Reliability assessment for pipelines corroded by longitudinally aligned defects
Internal corrosion poses a significant threat to offshore pipeline services. Toward offshore pipeline integrity management, this paper aims to use Finite Element Method (FEM) to assess the reliability of corroded pipelines. The FEM analysis was conducted using ABAQUS software, facilitated through Py...
Gespeichert in:
| Veröffentlicht in: | Ocean engineering Jg. 310; S. 118625 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.10.2024
|
| Schlagworte: | |
| ISSN: | 0029-8018 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Internal corrosion poses a significant threat to offshore pipeline services. Toward offshore pipeline integrity management, this paper aims to use Finite Element Method (FEM) to assess the reliability of corroded pipelines. The FEM analysis was conducted using ABAQUS software, facilitated through Python scripts, to optimize the modeling process on a large scale. Additionally, the input database was generated through a random sampling method using the Latin Hypercube Sampling (LHS) method. The reliability of 32” oil and gas offshore internally corroded pipelines has been evaluated by fragility curve assessment along with Incremental Pressure Analysis (IPA) which is a new method inspired by Incremental Dynamic Analysis (IDA). Multiple corrosion defects pose a higher risk to offshore pipelines during service, with potentially more severe consequences than a single defect alone. Therefore, the interaction of corrosion defects has been considered in this study. Following the reliability assessment the most appropriate Probability Density Function (PDF) for the Maximum Von Mises Stress (MVMS) and failure probability at various Internal Pressure (IP) and longitudinal spacing (Sl) levels has been evaluated.
•Decreasing defect spacing increases defects interaction, significantly raising MVMS and affecting reliability.•AIC and BIC tests show MVMS follows a lognormal distribution across different spacing levels against IP.•Reliability assessments show lognormal distribution fits Failure Probability across IP levels (verified by AD test).Backspa•Failure fragility curves indicate reducing spacing raises failure probability (e.g., from 35% to 75% when IP=23).•Interaction limit study reveals existing rules are conservative; over 50% show same failure pressure when spacing>0.6Dt. |
|---|---|
| AbstractList | Internal corrosion poses a significant threat to offshore pipeline services. Toward offshore pipeline integrity management, this paper aims to use Finite Element Method (FEM) to assess the reliability of corroded pipelines. The FEM analysis was conducted using ABAQUS software, facilitated through Python scripts, to optimize the modeling process on a large scale. Additionally, the input database was generated through a random sampling method using the Latin Hypercube Sampling (LHS) method. The reliability of 32” oil and gas offshore internally corroded pipelines has been evaluated by fragility curve assessment along with Incremental Pressure Analysis (IPA) which is a new method inspired by Incremental Dynamic Analysis (IDA). Multiple corrosion defects pose a higher risk to offshore pipelines during service, with potentially more severe consequences than a single defect alone. Therefore, the interaction of corrosion defects has been considered in this study. Following the reliability assessment the most appropriate Probability Density Function (PDF) for the Maximum Von Mises Stress (MVMS) and failure probability at various Internal Pressure (IP) and longitudinal spacing (Sl) levels has been evaluated.
•Decreasing defect spacing increases defects interaction, significantly raising MVMS and affecting reliability.•AIC and BIC tests show MVMS follows a lognormal distribution across different spacing levels against IP.•Reliability assessments show lognormal distribution fits Failure Probability across IP levels (verified by AD test).Backspa•Failure fragility curves indicate reducing spacing raises failure probability (e.g., from 35% to 75% when IP=23).•Interaction limit study reveals existing rules are conservative; over 50% show same failure pressure when spacing>0.6Dt. |
| ArticleNumber | 118625 |
| Author | Hosseinzadeh, Soheyl Bahaari, Mohammad Reza Abyani, Mohsen |
| Author_xml | – sequence: 1 givenname: Soheyl orcidid: 0009-0009-1932-8069 surname: Hosseinzadeh fullname: Hosseinzadeh, Soheyl – sequence: 2 givenname: Mohammad Reza orcidid: 0000-0002-6506-0130 surname: Bahaari fullname: Bahaari, Mohammad Reza email: mbahari@ut.ac.ir – sequence: 3 givenname: Mohsen surname: Abyani fullname: Abyani, Mohsen |
| BookMark | eNqFkM1KAzEUhbOoYFt9BZkXmDHJTDNTcKEU_6BQEF2HTO6dckualCQKfXunVDduXJ3F4Ttwvhmb-OCRsRvBK8GFut1VwaLx6LeV5LKphOiUXEzYlHO5LDsuuks2S2nHOVeK11O2eUNHpidH-ViYlDClPfpcDCEWBzqMpcdU2BBjAISiPxYu-C3lTyBvnBsZR1s_NoAD2pyu2MVgXMLrn5yzj6fH99VLud48v64e1qWthczlUIMSdtkao5oeRcclcFCyF7UE6FtrRaMGpRq1bG3bQyMW0NYLsKLrequgqedMnXdtDClFHPQh0t7EoxZcn1Tonf5VoU8q9FnFCN79AS1lkyn4HA25__H7M47juS_CqJMl9BaB4vhfQ6D_Jr4Bq-OFBQ |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_122313 crossref_primary_10_1016_j_ress_2025_111088 crossref_primary_10_17780_ksujes_1627638 crossref_primary_10_1016_j_oceaneng_2024_120265 crossref_primary_10_1016_j_oceaneng_2025_122523 crossref_primary_10_1016_j_ress_2025_111111 crossref_primary_10_1016_j_apor_2025_104783 crossref_primary_10_1016_j_apor_2025_104438 crossref_primary_10_3390_math12172617 |
| Cites_doi | 10.1109/TPWRS.2009.2016589 10.1021/acs.jced.7b00072 10.1139/cjce-2016-0602 10.1155/2022/4055779 10.17531/ein.2022.2.9 10.3390/en12101965 10.1016/j.ijpvp.2021.104449 10.1016/j.engfailanal.2019.01.064 10.1016/j.ijpvp.2007.09.002 10.1016/j.ijimpeng.2018.05.001 10.1016/j.engfailanal.2015.11.052 10.1016/j.advengsoft.2006.08.047 10.1016/j.apor.2021.102637 10.1088/1742-6596/1529/3/032086 10.3390/pr11113134 10.1016/j.engstruct.2018.03.040 10.1016/S0308-0161(03)00005-X 10.1016/j.engfailanal.2011.12.002 10.3390/math10091382 10.1016/j.advengsoft.2017.05.006 10.1016/0308-0161(96)00009-9 10.1007/BF02916329 10.1016/j.engfailanal.2020.105124 10.3390/en5103892 10.3390/jmse9030281 10.1080/10916466.2013.842586 10.1016/j.engfailanal.2016.06.004 10.1109/ACCESS.2017.2731992 10.3390/app13074322 10.1016/j.ijpvp.2016.01.002 10.1179/1743278214Y.0000000248 10.1016/j.engfailanal.2016.04.032 10.7763/IJCTE.2011.V3.312 10.1111/ffe.12370 10.1016/S0308-0161(01)00124-7 10.1016/j.cageo.2005.12.009 10.3390/ma15062259 10.1002/eqe.141 10.1016/j.engfailanal.2018.07.011 10.7842/kigas.2015.19.5.81 10.1115/1.4064696 10.1177/09544062221145489 10.1016/S0167-4730(02)00039-5 10.1016/j.engstruct.2019.02.010 10.1016/j.jbiomech.2011.05.006 10.2174/18741495-v16-e220922-2022-30 10.1016/j.ijpvp.2004.07.018 10.1061/(ASCE)0733-947X(1994)120:6(989) 10.1016/j.oceaneng.2022.111382 10.1016/j.engfailanal.2018.06.011 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2024.118625 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2024_118625 S0029801824019632 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-f3d61c97aa64be1802d0d62b132ddb7cc146f664697c7bd415d735dc188bc6d43 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001264351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 03:32:59 EST 2025 Tue Nov 18 22:08:44 EST 2025 Sat Aug 17 15:44:14 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural reliability Latin hypercube sampling Offshore pipeline engineering Random sampling Incremental pressure analysis Pipeline integrity management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-f3d61c97aa64be1802d0d62b132ddb7cc146f664697c7bd415d735dc188bc6d43 |
| ORCID | 0000-0002-6506-0130 0009-0009-1932-8069 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2024_118625 crossref_citationtrail_10_1016_j_oceaneng_2024_118625 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_118625 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ossai (bib65) 2012 Ossai, Boswell, Davies (bib66) 2016 Lu, Feng, Fei (bib51) 2019 Li, Bai, Su, Li (bib47) 2016; 138 Xu, Li, Choung, Lee (bib87) 2017; 112 Wang, Xie, Su (bib84) 2022 Mondal, Dhar (bib58) 2017; 44 (bib22) 2005 Anwar (bib12) 2012 Minasny, McBratney (bib56) 2006; 32 Zhang, Tan, Xiao, Zhang, Ariffin (bib91) 2016; 39 Silva, Guerreiro, Loula (bib71) 2007; 38 Amaya-Gómez, Sánchez-Silva, Bastidas-Arteaga, Schoefs, Muñoz (bib11) 2019; 98 Yu, Chung, Wong, Lee, Zhang (bib90) 2009; 24 Olsson, Sandberg, Dahlblom (bib64) 2003; 25 Kiefner, Vieth (bib39) 1990 Spahić, Lundteigen, Hepsø (bib75) 2023 Lee, Young-Do, Kim (bib43) 2015 Xie, Wang, Xiong, Zhao, Pei (bib85) 2022 Benjamin, Freire, Vieira, Diniz, Andrade (bib20) 2005; 5 Batte, Fu, Kirkwood, Vu (bib18) 1997 Xu, Yang, Liu, Wang (bib86) 2017; 5 Zhou, Cai, Li, Song, Song, Ying, Wang, Fan, Du (bib93) 2022; 10 Walpole, Myers, Myers, Ye (bib83) 1993; vol. 5 Abyani, Bahaari (bib3) 2021; 193 Cech, Davis, Gambardella, Haskamp, Herrero González (bib24) 2016; 17 Chen, Wang, Yang, Yan, Jin (bib25) 2021; 111 Vamvatsikos, Allin Cornell (bib82) 2002; 31 Ben Seghier, Bettayeb, Correia, De Jesus, Calçada (bib19) 2018 Csa (bib27) 2007 Yang, Liu, Feng (bib89) 2020 Ossai, Boswell, Davies (bib67) 2016 Ahammed, Melchers (bib5) 1994; 120 McKay, Beckman, Conover (bib54) 1979; 21 Urrea-Quintero, Hirzinger, Nackenhorst (bib80) 2023 Al-Owaisi, Becker, Sun, Al-Shabibi, Al-Maharbi, Pervez, Al-Salmi (bib10) 2018; 93 Eckert (bib32) 2015; 50 McGurty (bib53) 2008 Teixeira, Guedes Soares, Netto, Estefen (bib78) 2008; 85 Din, Nor, Ngadi, Razak, Siraj (bib30) 2011 Tadepalli, Erdemir, Cavanagh (bib77) 2011; 44 Awuku, Huang, Yodo (bib16) 2023; 13 Lemaire (bib45) 2013 Torres, Motta, Afonso, Bouchonneau, Lyra, Willmersdorf, Pimentel (bib79) 2024; 146 (bib68) 2008 Sun, Cheng (bib76) 2018; 165 Kiefner, Vieth (bib38) 1990; 88 Lo, Karuppanan, Ovinis (bib50) 2021; 9 Lee, Kim (bib42) 2006; 20 Mokhtari, Melchers (bib57) 2018; 93 Klever, Stewart, Valk, van der (bib40) 1995 Hou, Wang, Zhang, Qin (bib35) 2019; 12 Melchers, Robert, Beck (bib55) 2017 Ahammed, Melchers (bib6) 1996; 69 Mustaffa (bib61) 2011 Smith (bib72) 2009 Idris, Mustaffa, Ben Seghier, Trung (bib37) 2021; 121 De Andrade, Benjamin, Machado, Pereira, Jacob, Carneiro, Guerreiro, Silva, Noronha (bib28) 2006; 2006 Fekete, Varga (bib33) 2012; 21 Liu, Hu, Zhang (bib49) 2013; vol. 2326 Soong (bib74) 2004 Akhfash, Arjmandi, Aman, Boxall, May (bib8) 2017; 62 Caleyo, González, Hallen (bib23) 2002; 79 Song, Sanborn (bib73) 2018; 119 Idris, Mustaffa, Ismil (bib36) 2020; 1529 Liao, Yao, Wu, Jia (bib48) 2012; 5 (bib14) 2009 Abyani, Bahaari (bib1) 2020; 181 Zhang, Sun, Zhang, Zhang, Li, Zhai (bib92) 2023; 11 De Leon, Macías (bib29) 2005; 82 Rodriguez (bib70) 2017 Obanijesu, Pareek, Tade (bib63) 2014; 32 (bib15) 2009 Leira, Naess, Brandrud Naess (bib44) 2016 (bib62) 2015 Ahmad, Abu Husain, Mohd Zaki, Mukhlas, Soom, Azman, Najafian (bib7) 2021 (bib13) 2023 Li, He, Nie (bib46) 2016 Abyani, Bahaari, Zarrin, Nasseri (bib4) 2022; 254 Makrakis, Psarropoulos, Chatzidakis, Tsompanakis (bib52) 2022 Morris (bib60) 2008 Yan, Tang, Chen, Shen (bib88) 2023; 237 Bi, Huang, Zhang, Gao (bib21) 2022 Mondal, Dhar (bib59) 2019; 186 Choi, Goo, Kim, Kim, Kim (bib26) 2003; 80 Vamvatsikos, Allin Cornell (bib81) 2002; 31 Abyani, Bahaari (bib2) 2020; 0 (bib31) 2010 Pitchford (bib69) 1999; 44 Al-Owaisi, Becker, Sun (bib9) 2016; 68 Bai, Yu (bib17) 2011; 4 Kumar, Mostafaei, Piedade, Devi, Karuppanan, Ovinis (bib41) 2022; 15 Klever (10.1016/j.oceaneng.2024.118625_bib40) 1995 Spahić (10.1016/j.oceaneng.2024.118625_bib75) Fekete (10.1016/j.oceaneng.2024.118625_bib33) 2012; 21 Zhou (10.1016/j.oceaneng.2024.118625_bib93) 2022; 10 Olsson (10.1016/j.oceaneng.2024.118625_bib64) 2003; 25 Silva (10.1016/j.oceaneng.2024.118625_bib71) 2007; 38 (10.1016/j.oceaneng.2024.118625_bib22) 2005 Ahammed (10.1016/j.oceaneng.2024.118625_bib6) 1996; 69 McGurty (10.1016/j.oceaneng.2024.118625_bib53) Xu (10.1016/j.oceaneng.2024.118625_bib87) 2017; 112 Li (10.1016/j.oceaneng.2024.118625_bib46) 2016 Kiefner (10.1016/j.oceaneng.2024.118625_bib38) 1990; 88 Mustaffa (10.1016/j.oceaneng.2024.118625_bib61) 2011 Tadepalli (10.1016/j.oceaneng.2024.118625_bib77) 2011; 44 Batte (10.1016/j.oceaneng.2024.118625_bib18) 1997 Soong (10.1016/j.oceaneng.2024.118625_bib74) 2004 Abyani (10.1016/j.oceaneng.2024.118625_bib1) 2020; 181 Lemaire (10.1016/j.oceaneng.2024.118625_bib45) 2013 Melchers (10.1016/j.oceaneng.2024.118625_bib55) De Leon (10.1016/j.oceaneng.2024.118625_bib29) 2005; 82 Bi (10.1016/j.oceaneng.2024.118625_bib21) 2022 (10.1016/j.oceaneng.2024.118625_bib62) 2015 Xu (10.1016/j.oceaneng.2024.118625_bib86) 2017; 5 Yan (10.1016/j.oceaneng.2024.118625_bib88) 2023; 237 Din (10.1016/j.oceaneng.2024.118625_bib30) 2011 Sun (10.1016/j.oceaneng.2024.118625_bib76) 2018; 165 Walpole (10.1016/j.oceaneng.2024.118625_bib83) 1993; vol. 5 Liu (10.1016/j.oceaneng.2024.118625_bib49) 2013; vol. 2326 Makrakis (10.1016/j.oceaneng.2024.118625_bib52) 2022 Mondal (10.1016/j.oceaneng.2024.118625_bib59) 2019; 186 Csa (10.1016/j.oceaneng.2024.118625_bib27) 2007 Lee (10.1016/j.oceaneng.2024.118625_bib42) 2006; 20 Lee (10.1016/j.oceaneng.2024.118625_bib43) 2015 Ossai (10.1016/j.oceaneng.2024.118625_bib66) 2016 Idris (10.1016/j.oceaneng.2024.118625_bib37) 2021; 121 Zhang (10.1016/j.oceaneng.2024.118625_bib91) 2016; 39 Hou (10.1016/j.oceaneng.2024.118625_bib35) 2019; 12 Li (10.1016/j.oceaneng.2024.118625_bib47) 2016; 138 Al-Owaisi (10.1016/j.oceaneng.2024.118625_bib10) 2018; 93 Benjamin (10.1016/j.oceaneng.2024.118625_bib20) 2005; 5 Lo (10.1016/j.oceaneng.2024.118625_bib50) 2021; 9 Xie (10.1016/j.oceaneng.2024.118625_bib85) 2022 Obanijesu (10.1016/j.oceaneng.2024.118625_bib63) 2014; 32 Smith (10.1016/j.oceaneng.2024.118625_bib72) 2009 Al-Owaisi (10.1016/j.oceaneng.2024.118625_bib9) 2016; 68 Ahmad (10.1016/j.oceaneng.2024.118625_bib7) 2021 Ossai (10.1016/j.oceaneng.2024.118625_bib65) 2012 Morris (10.1016/j.oceaneng.2024.118625_bib60) 2008 (10.1016/j.oceaneng.2024.118625_bib31) 2010 (10.1016/j.oceaneng.2024.118625_bib14) 2009 Leira (10.1016/j.oceaneng.2024.118625_bib44) Bai (10.1016/j.oceaneng.2024.118625_bib17) 2011; 4 Zhang (10.1016/j.oceaneng.2024.118625_bib92) 2023; 11 Vamvatsikos (10.1016/j.oceaneng.2024.118625_bib81) 2002; 31 Abyani (10.1016/j.oceaneng.2024.118625_bib4) 2022; 254 Kiefner (10.1016/j.oceaneng.2024.118625_bib39) 1990 Teixeira (10.1016/j.oceaneng.2024.118625_bib78) 2008; 85 Anwar (10.1016/j.oceaneng.2024.118625_bib12) 2012 Urrea-Quintero (10.1016/j.oceaneng.2024.118625_bib80) 2023 Abyani (10.1016/j.oceaneng.2024.118625_bib2) 2020; 0 Chen (10.1016/j.oceaneng.2024.118625_bib25) 2021; 111 De Andrade (10.1016/j.oceaneng.2024.118625_bib28) 2006; 2006 Cech (10.1016/j.oceaneng.2024.118625_bib24) 2016; 17 (10.1016/j.oceaneng.2024.118625_bib15) 2009 Awuku (10.1016/j.oceaneng.2024.118625_bib16) 2023; 13 Pitchford (10.1016/j.oceaneng.2024.118625_bib69) 1999; 44 Rodriguez (10.1016/j.oceaneng.2024.118625_bib70) Vamvatsikos (10.1016/j.oceaneng.2024.118625_bib82) 2002; 31 Caleyo (10.1016/j.oceaneng.2024.118625_bib23) 2002; 79 Ahammed (10.1016/j.oceaneng.2024.118625_bib5) 1994; 120 Amaya-Gómez (10.1016/j.oceaneng.2024.118625_bib11) 2019; 98 Yang (10.1016/j.oceaneng.2024.118625_bib89) 2020 Mokhtari (10.1016/j.oceaneng.2024.118625_bib57) 2018; 93 Eckert (10.1016/j.oceaneng.2024.118625_bib32) 2015; 50 Song (10.1016/j.oceaneng.2024.118625_bib73) 2018; 119 Yu (10.1016/j.oceaneng.2024.118625_bib90) 2009; 24 Minasny (10.1016/j.oceaneng.2024.118625_bib56) 2006; 32 Choi (10.1016/j.oceaneng.2024.118625_bib26) 2003; 80 Idris (10.1016/j.oceaneng.2024.118625_bib36) 2020; 1529 Liao (10.1016/j.oceaneng.2024.118625_bib48) 2012; 5 Mondal (10.1016/j.oceaneng.2024.118625_bib58) 2017; 44 Kumar (10.1016/j.oceaneng.2024.118625_bib41) 2022; 15 Lu (10.1016/j.oceaneng.2024.118625_bib51) 2019 Wang (10.1016/j.oceaneng.2024.118625_bib84) 2022 Torres (10.1016/j.oceaneng.2024.118625_bib79) 2024; 146 Ben Seghier (10.1016/j.oceaneng.2024.118625_bib19) 2018 Akhfash (10.1016/j.oceaneng.2024.118625_bib8) 2017; 62 Ossai (10.1016/j.oceaneng.2024.118625_bib67) 2016 Abyani (10.1016/j.oceaneng.2024.118625_bib3) 2021; 193 McKay (10.1016/j.oceaneng.2024.118625_bib54) 1979; 21 |
| References_xml | – volume: 32 start-page: 2538 year: 2014 end-page: 2548 ident: bib63 article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines publication-title: Petrol. Sci. Technol. – volume: 254 year: 2022 ident: bib4 article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques publication-title: Ocean. Eng. – volume: 1529 year: 2020 ident: bib36 article-title: Burst capacity due to corrosion acting at radial orientation of pipeline publication-title: J. Phys. Conf. – year: 2022 ident: bib52 article-title: Optimal route selection of offshore pipelines subjected to submarine landslides publication-title: Open Civ. Eng. J. – volume: 17 start-page: 16 year: 2016 end-page: 17 ident: bib24 article-title: Performance of European cross-country oil pipelines publication-title: Concawe Rev. – volume: 111 year: 2021 ident: bib25 article-title: On the effect of long corrosion defect and axial tension on the burst pressure of subsea pipelines publication-title: Appl. Ocean Res. – volume: 119 start-page: 40 year: 2018 end-page: 44 ident: bib73 article-title: Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates publication-title: Int. J. Impact Eng. – year: 2016 ident: bib44 article-title: Reliability analysis of corroding pipelines by enhanced Monte Carlo simulation – volume: 9 start-page: 281 year: 2021 ident: bib50 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN publication-title: J. Mar. Sci. Eng. – year: 2008 ident: bib60 article-title: A Practical Guide to Reliable Finite Element Modelling – year: 2009 ident: bib15 publication-title: Manual for Determining the Remaining Strength of Corroded Pipelines – volume: 4 start-page: 329 year: 2011 end-page: 333 ident: bib17 article-title: Pipeline on-Bottom stability analysis based on FEM model publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 121 year: 2021 ident: bib37 article-title: Burst capacity and development of interaction rules for pipelines considering radial interacting corrosion defects publication-title: Eng. Fail. Anal. – year: 2008 ident: bib53 article-title: Longhorn Pipeline stops fuel flow due to fire | Reuters – year: 2019 ident: bib51 article-title: Weighted regression-based extremum response surface method for structural dynamic fuzzy reliability analysis publication-title: Energies – year: 2016 ident: bib66 article-title: Application of markov modelling and Monte Carlo simulation technique in failure probability estimation — a consideration of corrosion defects of internally corroded pipelines publication-title: Eng. Fail. Anal. – year: 2020 ident: bib89 article-title: Tensile fracture behavior of corroded pipeline: Part 1—experimental characterization publication-title: Adv. Mater. Sci. Eng. – year: 2013 ident: bib45 article-title: Structural reliability publication-title: Structural Reliability – year: 2023 ident: bib75 article-title: Context-based and image-based subsea pipeline degradation monitoring – year: 2012 ident: bib12 article-title: The Effect of Corrosion Defects on Burst Pressure of Pipelines – year: 2005 ident: bib22 article-title: BS 7910 - Guide to methods for assessing the acceptability of flaws in metallic structures publication-title: BRITISH STANDARD – volume: 93 start-page: 200 year: 2018 end-page: 213 ident: bib10 article-title: An experimental investigation of the effect of defect shape and orientation on the burst pressure of pressurised pipes publication-title: Eng. Fail. Anal. – volume: 62 start-page: 2578 year: 2017 end-page: 2583 ident: bib8 article-title: Gas hydrate Thermodynamic inhibition with MDEA for reduced MEG Circulation publication-title: Journal of Chemical & Engineering Data – volume: 5 start-page: 781 year: 2005 end-page: 783 ident: bib20 article-title: Burst tests ON pipeline CONTAINING interacting CORROSION defects publication-title: 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005) – year: 2007 ident: bib27 article-title: Z662-07: Limit State Equation for Burst of Large Leaks and Rupture for Corrosion Defect. Oil and Gas Pipeline Systems – year: 1990 ident: bib39 article-title: PC program speeds new criterion for evaluating corroded pipe (Journal Article) | OSTI.GOV publication-title: Oil Gas J. – volume: 24 start-page: 661 year: 2009 end-page: 667 ident: bib90 article-title: Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition publication-title: IEEE Trans. Power Syst. – year: 2011 ident: bib30 article-title: Automated Matching systems and correctional method for improved inspection data quality publication-title: International Journal of Computer Theory and Engineering – volume: 20 start-page: 2124 year: 2006 end-page: 2135 ident: bib42 article-title: The reliability estimation of pipeline using FORM, SORM and Monte Carlo simulation with FAD publication-title: J. Mech. Sci. Technol. – volume: 50 start-page: 163 year: 2015 end-page: 168 ident: bib32 article-title: Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry publication-title: Corrosion Eng. Sci. Technol. – volume: 44 start-page: 2337 year: 2011 end-page: 2343 ident: bib77 article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear publication-title: J. Biomech. – volume: 13 year: 2023 ident: bib16 article-title: Predicting natural gas pipeline failures caused by natural forces: an artificial intelligence Classification approach publication-title: Appl. Sci. – volume: 44 start-page: 17 year: 1999 end-page: 27 ident: bib69 article-title: Specification and requirements for the intelligent pig inspection of pipelines publication-title: Pipes Pipelines Int. – volume: 31 start-page: 491 year: 2002 end-page: 514 ident: bib81 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dynam. – volume: 68 start-page: 172 year: 2016 end-page: 186 ident: bib9 article-title: Analysis of shape and location effects of closely spaced metal loss defects in pressurised pipes publication-title: Eng. Fail. Anal. – volume: 11 start-page: 3134 year: 2023 ident: bib92 article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location publication-title: Processes – volume: 82 start-page: 123 year: 2005 end-page: 128 ident: bib29 article-title: Effect of spatial correlation on the failure probability of pipelines under corrosion publication-title: Int. J. Pres. Ves. Pip. – volume: 112 start-page: 255 year: 2017 end-page: 266 ident: bib87 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv. Eng. Software – volume: 186 start-page: 43 year: 2019 end-page: 51 ident: bib59 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. – volume: 5 start-page: 15197 year: 2017 end-page: 15205 ident: bib86 article-title: An improved Latin hypercube sampling method to enhance numerical stability considering the correlation of input variables publication-title: IEEE Access – year: 2017 ident: bib70 article-title: Hybrid Monte Carlo methods in computational finance – volume: 88 year: 1990 ident: bib38 article-title: New method corrects criterion for evaluating corroded pipe (Journal Article) | OSTI.GOV publication-title: Oil Gas J. – volume: vol. 5 year: 1993 ident: bib83 publication-title: Probability and Statistics for Engineers and Scientists – year: 2022 ident: bib84 article-title: Dynamic reliability evaluation of buried corroded pipeline under rockfall impact publication-title: Eksploatacja I Niezawodnosc - Maintenance and Reliability – volume: 98 start-page: 190 year: 2019 end-page: 214 ident: bib11 article-title: Reliability assessments of corroded pipelines based on internal pressure – a review publication-title: Eng. Fail. Anal. – year: 2015 ident: bib43 article-title: Reliability assessment for corroded pipelines by separable Monte Carlo method publication-title: Journal of the Korean Institute of Gas – volume: 44 start-page: 589 year: 2017 end-page: 597 ident: bib58 article-title: Interaction of multiple corrosion defects on burst pressure of pipelines publication-title: Can. J. Civ. Eng. – volume: 21 start-page: 239 year: 1979 ident: bib54 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 5 start-page: 3892 year: 2012 end-page: 3907 ident: bib48 article-title: A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion publication-title: Energies – year: 2022 ident: bib21 article-title: Reliability analysis of oil and gas pipelines based on step-down-stress testing in corrosive environments publication-title: Math. Probl Eng. – volume: 69 start-page: 267 year: 1996 end-page: 272 ident: bib6 article-title: Reliability estimation of pressurised pipelines subject to localised corrosion defects publication-title: Int. J. Pres. Ves. Pip. – year: 2023 ident: bib80 article-title: Application of State‐space Models with Frequency‐dependent Uncertainty for Efficient Reliability Analysis of Complex Structures – year: 2016 ident: bib67 article-title: Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines publication-title: Eng. Fail. Anal. – year: 1997 ident: bib18 article-title: Advanced Methods for Integrity Assessment of Corroded Pipelines – volume: 165 start-page: 278 year: 2018 end-page: 286 ident: bib76 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng. Struct. – start-page: 1 year: 2012 end-page: 10 ident: bib65 article-title: Advances in asset management techniques: an overview of corrosion mechanisms and mitigation strategies for oil and gas pipelines publication-title: ISRN Corrosion – volume: 181 year: 2020 ident: bib1 article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube Sampling methods publication-title: Int. J. Pres. Ves. Pip. – volume: 25 start-page: 47 year: 2003 end-page: 68 ident: bib64 article-title: On Latin hypercube sampling for structural reliability analysis publication-title: Struct. Saf. – volume: 85 start-page: 228 year: 2008 end-page: 237 ident: bib78 article-title: Reliability of pipelines with corrosion defects publication-title: Int. J. Pres. Ves. Pip. – year: 1995 ident: bib40 article-title: New developments in burst strength predictions for locally corroded pipelines publication-title: Int. Conf. Offshore Mech. Arctic Eng. – year: 2008 ident: bib68 article-title: Pipeline101 – volume: 79 start-page: 77 year: 2002 end-page: 86 ident: bib23 article-title: A study on the reliability assessment methodology for pipelines with active corrosion defects publication-title: Int. J. Pres. Ves. Pip. – volume: 93 start-page: 144 year: 2018 end-page: 156 ident: bib57 article-title: A new approach to assess the remaining strength of corroded steel pipes publication-title: Eng. Fail. Anal. – volume: 0 start-page: 1 year: 2020 end-page: 14 ident: bib2 article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines publication-title: Structure and Infrastructure Engineering – volume: 2006 start-page: 1 year: 2006 end-page: 11 ident: bib28 article-title: Finite element modeling of the failure behavior of pipelines containing interacting corrosion defects publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – year: 2022 ident: bib85 article-title: A crack propagation method for pipelines with interacting corrosion and crack defects publication-title: Sensors – year: 2017 ident: bib55 article-title: Structural reliability analysis and prediction – volume: 10 start-page: 1382 year: 2022 ident: bib93 article-title: Reliability modelling of pipeline failure under the impact of submarine slides-copula method publication-title: Mathematics – volume: 146 year: 2024 ident: bib79 article-title: Failure pressure evaluation of corroded pipeline using semi-empirical and finite element analysis publication-title: Journal of Pressure Vessel Technology, Transactions of the ASME – start-page: 730 year: 2018 end-page: 737 ident: bib19 publication-title: Structural Reliability of Corroded Pipeline Using the So-Called Separable Monte Carlo Method – year: 2009 ident: bib14 article-title: Manual for Determining the Remaining Strength of Corroded Pipelines – volume: vol. 2326 start-page: 24 year: 2013 end-page: 31 ident: bib49 publication-title: Probability Analysis of Damage to Offshore Pipeline by Ship Factors – volume: 38 start-page: 868 year: 2007 end-page: 875 ident: bib71 article-title: A study of pipe interacting corrosion defects using the FEM and neural networks publication-title: Adv. Eng. Software – volume: 193 year: 2021 ident: bib3 article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines publication-title: Int. J. Pres. Ves. Pip. – volume: 21 start-page: 21 year: 2012 end-page: 30 ident: bib33 article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines publication-title: Eng. Fail. Anal. – volume: 120 start-page: 989 year: 1994 end-page: 1002 ident: bib5 article-title: Reliability of underground pipelines subject to corrosion publication-title: J. Transport. Eng. – volume: 138 start-page: 8 year: 2016 end-page: 18 ident: bib47 article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline publication-title: Int. J. Pres. Ves. Pip. – year: 2021 ident: bib7 article-title: Offshore structural reliability assessment by probabilistic Procedures—a review publication-title: J. Mar. Sci. Eng. – volume: 12 year: 2019 ident: bib35 article-title: Non-Probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables publication-title: Energies – volume: 80 start-page: 121 year: 2003 end-page: 128 ident: bib26 article-title: Development of limit load solutions for corroded gas pipelines publication-title: Int. J. Pres. Ves. Pip. – year: 2010 ident: bib31 article-title: Recommended Practice DNV-RP-F101 Corroded Pipelines – volume: 31 start-page: 491 year: 2002 end-page: 514 ident: bib82 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dynam. – volume: 237 start-page: 3717 year: 2023 end-page: 3747 ident: bib88 article-title: Collapse of corroded pipes under external pressure considering corrosion asymmetry, non-uniformity, and initial ovality publication-title: Proc. IME C J. Mech. Eng. Sci. – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bib56 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – year: 2011 ident: bib61 article-title: System Reliability Assessment of Offshore Pipelines – volume: 15 start-page: 2259 year: 2022 ident: bib41 article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings publication-title: Materials – volume: 39 start-page: 453 year: 2016 end-page: 466 ident: bib91 article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects publication-title: Fatig. Fract. Eng. Mater. Struct. – year: 2015 ident: bib62 article-title: Integrity Management of Gas Transmission Pipelines in High Consequence Areas – year: 2004 ident: bib74 article-title: Fundamentals of Probability and Statistics for Engineers – year: 2016 ident: bib46 article-title: Structural reliability calculation method based on the dual neural network and direct integration method publication-title: Neural Comput. Appl. – year: 2023 ident: bib13 article-title: API 579 standard: Fitness for service assessment procedure – year: 2009 ident: bib72 article-title: ABAQUS/Standard User's Manual, Version 6.9 – volume: 24 start-page: 661 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2024.118625_bib90 article-title: Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2016589 – volume: 62 start-page: 2578 issue: 9 year: 2017 ident: 10.1016/j.oceaneng.2024.118625_bib8 article-title: Gas hydrate Thermodynamic inhibition with MDEA for reduced MEG Circulation publication-title: Journal of Chemical & Engineering Data doi: 10.1021/acs.jced.7b00072 – start-page: 730 year: 2018 ident: 10.1016/j.oceaneng.2024.118625_bib19 – volume: 44 start-page: 589 issue: 8 year: 2017 ident: 10.1016/j.oceaneng.2024.118625_bib58 article-title: Interaction of multiple corrosion defects on burst pressure of pipelines publication-title: Can. J. Civ. Eng. doi: 10.1139/cjce-2016-0602 – year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib21 article-title: Reliability analysis of oil and gas pipelines based on step-down-stress testing in corrosive environments publication-title: Math. Probl Eng. doi: 10.1155/2022/4055779 – year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib84 article-title: Dynamic reliability evaluation of buried corroded pipeline under rockfall impact publication-title: Eksploatacja I Niezawodnosc - Maintenance and Reliability doi: 10.17531/ein.2022.2.9 – ident: 10.1016/j.oceaneng.2024.118625_bib53 – volume: 12 issue: 10 year: 2019 ident: 10.1016/j.oceaneng.2024.118625_bib35 article-title: Non-Probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables publication-title: Energies doi: 10.3390/en12101965 – volume: 4 start-page: 329 year: 2011 ident: 10.1016/j.oceaneng.2024.118625_bib17 article-title: Pipeline on-Bottom stability analysis based on FEM model publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 193 year: 2021 ident: 10.1016/j.oceaneng.2024.118625_bib3 article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2021.104449 – year: 2009 ident: 10.1016/j.oceaneng.2024.118625_bib72 – year: 2005 ident: 10.1016/j.oceaneng.2024.118625_bib22 article-title: BS 7910 - Guide to methods for assessing the acceptability of flaws in metallic structures publication-title: BRITISH STANDARD – volume: 98 start-page: 190 year: 2019 ident: 10.1016/j.oceaneng.2024.118625_bib11 article-title: Reliability assessments of corroded pipelines based on internal pressure – a review publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.01.064 – ident: 10.1016/j.oceaneng.2024.118625_bib70 – volume: 85 start-page: 228 issue: 4 year: 2008 ident: 10.1016/j.oceaneng.2024.118625_bib78 article-title: Reliability of pipelines with corrosion defects publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2007.09.002 – volume: 119 start-page: 40 year: 2018 ident: 10.1016/j.oceaneng.2024.118625_bib73 article-title: Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.05.001 – year: 2010 ident: 10.1016/j.oceaneng.2024.118625_bib31 – year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib67 article-title: Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.11.052 – volume: 38 start-page: 868 issue: 11–12 year: 2007 ident: 10.1016/j.oceaneng.2024.118625_bib71 article-title: A study of pipe interacting corrosion defects using the FEM and neural networks publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2006.08.047 – year: 2009 ident: 10.1016/j.oceaneng.2024.118625_bib15 – volume: 111 year: 2021 ident: 10.1016/j.oceaneng.2024.118625_bib25 article-title: On the effect of long corrosion defect and axial tension on the burst pressure of subsea pipelines publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102637 – volume: 1529 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2024.118625_bib36 article-title: Burst capacity due to corrosion acting at radial orientation of pipeline publication-title: J. Phys. Conf. doi: 10.1088/1742-6596/1529/3/032086 – volume: 88 issue: 32 year: 1990 ident: 10.1016/j.oceaneng.2024.118625_bib38 article-title: New method corrects criterion for evaluating corroded pipe (Journal Article) | OSTI.GOV publication-title: Oil Gas J. – year: 1990 ident: 10.1016/j.oceaneng.2024.118625_bib39 article-title: PC program speeds new criterion for evaluating corroded pipe (Journal Article) | OSTI.GOV publication-title: Oil Gas J. – volume: 11 start-page: 3134 issue: 11 year: 2023 ident: 10.1016/j.oceaneng.2024.118625_bib92 article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location publication-title: Processes doi: 10.3390/pr11113134 – volume: 165 start-page: 278 year: 2018 ident: 10.1016/j.oceaneng.2024.118625_bib76 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.03.040 – volume: 80 start-page: 121 issue: 2 year: 2003 ident: 10.1016/j.oceaneng.2024.118625_bib26 article-title: Development of limit load solutions for corroded gas pipelines publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/S0308-0161(03)00005-X – volume: 21 start-page: 21 year: 2012 ident: 10.1016/j.oceaneng.2024.118625_bib33 article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2011.12.002 – year: 1997 ident: 10.1016/j.oceaneng.2024.118625_bib18 – volume: 10 start-page: 1382 issue: 9 year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib93 article-title: Reliability modelling of pipeline failure under the impact of submarine slides-copula method publication-title: Mathematics doi: 10.3390/math10091382 – year: 2007 ident: 10.1016/j.oceaneng.2024.118625_bib27 – year: 2019 ident: 10.1016/j.oceaneng.2024.118625_bib51 article-title: Weighted regression-based extremum response surface method for structural dynamic fuzzy reliability analysis publication-title: Energies – ident: 10.1016/j.oceaneng.2024.118625_bib55 – volume: 112 start-page: 255 year: 2017 ident: 10.1016/j.oceaneng.2024.118625_bib87 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.05.006 – volume: 17 start-page: 16 issue: 2 year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib24 article-title: Performance of European cross-country oil pipelines publication-title: Concawe Rev. – volume: 69 start-page: 267 issue: 3 year: 1996 ident: 10.1016/j.oceaneng.2024.118625_bib6 article-title: Reliability estimation of pressurised pipelines subject to localised corrosion defects publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/0308-0161(96)00009-9 – volume: 20 start-page: 2124 issue: 12 year: 2006 ident: 10.1016/j.oceaneng.2024.118625_bib42 article-title: The reliability estimation of pipeline using FORM, SORM and Monte Carlo simulation with FAD publication-title: J. Mech. Sci. Technol. doi: 10.1007/BF02916329 – year: 2020 ident: 10.1016/j.oceaneng.2024.118625_bib89 article-title: Tensile fracture behavior of corroded pipeline: Part 1—experimental characterization publication-title: Adv. Mater. Sci. Eng. – volume: 121 year: 2021 ident: 10.1016/j.oceaneng.2024.118625_bib37 article-title: Burst capacity and development of interaction rules for pipelines considering radial interacting corrosion defects publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.105124 – volume: 5 start-page: 3892 issue: 10 year: 2012 ident: 10.1016/j.oceaneng.2024.118625_bib48 article-title: A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion publication-title: Energies doi: 10.3390/en5103892 – volume: 9 start-page: 281 issue: 3 year: 2021 ident: 10.1016/j.oceaneng.2024.118625_bib50 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9030281 – ident: 10.1016/j.oceaneng.2024.118625_bib44 – volume: 32 start-page: 2538 issue: 21 year: 2014 ident: 10.1016/j.oceaneng.2024.118625_bib63 article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines publication-title: Petrol. Sci. Technol. doi: 10.1080/10916466.2013.842586 – year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib66 article-title: Application of markov modelling and Monte Carlo simulation technique in failure probability estimation — a consideration of corrosion defects of internally corroded pipelines publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.06.004 – volume: 5 start-page: 15197 year: 2017 ident: 10.1016/j.oceaneng.2024.118625_bib86 article-title: An improved Latin hypercube sampling method to enhance numerical stability considering the correlation of input variables publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2731992 – volume: vol. 5 year: 1993 ident: 10.1016/j.oceaneng.2024.118625_bib83 – year: 1995 ident: 10.1016/j.oceaneng.2024.118625_bib40 article-title: New developments in burst strength predictions for locally corroded pipelines publication-title: Int. Conf. Offshore Mech. Arctic Eng. – volume: vol. 2326 start-page: 24 year: 2013 ident: 10.1016/j.oceaneng.2024.118625_bib49 – year: 2011 ident: 10.1016/j.oceaneng.2024.118625_bib61 – year: 2013 ident: 10.1016/j.oceaneng.2024.118625_bib45 article-title: Structural reliability – volume: 181 issue: August 2019 year: 2020 ident: 10.1016/j.oceaneng.2024.118625_bib1 article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube Sampling methods publication-title: Int. J. Pres. Ves. Pip. – volume: 13 issue: 7 year: 2023 ident: 10.1016/j.oceaneng.2024.118625_bib16 article-title: Predicting natural gas pipeline failures caused by natural forces: an artificial intelligence Classification approach publication-title: Appl. Sci. doi: 10.3390/app13074322 – year: 2015 ident: 10.1016/j.oceaneng.2024.118625_bib62 – volume: 138 start-page: 8 year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib47 article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2016.01.002 – volume: 50 start-page: 163 issue: 3 year: 2015 ident: 10.1016/j.oceaneng.2024.118625_bib32 article-title: Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry publication-title: Corrosion Eng. Sci. Technol. doi: 10.1179/1743278214Y.0000000248 – volume: 68 start-page: 172 year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib9 article-title: Analysis of shape and location effects of closely spaced metal loss defects in pressurised pipes publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.04.032 – year: 2008 ident: 10.1016/j.oceaneng.2024.118625_bib60 – year: 2009 ident: 10.1016/j.oceaneng.2024.118625_bib14 – year: 2011 ident: 10.1016/j.oceaneng.2024.118625_bib30 article-title: Automated Matching systems and correctional method for improved inspection data quality publication-title: International Journal of Computer Theory and Engineering doi: 10.7763/IJCTE.2011.V3.312 – volume: 39 start-page: 453 issue: 4 year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib91 article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects publication-title: Fatig. Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12370 – volume: 79 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.oceaneng.2024.118625_bib23 article-title: A study on the reliability assessment methodology for pipelines with active corrosion defects publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/S0308-0161(01)00124-7 – volume: 32 start-page: 1378 issue: 9 year: 2006 ident: 10.1016/j.oceaneng.2024.118625_bib56 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 15 start-page: 2259 issue: 6 year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib41 article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings publication-title: Materials doi: 10.3390/ma15062259 – volume: 31 start-page: 491 issue: 3 year: 2002 ident: 10.1016/j.oceaneng.2024.118625_bib82 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dynam. doi: 10.1002/eqe.141 – volume: 93 start-page: 144 year: 2018 ident: 10.1016/j.oceaneng.2024.118625_bib57 article-title: A new approach to assess the remaining strength of corroded steel pipes publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.07.011 – year: 2015 ident: 10.1016/j.oceaneng.2024.118625_bib43 article-title: Reliability assessment for corroded pipelines by separable Monte Carlo method publication-title: Journal of the Korean Institute of Gas doi: 10.7842/kigas.2015.19.5.81 – volume: 31 start-page: 491 issue: 3 year: 2002 ident: 10.1016/j.oceaneng.2024.118625_bib81 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dynam. doi: 10.1002/eqe.141 – volume: 146 issue: 2 year: 2024 ident: 10.1016/j.oceaneng.2024.118625_bib79 article-title: Failure pressure evaluation of corroded pipeline using semi-empirical and finite element analysis publication-title: Journal of Pressure Vessel Technology, Transactions of the ASME doi: 10.1115/1.4064696 – volume: 237 start-page: 3717 issue: 16 year: 2023 ident: 10.1016/j.oceaneng.2024.118625_bib88 article-title: Collapse of corroded pipes under external pressure considering corrosion asymmetry, non-uniformity, and initial ovality publication-title: Proc. IME C J. Mech. Eng. Sci. doi: 10.1177/09544062221145489 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 10.1016/j.oceaneng.2024.118625_bib54 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 25 start-page: 47 issue: 1 year: 2003 ident: 10.1016/j.oceaneng.2024.118625_bib64 article-title: On Latin hypercube sampling for structural reliability analysis publication-title: Struct. Saf. doi: 10.1016/S0167-4730(02)00039-5 – start-page: 1 year: 2012 ident: 10.1016/j.oceaneng.2024.118625_bib65 article-title: Advances in asset management techniques: an overview of corrosion mechanisms and mitigation strategies for oil and gas pipelines publication-title: ISRN Corrosion – volume: 2006 start-page: 1 year: 2006 ident: 10.1016/j.oceaneng.2024.118625_bib28 article-title: Finite element modeling of the failure behavior of pipelines containing interacting corrosion defects publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 186 start-page: 43 year: 2019 ident: 10.1016/j.oceaneng.2024.118625_bib59 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.02.010 – volume: 0 start-page: 1 issue: 0 year: 2020 ident: 10.1016/j.oceaneng.2024.118625_bib2 article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines publication-title: Structure and Infrastructure Engineering – year: 2012 ident: 10.1016/j.oceaneng.2024.118625_bib12 – volume: 44 start-page: 2337 issue: 12 year: 2011 ident: 10.1016/j.oceaneng.2024.118625_bib77 article-title: Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.05.006 – year: 2016 ident: 10.1016/j.oceaneng.2024.118625_bib46 article-title: Structural reliability calculation method based on the dual neural network and direct integration method publication-title: Neural Comput. Appl. – year: 2023 ident: 10.1016/j.oceaneng.2024.118625_bib80 – year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib52 article-title: Optimal route selection of offshore pipelines subjected to submarine landslides publication-title: Open Civ. Eng. J. doi: 10.2174/18741495-v16-e220922-2022-30 – year: 2021 ident: 10.1016/j.oceaneng.2024.118625_bib7 article-title: Offshore structural reliability assessment by probabilistic Procedures—a review publication-title: J. Mar. Sci. Eng. – year: 2004 ident: 10.1016/j.oceaneng.2024.118625_bib74 – ident: 10.1016/j.oceaneng.2024.118625_bib75 – volume: 82 start-page: 123 issue: 2 year: 2005 ident: 10.1016/j.oceaneng.2024.118625_bib29 article-title: Effect of spatial correlation on the failure probability of pipelines under corrosion publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2004.07.018 – volume: 120 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.oceaneng.2024.118625_bib5 article-title: Reliability of underground pipelines subject to corrosion publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(1994)120:6(989) – year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib85 article-title: A crack propagation method for pipelines with interacting corrosion and crack defects publication-title: Sensors – volume: 5 start-page: 781 issue: 1 year: 2005 ident: 10.1016/j.oceaneng.2024.118625_bib20 article-title: Burst tests ON pipeline CONTAINING interacting CORROSION defects publication-title: 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005) – volume: 254 year: 2022 ident: 10.1016/j.oceaneng.2024.118625_bib4 article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111382 – volume: 44 start-page: 17 issue: 1 year: 1999 ident: 10.1016/j.oceaneng.2024.118625_bib69 article-title: Specification and requirements for the intelligent pig inspection of pipelines publication-title: Pipes Pipelines Int. – volume: 93 start-page: 200 year: 2018 ident: 10.1016/j.oceaneng.2024.118625_bib10 article-title: An experimental investigation of the effect of defect shape and orientation on the burst pressure of pressurised pipes publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.06.011 |
| SSID | ssj0006603 |
| Score | 2.4719884 |
| Snippet | Internal corrosion poses a significant threat to offshore pipeline services. Toward offshore pipeline integrity management, this paper aims to use Finite... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118625 |
| SubjectTerms | Incremental pressure analysis Latin hypercube sampling Offshore pipeline engineering Pipeline integrity management Random sampling Structural reliability |
| Title | Reliability assessment for pipelines corroded by longitudinally aligned defects |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2024.118625 |
| Volume | 310 |
| WOSCitedRecordID | wos001264351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF-k9UEF0aq09YN98O1IvWST_Xg8paKCrdAK9xb207tyTY7eVXr96zub3XyIhSriS8gHk5CdHzOzw8xvEHqrCgem17lEMmmSXGieKEctXDLHnOHUynEzbIIdHfHpVHyL8ztXzTgBVlX86kos_6uq4R4o27fO_oW6u5fCDTgHpcMR1A7HP1K8LzIO5Nubkex4N5tywuV86dvP7WoEe06wnCH6XNR-ZtGl8fOxFiCzmP8A2zsytqn0GEavx9rn7W1PYdiBAlytnVfX0tgmTXNSz-ymq914L2dSho72r_VMnp9L3xN53TmEidqEyVL-8Sr2psVMRJZ7Ex56MUN6rG2R6euRQruA8G6QD00uCaWsv5nvkEk4O6j978DfHPjPgFWHbVfRO6yujPCkIZCHd0NY4i0JuOLtjBUCDPT25PPh9Evnkykdk7bYxwsMesVv_9rtYcog9Dh9gh7HPQOeBF0_RfdstYMeDpgkd9CjRjWRfvwZOh6AAPcgwAAC3IEAtyDAaoN_BQGOIMARBM_R94-Hpx8-JXF0RqJJmq0TRwxNtWBS0lxZz_JnxoZmKiWZMYppDQ7SUZpTwTRTBqI4w0hhdMq50tTk5AXaqurK7iIsmRBKpialFrbyknOiiVNF6owhnKl8DxXtSpU68sr78SaLsi0gPCvbFS79CpdhhffQu05uGZhV7pQQrSLKGB-GuK8E_Nwhu_8Psi_Rgx7ur9DW-uLSvkb39c_1fHXxJkLtBi-jk6g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+assessment+for+pipelines+corroded+by+longitudinally+aligned+defects&rft.jtitle=Ocean+engineering&rft.au=Hosseinzadeh%2C+Soheyl&rft.au=Bahaari%2C+Mohammad+Reza&rft.au=Abyani%2C+Mohsen&rft.date=2024-10-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=310&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.118625&rft.externalDocID=S0029801824019632 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |