Temperature modeling of wave rotor refrigeration process based on elastic net variable selection and deep belief network

Optimal operation modeling plays an important role in wave rotor refrigeration process; however, considering covariance among multiple variables and high nonlinearity in wave rotor refrigeration process, it becomes more and more difficult to establish an accurate operation modeling using first-princ...

Full description

Saved in:
Bibliographic Details
Published in:Chemometrics and intelligent laboratory systems Vol. 239; p. 104872
Main Authors: Li, Qi, Qiao, Wenxu, Shi, Yaru, Ba, Wei, Wang, Fan, Hu, Xiaopeng
Format: Journal Article
Language:English
Published: Elsevier B.V 15.08.2023
Subjects:
ISSN:0169-7439
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimal operation modeling plays an important role in wave rotor refrigeration process; however, considering covariance among multiple variables and high nonlinearity in wave rotor refrigeration process, it becomes more and more difficult to establish an accurate operation modeling using first-principles methods. This study proposed a novel modeling algorithm for the temperature parameter of the wave rotor refrigeration process based on elastic net and dingo optimization deep belief network (Enet-DOA-DBN). Firstly, to determine the correlation between the input variables and reduce the dimension of the input variables, the elastic net (Enet) algorithm is used to select the input variables that are irrelevant to the temperature parameter of the wave rotor refrigeration process. In this way, the covariance between multiple variables is eliminated and the model structure is simplified. Secondly, in order to improve the generalization of the temperature parameter model, a deep belief network (DBN) deep learning is proposed for modeling the temperature parameter of the wave rotor refrigeration process. Considering that the numerous hyperparameters of DBN algorithm have a great impact on the training and prediction results, the hyperparameters are optimized by the dingo optimization algorithm (DOA). The proposed Enet-DOA-DBN algorithm is validated by simulation using the benchmark data sets and the wave rotor refrigeration industrial process data sets. The simulation results show that the proposed Enet-DOA-DBN algorithm has good generalization ability, meanwhile it can effectively implement variable selection and simplify the model structure. •A novel Enet-DOA-DBN algorithm based on elastic net variable selection method and DOA optimization DBN is proposed.•The Enet algorithm is used to select the input variables and the covariance between multiple variables is eliminated.•The Enet-DOA-DBN algorithm has good performance in simplifying the model structure.•Simulation results show that the Enet-DOA-DBN algorithm has good generalization capability.
AbstractList Optimal operation modeling plays an important role in wave rotor refrigeration process; however, considering covariance among multiple variables and high nonlinearity in wave rotor refrigeration process, it becomes more and more difficult to establish an accurate operation modeling using first-principles methods. This study proposed a novel modeling algorithm for the temperature parameter of the wave rotor refrigeration process based on elastic net and dingo optimization deep belief network (Enet-DOA-DBN). Firstly, to determine the correlation between the input variables and reduce the dimension of the input variables, the elastic net (Enet) algorithm is used to select the input variables that are irrelevant to the temperature parameter of the wave rotor refrigeration process. In this way, the covariance between multiple variables is eliminated and the model structure is simplified. Secondly, in order to improve the generalization of the temperature parameter model, a deep belief network (DBN) deep learning is proposed for modeling the temperature parameter of the wave rotor refrigeration process. Considering that the numerous hyperparameters of DBN algorithm have a great impact on the training and prediction results, the hyperparameters are optimized by the dingo optimization algorithm (DOA). The proposed Enet-DOA-DBN algorithm is validated by simulation using the benchmark data sets and the wave rotor refrigeration industrial process data sets. The simulation results show that the proposed Enet-DOA-DBN algorithm has good generalization ability, meanwhile it can effectively implement variable selection and simplify the model structure. •A novel Enet-DOA-DBN algorithm based on elastic net variable selection method and DOA optimization DBN is proposed.•The Enet algorithm is used to select the input variables and the covariance between multiple variables is eliminated.•The Enet-DOA-DBN algorithm has good performance in simplifying the model structure.•Simulation results show that the Enet-DOA-DBN algorithm has good generalization capability.
ArticleNumber 104872
Author Qiao, Wenxu
Shi, Yaru
Hu, Xiaopeng
Wang, Fan
Li, Qi
Ba, Wei
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-0033-6204
  surname: Li
  fullname: Li, Qi
  email: qili@dlut.edu.cn
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116023, China
– sequence: 2
  givenname: Wenxu
  surname: Qiao
  fullname: Qiao, Wenxu
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116023, China
– sequence: 3
  givenname: Yaru
  surname: Shi
  fullname: Shi, Yaru
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116023, China
– sequence: 4
  givenname: Wei
  surname: Ba
  fullname: Ba, Wei
  organization: College of Electrical and Information Engineering, Dalian Jiaotong University, Dalian, 116023, China
– sequence: 5
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116023, China
– sequence: 6
  givenname: Xiaopeng
  surname: Hu
  fullname: Hu, Xiaopeng
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116023, China
BookMark eNqFkMtOwzAQRb0oEi3wC8g_kGI7r0ZiAap4SZXYlLXlx7i4JHZkhxb-HqeFDZuuRjNz75XumaGJ8w4QuqZkTgmtbrZz9Q6db4WcM8LydCwWNZugaXo2WV3kzTmaxbgl417QKfpaQ9dDEMNnANx5Da11G-wN3osd4OAHH3AAE-xmFFnvcB-8ghixFBE0TgdoRRyswg4GvBPBCtkCjtCCOuiF01gD9FimbDCjbO_DxyU6M6KNcPU7L9Db48N6-ZytXp9elverTOWUDZkpKBF53chSUmrqSjakLgUFqcqiBE3qmiqtS1UlRaWaRQMi15rlzDBDGavyC1Qdc1XwMaYqvA-2E-GbU8JHZnzL_5jxkRk_MkvG239GZYcDgiEI25623x3tkMrtLAQelQWnQNuQyHDt7amIH-YBk7Y
CitedBy_id crossref_primary_10_1088_1361_6501_ad8d70
crossref_primary_10_1016_j_jfranklin_2024_106806
crossref_primary_10_1016_j_jobe_2023_107227
crossref_primary_10_1016_j_meaene_2025_100061
Cites_doi 10.1155/2021/9107547
10.1111/j.1467-9868.2005.00503.x
10.1016/j.jngse.2016.06.054
10.1007/s10462-021-10038-8
10.1016/j.chemolab.2022.104617
10.1016/j.chemolab.2013.04.006
10.1016/j.istruc.2021.05.096
10.1016/j.chemolab.2019.03.008
10.1016/j.chemolab.2022.104624
10.1016/j.applthermaleng.2022.118893
10.1016/j.jsv.2017.03.025
10.1016/j.ijrefrig.2014.10.017
10.1115/1.4051758
10.1016/j.foodcont.2021.107967
10.1162/neco.2006.18.7.1527
10.1016/j.autcon.2022.104488
10.1016/j.chemolab.2022.104685
10.1162/NECO_a_00311
10.1016/j.compstruc.2021.106653
10.1016/j.asoc.2022.108692
10.1016/j.cherd.2019.06.034
10.1016/j.energy.2022.123350
10.1016/j.ijrefrig.2020.12.015
10.3182/20140824-6-ZA-1003.00204
10.1016/j.asr.2022.01.043
10.1016/j.chemolab.2020.104123
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2023.104872
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_chemolab_2023_104872
S0169743923001223
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-f410a379b5b11f76b9075a1ebc545ed0771cdd5c69b56c989ea3dd232f2f12263
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001010323100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Sat Nov 29 07:27:05 EST 2025
Tue Nov 18 21:09:04 EST 2025
Tue Dec 03 03:44:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Elastic net
Wave rotor refrigeration process
Deep belief network
Dingo optimization algorithm
Variable selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-f410a379b5b11f76b9075a1ebc545ed0771cdd5c69b56c989ea3dd232f2f12263
ORCID 0000-0002-0033-6204
ParticipantIDs crossref_primary_10_1016_j_chemolab_2023_104872
crossref_citationtrail_10_1016_j_chemolab_2023_104872
elsevier_sciencedirect_doi_10_1016_j_chemolab_2023_104872
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Qi (bib24) 2017; 12
Balaji, Lavanya, Mary (bib16) 2020; 204
Wang, Aman, Liu, Guan, Yuan, Wang (bib18) 2022; 228
Gu, Yang, Zhou (bib30) 2022; 153
Kocyigit (bib6) 2015; 50
Hinton, Osindero, Teh (bib8) 2006; 18
Ge, Gao, Cui, Chen, Wang (bib12) 2022; 142
Wu, Zhang, Zheng, Liu, Lundteigen (bib9) 2016; 34
Chen, Zhang (bib10) 2022; 121
Li, Wang, Chen, Han (bib14) 2022; 69
Peraza-Vázquez, Peña-Delgado, Echavarría-Castillo (bib28) 2021; 2021
Liu, Li, Liu, Feng, Yu, Hu, Dao (bib1) 2021; 124
Dirks, Poole (bib19) 2022; 231
Pfeiffer, Ronai, Vorlaufer, Dörr, Filzmoser (bib25) 2022; 228
Chung, Gu, Yoo (bib7) 2022; 246
Wang, Jia, Zhou (bib5) 2022; 55
Lyu, Chen, Song (bib11) 2019; 189
Zou, Hastie (bib27) 2005; 67
Yu, Yang, Ding, Wang, Wang (bib17) 2021; 257
Herceg, Andrijić, Bolf (bib3) 2019; 149
Reddy, Av (bib15) 2022; 77
Chiu, Yao (bib26) 2013; 125
Fang, Roy, Mares, Sham, Chen, Lim (bib13) 2021; 33
Liu, Feng, Liu, Wang, Hu (bib2) 2022; 144
Ling, Dai, Xing, Tong (bib20) 2021; 44
Gauthier, Scullion, Berry (bib23) 2017; 400
Salakhutdinov, Hinton (bib29) 2012; 24
Fonseca, Duarte, Oliveira, Machado, Maia (bib4) 2022; 214
Ribeiro, Salva, Silvarolla (bib21) 2021; 125
Yan, Chiu, Dong, Yao (bib22) 2014; 47
Wu (10.1016/j.chemolab.2023.104872_bib9) 2016; 34
Fonseca (10.1016/j.chemolab.2023.104872_bib4) 2022; 214
Liu (10.1016/j.chemolab.2023.104872_bib2) 2022; 144
Ling (10.1016/j.chemolab.2023.104872_bib20) 2021; 44
Herceg (10.1016/j.chemolab.2023.104872_bib3) 2019; 149
Ribeiro (10.1016/j.chemolab.2023.104872_bib21) 2021; 125
Wang (10.1016/j.chemolab.2023.104872_bib5) 2022; 55
Gauthier (10.1016/j.chemolab.2023.104872_bib23) 2017; 400
Salakhutdinov (10.1016/j.chemolab.2023.104872_bib29) 2012; 24
Chung (10.1016/j.chemolab.2023.104872_bib7) 2022; 246
Balaji (10.1016/j.chemolab.2023.104872_bib16) 2020; 204
Peraza-Vázquez (10.1016/j.chemolab.2023.104872_bib28) 2021; 2021
Hinton (10.1016/j.chemolab.2023.104872_bib8) 2006; 18
Kocyigit (10.1016/j.chemolab.2023.104872_bib6) 2015; 50
Chiu (10.1016/j.chemolab.2023.104872_bib26) 2013; 125
Chen (10.1016/j.chemolab.2023.104872_bib10) 2022; 121
Reddy (10.1016/j.chemolab.2023.104872_bib15) 2022; 77
Liu (10.1016/j.chemolab.2023.104872_bib1) 2021; 124
Wang (10.1016/j.chemolab.2023.104872_bib18) 2022; 228
Gu (10.1016/j.chemolab.2023.104872_bib30) 2022; 153
Fang (10.1016/j.chemolab.2023.104872_bib13) 2021; 33
Yu (10.1016/j.chemolab.2023.104872_bib17) 2021; 257
Li (10.1016/j.chemolab.2023.104872_bib14) 2022; 69
Dirks (10.1016/j.chemolab.2023.104872_bib19) 2022; 231
Yan (10.1016/j.chemolab.2023.104872_bib22) 2014; 47
Lyu (10.1016/j.chemolab.2023.104872_bib11) 2019; 189
Pfeiffer (10.1016/j.chemolab.2023.104872_bib25) 2022; 228
Zou (10.1016/j.chemolab.2023.104872_bib27) 2005; 67
Liu (10.1016/j.chemolab.2023.104872_bib24) 2017; 12
Ge (10.1016/j.chemolab.2023.104872_bib12) 2022; 142
References_xml – volume: 144
  year: 2022
  ident: bib2
  article-title: Performance analysis of wave rotor based on response surface optimization method
  publication-title: J. Energy Resour. Technol.
– volume: 400
  start-page: 134
  year: 2017
  end-page: 153
  ident: bib23
  article-title: Sound quality prediction based on systematic metric selection and shrinkage: comparison of stepwise, lasso, and elastic-net algorithms and clustering preprocessing
  publication-title: J. Sound Vib.
– volume: 204
  year: 2020
  ident: bib16
  article-title: Clustering of mixed datasets using deep learning algorithm
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 189
  start-page: 8
  year: 2019
  end-page: 17
  ident: bib11
  article-title: Image-based process monitoring using deep learning framework
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 231
  year: 2022
  ident: bib19
  article-title: Automatic neural network hyperparameter optimization for extrapolation: lessons learned from visible and near-infrared spectroscopy of mango fruit
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 153
  start-page: 49
  year: 2022
  end-page: 63
  ident: bib30
  article-title: Approximation properties of Gaussian-binary restricted Boltzmann machines and Gaussian-binary deep belief networks, Neural
  publication-title: Netw
– volume: 228
  year: 2022
  ident: bib25
  article-title: Weighted LASSO variable selection for the analysis of FTIR spectra applied to the prediction of engine oil degradation
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 214
  year: 2022
  ident: bib4
  article-title: Mass flow prediction in a refrigeration machine using artificial neural networks
  publication-title: Appl. Therm. Eng.
– volume: 69
  start-page: 3071
  year: 2022
  end-page: 3087
  ident: bib14
  article-title: Spatiotemporal assessment of landslide susceptibility in Southern Sichuan, China using SA-DBN, PSO-DBN and SSA-DBN models compared with DBN model
  publication-title: Adv. Space Res.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib8
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 125
  year: 2021
  ident: bib21
  article-title: Prediction of a wide range of compounds concentration in raw coffee beans using NIRS, PLS and variable selection
  publication-title: Food Control
– volume: 24
  start-page: 1967
  year: 2012
  end-page: 2006
  ident: bib29
  article-title: An efficient learning procedure for deep Boltzmann machines
  publication-title: Neural Comput.
– volume: 2021
  year: 2021
  ident: bib28
  article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies
  publication-title: Math. Probl Eng.
– volume: 228
  year: 2022
  ident: bib18
  article-title: Inter-Relational Mahalanobis SAE with semi-supervised strategy for fault classification in chemical processes
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 33
  start-page: 2792
  year: 2021
  end-page: 2802
  ident: bib13
  article-title: Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network
  publication-title: Structures
– volume: 124
  start-page: 96
  year: 2021
  end-page: 104
  ident: bib1
  article-title: Investigation on non-equilibrium phase transition in wave rotor
  publication-title: Int. J. Refrig.
– volume: 142
  year: 2022
  ident: bib12
  article-title: Safety prediction of shield tunnel construction using deep belief network and whale optimization algorithm
  publication-title: Autom. ConStruct.
– volume: 50
  start-page: 69
  year: 2015
  end-page: 79
  ident: bib6
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrig.
– volume: 121
  year: 2022
  ident: bib10
  article-title: Applying Artificial Intelligence and Deep Belief Network to predict traffic congestion evacuation performance in smart cities
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 6704
  year: 2014
  end-page: 6709
  ident: bib22
  article-title: A LASSO-based batch process modeling and end-product quality prediction method
  publication-title: IFAC Proc. Vol.
– volume: 12
  year: 2017
  ident: bib24
  article-title: An efficient elastic net with regression coefficients method for variable selection of spectrum data
  publication-title: PLoS One
– volume: 149
  start-page: 95
  year: 2019
  end-page: 103
  ident: bib3
  article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models
  publication-title: Chem. Eng. Res. Des.
– volume: 77
  year: 2022
  ident: bib15
  article-title: Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network
  publication-title: Biomed. Signal Process Control
– volume: 246
  year: 2022
  ident: bib7
  article-title: District heater load forecasting based on machine learning and parallel CNN-LSTM attention
  publication-title: Energy
– volume: 44
  year: 2021
  ident: bib20
  article-title: An improved input variable selection method of the data-driven model for building heating load prediction
  publication-title: J. Build. Eng.
– volume: 55
  start-page: 565
  year: 2022
  end-page: 587
  ident: bib5
  article-title: Artificial neural networks for water quality soft-sensing in wastewater treatment: a review
  publication-title: Artif. Intell. Rev.
– volume: 257
  year: 2021
  ident: bib17
  article-title: Six sigma robust optimization method based on a pseudo single-loop strategy and RFR-DBN with insufficient samples
  publication-title: Comput. Struct.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib27
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Stat. Soc. B
– volume: 125
  start-page: 153
  year: 2013
  end-page: 165
  ident: bib26
  article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 34
  start-page: 139
  year: 2016
  end-page: 158
  ident: bib9
  article-title: A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 2021
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib28
  article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies
  publication-title: Math. Probl Eng.
  doi: 10.1155/2021/9107547
– volume: 12
  year: 2017
  ident: 10.1016/j.chemolab.2023.104872_bib24
  article-title: An efficient elastic net with regression coefficients method for variable selection of spectrum data
  publication-title: PLoS One
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.chemolab.2023.104872_bib27
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 34
  start-page: 139
  year: 2016
  ident: 10.1016/j.chemolab.2023.104872_bib9
  article-title: A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.06.054
– volume: 55
  start-page: 565
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib5
  article-title: Artificial neural networks for water quality soft-sensing in wastewater treatment: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10038-8
– volume: 153
  start-page: 49
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib30
  article-title: Approximation properties of Gaussian-binary restricted Boltzmann machines and Gaussian-binary deep belief networks, Neural
  publication-title: Netw
– volume: 228
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib25
  article-title: Weighted LASSO variable selection for the analysis of FTIR spectra applied to the prediction of engine oil degradation
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104617
– volume: 125
  start-page: 153
  year: 2013
  ident: 10.1016/j.chemolab.2023.104872_bib26
  article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.04.006
– volume: 33
  start-page: 2792
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib13
  article-title: Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.05.096
– volume: 189
  start-page: 8
  year: 2019
  ident: 10.1016/j.chemolab.2023.104872_bib11
  article-title: Image-based process monitoring using deep learning framework
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.03.008
– volume: 228
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib18
  article-title: Inter-Relational Mahalanobis SAE with semi-supervised strategy for fault classification in chemical processes
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104624
– volume: 214
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib4
  article-title: Mass flow prediction in a refrigeration machine using artificial neural networks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118893
– volume: 400
  start-page: 134
  year: 2017
  ident: 10.1016/j.chemolab.2023.104872_bib23
  article-title: Sound quality prediction based on systematic metric selection and shrinkage: comparison of stepwise, lasso, and elastic-net algorithms and clustering preprocessing
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.03.025
– volume: 50
  start-page: 69
  year: 2015
  ident: 10.1016/j.chemolab.2023.104872_bib6
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.10.017
– volume: 77
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib15
  article-title: Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network
  publication-title: Biomed. Signal Process Control
– volume: 144
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib2
  article-title: Performance analysis of wave rotor based on response surface optimization method
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4051758
– volume: 125
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib21
  article-title: Prediction of a wide range of compounds concentration in raw coffee beans using NIRS, PLS and variable selection
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.107967
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.chemolab.2023.104872_bib8
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 142
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib12
  article-title: Safety prediction of shield tunnel construction using deep belief network and whale optimization algorithm
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2022.104488
– volume: 231
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib19
  article-title: Automatic neural network hyperparameter optimization for extrapolation: lessons learned from visible and near-infrared spectroscopy of mango fruit
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104685
– volume: 24
  start-page: 1967
  year: 2012
  ident: 10.1016/j.chemolab.2023.104872_bib29
  article-title: An efficient learning procedure for deep Boltzmann machines
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00311
– volume: 257
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib17
  article-title: Six sigma robust optimization method based on a pseudo single-loop strategy and RFR-DBN with insufficient samples
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106653
– volume: 121
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib10
  article-title: Applying Artificial Intelligence and Deep Belief Network to predict traffic congestion evacuation performance in smart cities
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108692
– volume: 149
  start-page: 95
  year: 2019
  ident: 10.1016/j.chemolab.2023.104872_bib3
  article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.06.034
– volume: 246
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib7
  article-title: District heater load forecasting based on machine learning and parallel CNN-LSTM attention
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123350
– volume: 44
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib20
  article-title: An improved input variable selection method of the data-driven model for building heating load prediction
  publication-title: J. Build. Eng.
– volume: 124
  start-page: 96
  year: 2021
  ident: 10.1016/j.chemolab.2023.104872_bib1
  article-title: Investigation on non-equilibrium phase transition in wave rotor
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.12.015
– volume: 47
  start-page: 6704
  year: 2014
  ident: 10.1016/j.chemolab.2023.104872_bib22
  article-title: A LASSO-based batch process modeling and end-product quality prediction method
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.00204
– volume: 69
  start-page: 3071
  year: 2022
  ident: 10.1016/j.chemolab.2023.104872_bib14
  article-title: Spatiotemporal assessment of landslide susceptibility in Southern Sichuan, China using SA-DBN, PSO-DBN and SSA-DBN models compared with DBN model
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2022.01.043
– volume: 204
  year: 2020
  ident: 10.1016/j.chemolab.2023.104872_bib16
  article-title: Clustering of mixed datasets using deep learning algorithm
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104123
SSID ssj0016941
Score 2.422099
Snippet Optimal operation modeling plays an important role in wave rotor refrigeration process; however, considering covariance among multiple variables and high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104872
SubjectTerms Deep belief network
Dingo optimization algorithm
Elastic net
Variable selection
Wave rotor refrigeration process
Title Temperature modeling of wave rotor refrigeration process based on elastic net variable selection and deep belief network
URI https://dx.doi.org/10.1016/j.chemolab.2023.104872
Volume 239
WOSCitedRecordID wos001010323100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016941
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKRK9oLKpZZMP3KKUxs7mY6mKCocKRBHDKXK8SKnazGgmHebIT-e92A6BVioIcYlmLDuL35f4e89vIeQVLLlMWpbHmklQUEQu4lKXSVzbmjGbcJMq2xebKE5Py9lMfJhMvodYmPVF0bblZiMW_1XU0AbCxtDZvxD3cFJogN8gdDiC2OH4Z4I3wIRdpmRX58b7NX_DOkPLOejYEayKoJQbL_yFixWIcEHTuHlggFFjHtfWdNEadOk-umrVF8wJzsvaGPTxAgJrsRt6d41pLqYhmF9isS6fA7oZMn92kccdbu6vRvnS0Suody342AzW2Eb2ltwvpt1cDbagvgxx9FUuh6Y30vVqxjYMxtEo66I4nWHtWnCNs3UCcFBfGn-smft77cPvbBDn-wqfD55jHy-DG9ilqwz0W1LtT3hyPDdoYLi5yO-QLVZkopySrcN3x7P3w04UBvq6_PDuZkZR5jdf7WaCMyItZzvkvtc26KFDyQMyMe1Dcu8oFPl7RDYjtNCAFjq3FNFCe7TQX9BCPVpojxYKDR4tFGBAA1rogBYK0qeIFurQQj1aHpPPb4_Pjk5iX4wjVjxhXWzT5EDyQtRZnSS2yGsBZFMmplbAwY0-KIpEaZ2pHHrkSpTCSK418HULrzxwfP6ETNt5a3YJrRmwbpUDNZUylTwTlgtptVJpKgpdmj2ShRmslM9UjwVTLqrgknhehZmvcOYrN_N75PUwbuFytdw6QgQBVZ5xOiZZAa5uGfv0H8Y-I9s_X4PnZNotr8wLcletu2a1fOkh-AN-Q6-q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+modeling+of+wave+rotor+refrigeration+process+based+on+elastic+net+variable+selection+and+deep+belief+network&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Li%2C+Qi&rft.au=Qiao%2C+Wenxu&rft.au=Shi%2C+Yaru&rft.au=Ba%2C+Wei&rft.date=2023-08-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.volume=239&rft_id=info:doi/10.1016%2Fj.chemolab.2023.104872&rft.externalDocID=S0169743923001223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon