nI_L2Vm9lb4AlQTTTA
  priority: 102
  providerName: Cambridge University Press
Title Strong digraph groups
URI https://www.cambridge.org/core/product/identifier/S0008439524000390/type/journal_article
https://www.proquest.com/docview/3141319218
Volume 67
WOSCitedRecordID wos001313367300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Canadian Business & Current Affairs Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: 8FQ
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/cbcacomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: M7S
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: BENPR
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4R8KAHf2JEkezgydi4revWnYwaUKMuKMRwW9a1JVwAGfr3-7oNCDHh4mnZ1jTLt5fv9fW9fg_gUihbKS-xCU8SRryQKpKEkhGWpkx5gXB03pLl8zWIIj4YhN1ywy0ryyoXnJgTtZykZo_8hjpIt0a8i99Ov4jpGmWyq2ULjQrUjEqCk5fu9ZZZhIAFRQcDmxN0vKzIaqLLouaEsM3NM1NDaVNDyStthXUftU7Rud_p7P_3iw9gr1xxWneFiRzClhofwe7bUq41O4Z6z2yIDy05yvWrrfyoR1aHfqfdf3giZb8EklLHnRPtcU8jCsKkxnzhaunbikrPxSDPYwmTeE-FpCrUiiuM7KQrXKGDFIf60qYnUB1PxuoULEdi2Md54jCBTIrz8lA4qYu_2-daB7QB10uw4tLosxjjCYNt_AfbBlwt8IynhYjGpsHNBZyrqVdYnm1-fQ47Li47ioKTJlTns291Advpz3yUzVpQ4Z33FtTu21H3A6_PL4PHqJUbzS-HwsD7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60FdSDb_FtDnoRF5N9JJuDiI8WxVqKFvEWstmNeGmrqYo_yv_obNK0FMFbDx6zWYaQb3a-nZ3ZGYADZVxjeOwSGceC8JAZEodaEJEkwvBAeWnekuWxETSb8ukpbE3Bd3kXxqZVljYxN9S6m9gz8hPmobm1xbvkWe-V2K5RNrpattAo1OLWfH2iy5ad3lwhvoeU1mvty2sy6CpAEubRPkm55CnynLIBJF_RVPuuYZpTdIW4iIXGZ6Y0M2FqpEH_R1NFVRokONXXLkOx01DljPuiAtWLWrN1PwxbBCIoWia4kiDTiyKMihzJ7JVkV9oxm7TpMssBo2IO46Q4zgk50dUX_9kvWoKFwY7aOS-WwDJMmc4KzN8Ny9Fmq7D2YA_8nx39ktfndvKrLNkatCfxWetQ6XQ7ZgMcT6NbK2XsCYVMgXJlqLyEojr7Mk0DtgnHQ2yiwaLOIvSXLJTRLyg34aiEL-oVRUL-mrxTojcSPYJu6-_X-zB73b5rRI2b5u02zFHcYhXJNTtQ6b-9m12YST76L9nb3kA3HYgmDPUPLhEadw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK6IHnxXf5qAXcWmym202BxEfLYpaihbxFrLZXfFSa1MVf5r_ztk8WkTw5sFjkmUI-Wbn28m8APakdrX2Y5eIOObED5kmcag44UnCtR9Iz2QjWe6vg05HPDyE3Qp8lrUwNq2ytImZoVbPif1H3mAemlvbvEs0TJEW0T1vHw9eiJ0gZSOt5TiNXEWu9Mc7um_p0eU5Yr1PabvVO7sgxYQBkjCPjojxhW-Q86QNJjUlNarpaqZ8im6Rz2Ou8JpJxXRotNDoCykqqTRBgkubymUodgpqAUOfpwq101anezsOYQQ8yMcnuIIg6_M8pIp8yWx5sivsPZvA6TLLB5PGDt8J8js_ZKTXXvjHn2sR5ouTtnOSb40lqOj-MszdjNvUpitQv7OBgEdHPWV9u52sxCWtQ-8vXmsVqv3nvl4Dx1Po7goRe1wig6BcEUovoajmTWFMwNbhcIxTVGz2NEI_ysIa_YB1HQ5KKKNB3jzkt8VbJZIT0RMYN35_vAsziG90fdm52oRZiievPOdmC6qj4avehunkbfSUDncKNXUg-mOkvwAZxCM6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+digraph+groups&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Cihan%2C+Mehmet+Sefa&rft.au=Williams%2C+Gerald&rft.date=2024-12-01&rft.pub=Cambridge+University+Press&rft.issn=0008-4395&rft.volume=67&rft.issue=4&rft.spage=991&rft.epage=1000&rft_id=info:doi/10.4153%2FS0008439524000390&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon