Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models
As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification i...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 123; s. 106225 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification is still a challenging task. In this paper, we develop a Ranking Teaching–Learning-Based Optimization (RTLBO) to solve the problem, in which Teaching–Learning-Based Optimization (TLBO) is a population-based swarm algorithm and mimics the learning process in a classroom. RTLBO ranks learners into superior and inferior groups, in which the outstanding learners learn from the top three agents to boost the local search. In contrast, the low learners learn from each other by guidance. The two phases are in parallel to balance the local and global search. The proposed RTLBO is used to extract parameters of different models, including the single diode model, double diode model and three PV module models. TLBO, four TLBO variants, and fifteen meta-heuristic algorithms are selected as the rivals of RTLBO. Several experiments have shown that our method is a reliable and effective algorithm when addressing the parameters of PV systems. |
|---|---|
| AbstractList | As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification is still a challenging task. In this paper, we develop a Ranking Teaching–Learning-Based Optimization (RTLBO) to solve the problem, in which Teaching–Learning-Based Optimization (TLBO) is a population-based swarm algorithm and mimics the learning process in a classroom. RTLBO ranks learners into superior and inferior groups, in which the outstanding learners learn from the top three agents to boost the local search. In contrast, the low learners learn from each other by guidance. The two phases are in parallel to balance the local and global search. The proposed RTLBO is used to extract parameters of different models, including the single diode model, double diode model and three PV module models. TLBO, four TLBO variants, and fifteen meta-heuristic algorithms are selected as the rivals of RTLBO. Several experiments have shown that our method is a reliable and effective algorithm when addressing the parameters of PV systems. |
| ArticleNumber | 106225 |
| Author | Luo, Wenguan Yu, Xiaobing Wang, Xuming Hu, Zhengpeng |
| Author_xml | – sequence: 1 givenname: Xiaobing surname: Yu fullname: Yu, Xiaobing email: 002257@nuist.edu.cn – sequence: 2 givenname: Zhengpeng surname: Hu fullname: Hu, Zhengpeng – sequence: 3 givenname: Xuming surname: Wang fullname: Wang, Xuming – sequence: 4 givenname: Wenguan surname: Luo fullname: Luo, Wenguan |
| BookMark | eNqFkN1KAzEQhYNUsFZfQfICW5NsN7sLXijFPygIotdhNjvbpm6TJQmCXvkOvqFPYmr1xptezWGGc5jzHZORdRYJOeNsyhmX5-sp2iUMA5ipYCJPSylEcUDGvCrzTJayHpExqwuR8bqUR-Q4hDVjLK9mckz0I9gXY5c0IuhVEl8fnz2Ct0lmDQRsqRui2Zh3iMZZCv3SeRNXGxodxZAuEJHGFdIBPGwwog_UdTS4HjzduBb7cEIOO-gDnv7OCXm-uX6a32WLh9v7-dUi0zkXMeu4FLzS0HDeihnKumpK3QhdM9mUQjI9QyxaXrMCeVEVXacrqMs87bAqkHX5hMhdrvYuBI-dGnz6z78pztQWlVqrP1Rqi0rtUCXjxT-jNvGnb_Rg-v32y509dcVXg14FbdBqbI1HHVXrzL6Ib-Q4j04 |
| CitedBy_id | crossref_primary_10_1016_j_apm_2025_116425 crossref_primary_10_1016_j_enconman_2024_119468 crossref_primary_10_1016_j_energy_2023_129300 crossref_primary_10_1016_j_solener_2024_112353 crossref_primary_10_1109_TIM_2025_3551857 crossref_primary_10_1038_s41598_024_58503_y crossref_primary_10_1016_j_engappai_2023_107579 crossref_primary_10_3390_biomimetics8020165 crossref_primary_10_1007_s42235_024_00553_z crossref_primary_10_1007_s00202_024_02375_y crossref_primary_10_1016_j_compchemeng_2025_109322 crossref_primary_10_3390_su151813916 crossref_primary_10_1016_j_enconman_2025_120029 crossref_primary_10_34248_bsengineering_1490859 crossref_primary_10_3390_mi14122247 crossref_primary_10_1049_rpg2_12974 crossref_primary_10_1016_j_aei_2025_103288 crossref_primary_10_1016_j_asoc_2024_112371 crossref_primary_10_1016_j_enconman_2024_118705 crossref_primary_10_1016_j_aej_2025_01_023 crossref_primary_10_2478_pead_2025_0003 crossref_primary_10_3389_fenrg_2024_1407125 crossref_primary_10_1016_j_swevo_2025_101844 crossref_primary_10_1016_j_rineng_2025_107132 crossref_primary_10_1007_s10586_024_04877_7 |
| Cites_doi | 10.1016/j.enconman.2017.04.054 10.1016/j.advengsoft.2016.01.008 10.1016/j.apenergy.2017.12.115 10.1109/ACCESS.2020.2975078 10.1016/j.knosys.2020.106599 10.1016/j.solener.2010.02.012 10.1007/s40430-022-03700-x 10.1016/j.asoc.2021.107218 10.1109/LED.2009.2013882 10.1016/j.knosys.2022.109989 10.1016/j.egyr.2021.06.097 10.1287/moor.6.1.19 10.1016/j.enconman.2017.08.063 10.1109/TCYB.2013.2239988 10.1007/s00521-015-1870-7 10.1016/j.solener.2022.08.004 10.1080/01425918608909835 10.1016/j.engappai.2013.08.002 10.1016/j.advengsoft.2013.12.007 10.1016/j.enconman.2020.113614 10.1016/j.ins.2011.08.006 10.1016/j.apenergy.2019.01.008 10.1016/j.rser.2021.110828 10.1016/j.solmat.2005.04.023 10.1016/j.enconman.2020.113474 10.1109/TCYB.2019.2943928 10.1016/j.enconman.2019.02.048 10.1016/j.asoc.2021.107623 10.1016/j.solener.2019.01.025 10.1109/ACCESS.2020.2984728 10.1016/j.ins.2021.06.064 10.1016/j.enconman.2018.08.053 10.1016/j.energy.2022.125146 10.1016/j.asoc.2022.108694 10.1016/j.energy.2016.01.052 10.1016/j.energy.2021.119866 10.1016/j.apenergy.2016.05.064 10.1016/j.apenergy.2017.05.029 10.3934/mbe.2021364 10.1109/T-ED.1987.22920 10.1007/s00607-022-01083-4 10.1016/j.enconman.2019.112138 10.1016/j.solener.2022.08.046 10.1016/j.asoc.2022.109653 10.1162/106365601750190398 10.1016/j.engappai.2016.10.009 10.1016/j.apm.2019.07.046 10.1109/ICNN.1995.488968 10.1016/j.egyr.2022.03.144 10.1023/A:1008202821328 10.1016/j.enconman.2022.115955 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.106225 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2023_106225 S0952197623004098 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-f16218cab11d24e698b7cb2c906b7260c4ee5d1905e1585ffc8a973e5de85e0f3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 20:47:30 EST 2025 Sat Nov 29 07:08:16 EST 2025 Fri Feb 23 02:36:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | TLBO PV system Meta-heuristic algorithm Parameter identification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-f16218cab11d24e698b7cb2c906b7260c4ee5d1905e1585ffc8a973e5de85e0f3 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2023_106225 crossref_citationtrail_10_1016_j_engappai_2023_106225 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106225 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Gong, Yan, Hu, Bai, Wang, Gao (b20) 2019; 186 Das, Suganthan (b6) 2011 Easwarakhanthan, Bottin, Bouhouch, Boutrit (b10) 1986; 4 Mirjalili, Lewis (b26) 2016; 95 Liang, Ge, Qu, Yu, Liu, Yang, Wei, Li (b21) 2020; 203 Tang, Fang, Liu, Li, Guo (b40) 2022; 120 Qu, Zhang, Liu, Li (b31) 2017; 57 Song, Liu, Yang, Yang, Su, Wang, Gui, Yang, Huang, Hoon Joo (b37) 2021; 221 Li, Gong, Gu (b18) 2021; 141 Oliva, Abd El Aziz, Ella Hassanien (b29) 2017; 200 Yan, Li, Gong (b50) 2021; 18 Yu, Chen, Wang, Wang (b52) 2017; 145 Chen, Yu (b4) 2019; 180 Tong, Pora (b41) 2016; 176 Li, Gong, Wang, Yan, Hu (b19) 2020; 225 Ortizconde, Garciasanchez, Muci (b30) 2006; 90 Yang, Gong (b51) 2021; 104 Jiang, Zou, Chen, Cao, Liu, Guo (b14) 2022; 130 Shukla, Singh, Vardhan (b35) 2020; 77 Chen, Yu, Du, Zhao, Liu (b5) 2016; 99 Yu, Qu, Yue, Ge, Chen, Liang (b54) 2019; 237 Mirjalili, Mirjalili, Hatamlou (b27) 2015; 27 Hansen, Ostermeier (b12) 2001; 9 Yu, Liang, Qu, Chen, Wang (b53) 2017; 150 Zagrouba, Sellami, Bouaïcha, Ksouri (b55) 2010; 84 Chan, Phang (b2) 1987; 34 Vijaya Lakshmi, Mohanaiah (b44) 2021; 110 Saleem, Karmalkar (b34) 2009; 30 Saadaoui, Elyaqouti, Assalaou, Ben hmamou, Lidaighbi (b33) 2021 Mirjalili, Mirjalili, Lewis (b28) 2014; 69 Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b48) 2020; 50 Durmuş, Gün (b9) 2022; 244 Wang, Sun, Kang, Shen, Chen (b45) 2022; 8 Dong, Xu, Cao, Zhang, Yang, Li (b8) 2022; 258 Chen, Xu, Mei, Ding, Li (b3) 2018; 212 Liao, Chen, Li (b22) 2020; 8 Storn, Price (b38) 1997; 11 Mi, Liao, Li, Gu (b25) 2021; 7 Kumar Roy, Sur, Pradhan (b17) 2013; 26 Rao, Savsani, Vakharia (b32) 2012; 183 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 1944. pp. 1942–1948. Venkata Rao (b43) 2016 Dastan, Shojaee, Hamzehei-Javaran, Goodarzimehr (b7) 2022; 44 Gong, Cai (b11) 2013; 43 Jin, Jiang, Lv, He, Liao (b15) 2022; 104 Wang, Xia, Li, Sun, Li (b46) 2022; 261 Abdel-Basset, Mohamed, Chakrabortty, Sallam, Ryan (b1) 2021; 227 Taheri, RahimiZadeh, Rao (b39) 2021; 576 Wu, Wang, Liu, Abualigah, Jia (b47) 2022; 2022 Xiong, Zhang, Shi, He (b49) 2018; 174 Luo, Yu (b23) 2022; 243 Ma, Zhang, Song, Chen (b24) 2021; 212 Solis, Wets (b36) 1981; 6 Vamsi Krishna Reddy, Venkata Lakshmi Narayana (b42) 2022; 268 Hao, Zhou, Wei, Chen (b13) 2020; 8 Yang (10.1016/j.engappai.2023.106225_b51) 2021; 104 Mi (10.1016/j.engappai.2023.106225_b25) 2021; 7 Kumar Roy (10.1016/j.engappai.2023.106225_b17) 2013; 26 Saleem (10.1016/j.engappai.2023.106225_b34) 2009; 30 Venkata Rao (10.1016/j.engappai.2023.106225_b43) 2016 Luo (10.1016/j.engappai.2023.106225_b23) 2022; 243 Tong (10.1016/j.engappai.2023.106225_b41) 2016; 176 Ortizconde (10.1016/j.engappai.2023.106225_b30) 2006; 90 Solis (10.1016/j.engappai.2023.106225_b36) 1981; 6 Xia (10.1016/j.engappai.2023.106225_b48) 2020; 50 Zagrouba (10.1016/j.engappai.2023.106225_b55) 2010; 84 Easwarakhanthan (10.1016/j.engappai.2023.106225_b10) 1986; 4 Yu (10.1016/j.engappai.2023.106225_b52) 2017; 145 Liao (10.1016/j.engappai.2023.106225_b22) 2020; 8 Li (10.1016/j.engappai.2023.106225_b19) 2020; 225 Liang (10.1016/j.engappai.2023.106225_b21) 2020; 203 Li (10.1016/j.engappai.2023.106225_b20) 2019; 186 Mirjalili (10.1016/j.engappai.2023.106225_b28) 2014; 69 Das (10.1016/j.engappai.2023.106225_b6) 2011 Wu (10.1016/j.engappai.2023.106225_b47) 2022; 2022 Mirjalili (10.1016/j.engappai.2023.106225_b26) 2016; 95 Rao (10.1016/j.engappai.2023.106225_b32) 2012; 183 Durmuş (10.1016/j.engappai.2023.106225_b9) 2022; 244 Vamsi Krishna Reddy (10.1016/j.engappai.2023.106225_b42) 2022; 268 Qu (10.1016/j.engappai.2023.106225_b31) 2017; 57 Jiang (10.1016/j.engappai.2023.106225_b14) 2022; 130 Ma (10.1016/j.engappai.2023.106225_b24) 2021; 212 Shukla (10.1016/j.engappai.2023.106225_b35) 2020; 77 Yu (10.1016/j.engappai.2023.106225_b54) 2019; 237 Chen (10.1016/j.engappai.2023.106225_b4) 2019; 180 Yan (10.1016/j.engappai.2023.106225_b50) 2021; 18 Hansen (10.1016/j.engappai.2023.106225_b12) 2001; 9 Mirjalili (10.1016/j.engappai.2023.106225_b27) 2015; 27 Xiong (10.1016/j.engappai.2023.106225_b49) 2018; 174 Taheri (10.1016/j.engappai.2023.106225_b39) 2021; 576 Dastan (10.1016/j.engappai.2023.106225_b7) 2022; 44 Chan (10.1016/j.engappai.2023.106225_b2) 1987; 34 Wang (10.1016/j.engappai.2023.106225_b45) 2022; 8 Hao (10.1016/j.engappai.2023.106225_b13) 2020; 8 10.1016/j.engappai.2023.106225_b16 Li (10.1016/j.engappai.2023.106225_b18) 2021; 141 Wang (10.1016/j.engappai.2023.106225_b46) 2022; 261 Dong (10.1016/j.engappai.2023.106225_b8) 2022; 258 Song (10.1016/j.engappai.2023.106225_b37) 2021; 221 Jin (10.1016/j.engappai.2023.106225_b15) 2022; 104 Chen (10.1016/j.engappai.2023.106225_b5) 2016; 99 Tang (10.1016/j.engappai.2023.106225_b40) 2022; 120 Vijaya Lakshmi (10.1016/j.engappai.2023.106225_b44) 2021; 110 Chen (10.1016/j.engappai.2023.106225_b3) 2018; 212 Yu (10.1016/j.engappai.2023.106225_b53) 2017; 150 Storn (10.1016/j.engappai.2023.106225_b38) 1997; 11 Oliva (10.1016/j.engappai.2023.106225_b29) 2017; 200 Abdel-Basset (10.1016/j.engappai.2023.106225_b1) 2021; 227 Saadaoui (10.1016/j.engappai.2023.106225_b33) 2021 Gong (10.1016/j.engappai.2023.106225_b11) 2013; 43 |
| References_xml | – volume: 7 start-page: 4114 year: 2021 end-page: 4125 ident: b25 article-title: Adaptive teaching–learning-based optimization with experience learning to identify photovoltaic cell parameters publication-title: Energy Rep. – volume: 227 year: 2021 ident: b1 article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations publication-title: Energy Convers. Manage. – volume: 141 year: 2021 ident: b18 article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models publication-title: Renew. Sustain. Energy Rev. – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: b49 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manage. – volume: 34 start-page: 286 year: 1987 end-page: 293 ident: b2 article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics publication-title: IEEE Trans. Electron Devices – volume: 27 start-page: 495 year: 2015 end-page: 513 ident: b27 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 8 start-page: 4724 year: 2022 end-page: 4746 ident: b45 article-title: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models publication-title: Energy Rep. – volume: 237 start-page: 241 year: 2019 end-page: 257 ident: b54 article-title: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module publication-title: Appl. Energy – volume: 258 year: 2022 ident: b8 article-title: An improved teaching–learning-based optimization algorithm with a modified learner phase and a new mutation-restarting phase publication-title: Knowl.-Based Syst. – volume: 90 start-page: 352 year: 2006 end-page: 361 ident: b30 article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics publication-title: Sol. Energy Mater. Sol. Cells – volume: 44 year: 2022 ident: b7 article-title: Hybrid teaching–learning-based optimization for solving engineering and mathematical problems publication-title: J. Braz. Soc. Mech. Sci. Eng. – start-page: 19 year: 2016 end-page: 34 ident: b43 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: 30 start-page: 349 year: 2009 end-page: 352 ident: b34 article-title: An analytical method to extract the physical parameters of a solar cell from four points on the illuminated publication-title: IEEE Electron Device Lett. – volume: 212 start-page: 1578 year: 2018 end-page: 1588 ident: b3 article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation publication-title: Appl. Energy – year: 2011 ident: b6 article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems – volume: 145 start-page: 233 year: 2017 end-page: 246 ident: b52 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. – volume: 2022 year: 2022 ident: b47 article-title: An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems publication-title: Comput. Intell. Neurosci. – volume: 180 start-page: 192 year: 2019 end-page: 206 ident: b4 article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters publication-title: Sol. Energy – volume: 57 start-page: 1 year: 2017 end-page: 15 ident: b31 article-title: An improved TLBO based memetic algorithm for aerodynamic shape optimization publication-title: Eng. Appl. Artif. Intell. – volume: 176 start-page: 104 year: 2016 end-page: 115 ident: b41 article-title: A parameter extraction technique exploiting intrinsic properties of solar cells publication-title: Appl. Energy – volume: 84 start-page: 860 year: 2010 end-page: 866 ident: b55 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction publication-title: Sol. Energy – volume: 186 start-page: 293 year: 2019 end-page: 305 ident: b20 article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization publication-title: Energy Convers. Manage. – volume: 212 year: 2021 ident: b24 article-title: A modified teaching–learning-based optimization algorithm for solving optimization problem publication-title: Knowl.-Based Syst. – volume: 26 start-page: 2516 year: 2013 end-page: 2524 ident: b17 article-title: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization publication-title: Eng. Appl. Artif. Intell. – volume: 221 year: 2021 ident: b37 article-title: Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm publication-title: Energy – volume: 225 year: 2020 ident: b19 article-title: A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers. Manage. – volume: 6 start-page: 19 year: 1981 end-page: 30 ident: b36 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. – volume: 130 year: 2022 ident: b14 article-title: An ensemble multi-swarm teaching–learning-based optimization algorithm for function optimization and image segmentation publication-title: Appl. Soft Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 244 start-page: 242 year: 2022 end-page: 254 ident: b9 article-title: Development of incremental average differential evolution algorithm for photovoltaic system identification publication-title: Sol. Energy – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b26 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 77 start-page: 309 year: 2020 end-page: 326 ident: b35 article-title: An adaptive inertia weight teaching-learning-based optimization algorithm and its applications publication-title: Appl. Math. Model. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 1944. pp. 1942–1948. – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: b32 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. – volume: 104 year: 2021 ident: b51 article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules publication-title: Appl. Soft Comput. – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: b12 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. – volume: 203 year: 2020 ident: b21 article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models publication-title: Energy Convers. Manage. – volume: 8 start-page: 69937 year: 2020 end-page: 69952 ident: b22 article-title: Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization publication-title: IEEE Access – volume: 268 year: 2022 ident: b42 article-title: Investigation of a social group assisted differential evolution for the optimal PV parameter extraction of standard and modified diode models publication-title: Energy Convers. Manage. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b38 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 150 start-page: 742 year: 2017 end-page: 753 ident: b53 article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm publication-title: Energy Convers. Manage. – volume: 110 year: 2021 ident: b44 article-title: WOA-TLBO: Whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition publication-title: Appl. Soft Comput. – volume: 8 start-page: 35979 year: 2020 end-page: 35994 ident: b13 article-title: Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution publication-title: IEEE Access – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: b29 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy – volume: 4 start-page: 1 year: 1986 end-page: 12 ident: b10 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int. J. Sol. Energy – volume: 261 year: 2022 ident: b46 article-title: Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm publication-title: Energy – volume: 104 start-page: 2489 year: 2022 end-page: 2509 ident: b15 article-title: A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition publication-title: Computing – volume: 50 start-page: 4862 year: 2020 end-page: 4875 ident: b48 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. – year: 2021 ident: b33 article-title: Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation publication-title: Energy Convers. Manage. – volume: 243 start-page: 264 year: 2022 end-page: 278 ident: b23 article-title: Quasi-reflection based multi-strategy cuckoo search for parameter estimation of photovoltaic solar modules publication-title: Sol. Energy – volume: 576 start-page: 68 year: 2021 end-page: 104 ident: b39 article-title: An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems publication-title: Inform. Sci. – volume: 43 start-page: 2066 year: 2013 end-page: 2081 ident: b11 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Trans. Cybern. – volume: 99 start-page: 170 year: 2016 end-page: 180 ident: b5 article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization publication-title: Energy – volume: 120 year: 2022 ident: b40 article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem publication-title: Appl. Soft Comput. – volume: 18 start-page: 7363 year: 2021 end-page: 7388 ident: b50 article-title: An adaptive differential evolution with decomposition for photovoltaic parameter extraction publication-title: Math. Biosci. Eng. – year: 2021 ident: 10.1016/j.engappai.2023.106225_b33 article-title: Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation publication-title: Energy Convers. Manage. – volume: 145 start-page: 233 year: 2017 ident: 10.1016/j.engappai.2023.106225_b52 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.054 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2023.106225_b26 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 212 start-page: 1578 year: 2018 ident: 10.1016/j.engappai.2023.106225_b3 article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.115 – volume: 8 start-page: 35979 year: 2020 ident: 10.1016/j.engappai.2023.106225_b13 article-title: Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975078 – volume: 212 year: 2021 ident: 10.1016/j.engappai.2023.106225_b24 article-title: A modified teaching–learning-based optimization algorithm for solving optimization problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106599 – volume: 84 start-page: 860 year: 2010 ident: 10.1016/j.engappai.2023.106225_b55 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction publication-title: Sol. Energy doi: 10.1016/j.solener.2010.02.012 – volume: 44 year: 2022 ident: 10.1016/j.engappai.2023.106225_b7 article-title: Hybrid teaching–learning-based optimization for solving engineering and mathematical problems publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-022-03700-x – volume: 104 year: 2021 ident: 10.1016/j.engappai.2023.106225_b51 article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107218 – volume: 30 start-page: 349 year: 2009 ident: 10.1016/j.engappai.2023.106225_b34 article-title: An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J−V curve publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2009.2013882 – volume: 258 year: 2022 ident: 10.1016/j.engappai.2023.106225_b8 article-title: An improved teaching–learning-based optimization algorithm with a modified learner phase and a new mutation-restarting phase publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109989 – volume: 7 start-page: 4114 year: 2021 ident: 10.1016/j.engappai.2023.106225_b25 article-title: Adaptive teaching–learning-based optimization with experience learning to identify photovoltaic cell parameters publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.06.097 – volume: 6 start-page: 19 year: 1981 ident: 10.1016/j.engappai.2023.106225_b36 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. doi: 10.1287/moor.6.1.19 – volume: 150 start-page: 742 year: 2017 ident: 10.1016/j.engappai.2023.106225_b53 article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.08.063 – volume: 43 start-page: 2066 year: 2013 ident: 10.1016/j.engappai.2023.106225_b11 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2239988 – start-page: 19 year: 2016 ident: 10.1016/j.engappai.2023.106225_b43 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: 27 start-page: 495 year: 2015 ident: 10.1016/j.engappai.2023.106225_b27 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 243 start-page: 264 year: 2022 ident: 10.1016/j.engappai.2023.106225_b23 article-title: Quasi-reflection based multi-strategy cuckoo search for parameter estimation of photovoltaic solar modules publication-title: Sol. Energy doi: 10.1016/j.solener.2022.08.004 – volume: 4 start-page: 1 year: 1986 ident: 10.1016/j.engappai.2023.106225_b10 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int. J. Sol. Energy doi: 10.1080/01425918608909835 – volume: 26 start-page: 2516 year: 2013 ident: 10.1016/j.engappai.2023.106225_b17 article-title: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.08.002 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.engappai.2023.106225_b28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 227 year: 2021 ident: 10.1016/j.engappai.2023.106225_b1 article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113614 – volume: 183 start-page: 1 year: 2012 ident: 10.1016/j.engappai.2023.106225_b32 article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.006 – volume: 237 start-page: 241 year: 2019 ident: 10.1016/j.engappai.2023.106225_b54 article-title: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.008 – volume: 141 year: 2021 ident: 10.1016/j.engappai.2023.106225_b18 article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110828 – volume: 90 start-page: 352 year: 2006 ident: 10.1016/j.engappai.2023.106225_b30 article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.04.023 – volume: 225 year: 2020 ident: 10.1016/j.engappai.2023.106225_b19 article-title: A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113474 – volume: 50 start-page: 4862 year: 2020 ident: 10.1016/j.engappai.2023.106225_b48 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2943928 – volume: 186 start-page: 293 year: 2019 ident: 10.1016/j.engappai.2023.106225_b20 article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.02.048 – volume: 110 year: 2021 ident: 10.1016/j.engappai.2023.106225_b44 article-title: WOA-TLBO: Whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107623 – volume: 180 start-page: 192 year: 2019 ident: 10.1016/j.engappai.2023.106225_b4 article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters publication-title: Sol. Energy doi: 10.1016/j.solener.2019.01.025 – volume: 8 start-page: 69937 year: 2020 ident: 10.1016/j.engappai.2023.106225_b22 article-title: Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984728 – volume: 576 start-page: 68 year: 2021 ident: 10.1016/j.engappai.2023.106225_b39 article-title: An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.06.064 – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.engappai.2023.106225_b49 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.08.053 – volume: 261 year: 2022 ident: 10.1016/j.engappai.2023.106225_b46 article-title: Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2022.125146 – year: 2011 ident: 10.1016/j.engappai.2023.106225_b6 – volume: 120 year: 2022 ident: 10.1016/j.engappai.2023.106225_b40 article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108694 – volume: 99 start-page: 170 year: 2016 ident: 10.1016/j.engappai.2023.106225_b5 article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization publication-title: Energy doi: 10.1016/j.energy.2016.01.052 – volume: 221 year: 2021 ident: 10.1016/j.engappai.2023.106225_b37 article-title: Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2021.119866 – volume: 176 start-page: 104 year: 2016 ident: 10.1016/j.engappai.2023.106225_b41 article-title: A parameter extraction technique exploiting intrinsic properties of solar cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.064 – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.engappai.2023.106225_b29 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.029 – volume: 18 start-page: 7363 year: 2021 ident: 10.1016/j.engappai.2023.106225_b50 article-title: An adaptive differential evolution with decomposition for photovoltaic parameter extraction publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2021364 – volume: 34 start-page: 286 year: 1987 ident: 10.1016/j.engappai.2023.106225_b2 article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1987.22920 – volume: 104 start-page: 2489 year: 2022 ident: 10.1016/j.engappai.2023.106225_b15 article-title: A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition publication-title: Computing doi: 10.1007/s00607-022-01083-4 – volume: 203 year: 2020 ident: 10.1016/j.engappai.2023.106225_b21 article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112138 – volume: 244 start-page: 242 year: 2022 ident: 10.1016/j.engappai.2023.106225_b9 article-title: Development of incremental average differential evolution algorithm for photovoltaic system identification publication-title: Sol. Energy doi: 10.1016/j.solener.2022.08.046 – volume: 130 year: 2022 ident: 10.1016/j.engappai.2023.106225_b14 article-title: An ensemble multi-swarm teaching–learning-based optimization algorithm for function optimization and image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109653 – volume: 9 start-page: 159 year: 2001 ident: 10.1016/j.engappai.2023.106225_b12 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 57 start-page: 1 year: 2017 ident: 10.1016/j.engappai.2023.106225_b31 article-title: An improved TLBO based memetic algorithm for aerodynamic shape optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.10.009 – volume: 77 start-page: 309 year: 2020 ident: 10.1016/j.engappai.2023.106225_b35 article-title: An adaptive inertia weight teaching-learning-based optimization algorithm and its applications publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.046 – ident: 10.1016/j.engappai.2023.106225_b16 doi: 10.1109/ICNN.1995.488968 – volume: 8 start-page: 4724 year: 2022 ident: 10.1016/j.engappai.2023.106225_b45 article-title: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.144 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.engappai.2023.106225_b38 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 268 year: 2022 ident: 10.1016/j.engappai.2023.106225_b42 article-title: Investigation of a social group assisted differential evolution for the optimal PV parameter extraction of standard and modified diode models publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.115955 – volume: 2022 year: 2022 ident: 10.1016/j.engappai.2023.106225_b47 article-title: An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems publication-title: Comput. Intell. Neurosci. |
| SSID | ssj0003846 |
| Score | 2.5123203 |
| Snippet | As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106225 |
| SubjectTerms | Meta-heuristic algorithm Parameter identification PV system TLBO |
| Title | Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106225 |
| Volume | 123 |
| WOSCitedRecordID | wos000979715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_cVi6bxIntY4WKAKEKQVFzixLH3m61m6x2s1WP_Iee-vf4JYxjO8lCpYIQlygareOs58t4ZjwPhF6rQgrBJozIsKSE6oCSnApKeJAUVOkySjRvm02woyOepuLzaHTlc2HO56yq-MWFWP5XVgMNmG1SZ_-C3d1DgQD3wHS4Atvh-keM_5K33RDGjYuT9OEMkWsQMSVm5yrHNQiLhcvCHOfzab2aNacLo4uawhugyCqbRpWb8C1Tg9PolWtjCdv2Oestp35f1nA8PBNvwwxWbTxS2x1kUAC0kzcbw-Z0lptMtGkPs_bY5FRV06XqySfOvZ1uFoMff9q0Dt8TZXyv1dCREUZdGJ3zrvkMmz6cybopQxII5splWyHNWURMaO6WFLdpy7_tCNY5cbYPbwB_P5_tm6mBnIQ24fqXattfzYRmvtCUIpsIfgvthiwWIPN3Dz4cph-7bT7iNgvMv-Ag_fz62a7XfAbazPF9dNeZIfjAwucBGqnqIbrnTBLsBP4aSL7rh6c9QtIBDHuA_fh-uQ0tPIQW7qCFmxp7aGGAFu6hhWuNW2hhC63H6Nu7w-O374lr1UFkFIQN0UECuqLMiyAoQ6oSwQsmi1CKSVIwMJklVSouQfmMVQAGqtaS54JFQFM8VhMdPUE7VV2ppwjTuIRNRKq4SDRtj_ELXYJeXpbwFB4neyj2y5hJV8fetFOZZz5g8Szzy5-Z5c_s8u-hN924pa3kcuMI4bmUOX3U6pkZgOuGsc_-YexzdKf_Pl6gnWa1US_RbXnezNarVw6HPwE6Nbka |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+teaching%E2%80%93learning-based+optimization+algorithm+to+estimate+the+parameters+of+solar+models&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yu%2C+Xiaobing&rft.au=Hu%2C+Zhengpeng&rft.au=Wang%2C+Xuming&rft.au=Luo%2C+Wenguan&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engappai.2023.106225&rft.externalDocID=S0952197623004098 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |