Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models

As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 123; s. 106225
Hlavní autoři: Yu, Xiaobing, Hu, Zhengpeng, Wang, Xuming, Luo, Wenguan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification is still a challenging task. In this paper, we develop a Ranking Teaching–Learning-Based​ Optimization (RTLBO) to solve the problem, in which Teaching–Learning-Based​ Optimization (TLBO) is a population-based swarm algorithm and mimics the learning process in a classroom. RTLBO ranks learners into superior and inferior groups, in which the outstanding learners learn from the top three agents to boost the local search. In contrast, the low learners learn from each other by guidance. The two phases are in parallel to balance the local and global search. The proposed RTLBO is used to extract parameters of different models, including the single diode model, double diode model and three PV module models. TLBO, four TLBO variants, and fifteen meta-heuristic algorithms are selected as the rivals of RTLBO. Several experiments have shown that our method is a reliable and effective algorithm when addressing the parameters of PV systems.
AbstractList As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to identify the parameters of PV systems with the aim of controlling and simulating. Thanks to the complexity of PV systems, parameter identification is still a challenging task. In this paper, we develop a Ranking Teaching–Learning-Based​ Optimization (RTLBO) to solve the problem, in which Teaching–Learning-Based​ Optimization (TLBO) is a population-based swarm algorithm and mimics the learning process in a classroom. RTLBO ranks learners into superior and inferior groups, in which the outstanding learners learn from the top three agents to boost the local search. In contrast, the low learners learn from each other by guidance. The two phases are in parallel to balance the local and global search. The proposed RTLBO is used to extract parameters of different models, including the single diode model, double diode model and three PV module models. TLBO, four TLBO variants, and fifteen meta-heuristic algorithms are selected as the rivals of RTLBO. Several experiments have shown that our method is a reliable and effective algorithm when addressing the parameters of PV systems.
ArticleNumber 106225
Author Luo, Wenguan
Yu, Xiaobing
Wang, Xuming
Hu, Zhengpeng
Author_xml – sequence: 1
  givenname: Xiaobing
  surname: Yu
  fullname: Yu, Xiaobing
  email: 002257@nuist.edu.cn
– sequence: 2
  givenname: Zhengpeng
  surname: Hu
  fullname: Hu, Zhengpeng
– sequence: 3
  givenname: Xuming
  surname: Wang
  fullname: Wang, Xuming
– sequence: 4
  givenname: Wenguan
  surname: Luo
  fullname: Luo, Wenguan
BookMark eNqFkN1KAzEQhYNUsFZfQfICW5NsN7sLXijFPygIotdhNjvbpm6TJQmCXvkOvqFPYmr1xptezWGGc5jzHZORdRYJOeNsyhmX5-sp2iUMA5ipYCJPSylEcUDGvCrzTJayHpExqwuR8bqUR-Q4hDVjLK9mckz0I9gXY5c0IuhVEl8fnz2Ct0lmDQRsqRui2Zh3iMZZCv3SeRNXGxodxZAuEJHGFdIBPGwwog_UdTS4HjzduBb7cEIOO-gDnv7OCXm-uX6a32WLh9v7-dUi0zkXMeu4FLzS0HDeihnKumpK3QhdM9mUQjI9QyxaXrMCeVEVXacrqMs87bAqkHX5hMhdrvYuBI-dGnz6z78pztQWlVqrP1Rqi0rtUCXjxT-jNvGnb_Rg-v32y509dcVXg14FbdBqbI1HHVXrzL6Ib-Q4j04
CitedBy_id crossref_primary_10_1016_j_apm_2025_116425
crossref_primary_10_1016_j_enconman_2024_119468
crossref_primary_10_1016_j_energy_2023_129300
crossref_primary_10_1016_j_solener_2024_112353
crossref_primary_10_1109_TIM_2025_3551857
crossref_primary_10_1038_s41598_024_58503_y
crossref_primary_10_1016_j_engappai_2023_107579
crossref_primary_10_3390_biomimetics8020165
crossref_primary_10_1007_s42235_024_00553_z
crossref_primary_10_1007_s00202_024_02375_y
crossref_primary_10_1016_j_compchemeng_2025_109322
crossref_primary_10_3390_su151813916
crossref_primary_10_1016_j_enconman_2025_120029
crossref_primary_10_34248_bsengineering_1490859
crossref_primary_10_3390_mi14122247
crossref_primary_10_1049_rpg2_12974
crossref_primary_10_1016_j_aei_2025_103288
crossref_primary_10_1016_j_asoc_2024_112371
crossref_primary_10_1016_j_enconman_2024_118705
crossref_primary_10_1016_j_aej_2025_01_023
crossref_primary_10_2478_pead_2025_0003
crossref_primary_10_3389_fenrg_2024_1407125
crossref_primary_10_1016_j_swevo_2025_101844
crossref_primary_10_1016_j_rineng_2025_107132
crossref_primary_10_1007_s10586_024_04877_7
Cites_doi 10.1016/j.enconman.2017.04.054
10.1016/j.advengsoft.2016.01.008
10.1016/j.apenergy.2017.12.115
10.1109/ACCESS.2020.2975078
10.1016/j.knosys.2020.106599
10.1016/j.solener.2010.02.012
10.1007/s40430-022-03700-x
10.1016/j.asoc.2021.107218
10.1109/LED.2009.2013882
10.1016/j.knosys.2022.109989
10.1016/j.egyr.2021.06.097
10.1287/moor.6.1.19
10.1016/j.enconman.2017.08.063
10.1109/TCYB.2013.2239988
10.1007/s00521-015-1870-7
10.1016/j.solener.2022.08.004
10.1080/01425918608909835
10.1016/j.engappai.2013.08.002
10.1016/j.advengsoft.2013.12.007
10.1016/j.enconman.2020.113614
10.1016/j.ins.2011.08.006
10.1016/j.apenergy.2019.01.008
10.1016/j.rser.2021.110828
10.1016/j.solmat.2005.04.023
10.1016/j.enconman.2020.113474
10.1109/TCYB.2019.2943928
10.1016/j.enconman.2019.02.048
10.1016/j.asoc.2021.107623
10.1016/j.solener.2019.01.025
10.1109/ACCESS.2020.2984728
10.1016/j.ins.2021.06.064
10.1016/j.enconman.2018.08.053
10.1016/j.energy.2022.125146
10.1016/j.asoc.2022.108694
10.1016/j.energy.2016.01.052
10.1016/j.energy.2021.119866
10.1016/j.apenergy.2016.05.064
10.1016/j.apenergy.2017.05.029
10.3934/mbe.2021364
10.1109/T-ED.1987.22920
10.1007/s00607-022-01083-4
10.1016/j.enconman.2019.112138
10.1016/j.solener.2022.08.046
10.1016/j.asoc.2022.109653
10.1162/106365601750190398
10.1016/j.engappai.2016.10.009
10.1016/j.apm.2019.07.046
10.1109/ICNN.1995.488968
10.1016/j.egyr.2022.03.144
10.1023/A:1008202821328
10.1016/j.enconman.2022.115955
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.106225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_106225
S0952197623004098
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-f16218cab11d24e698b7cb2c906b7260c4ee5d1905e1585ffc8a973e5de85e0f3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000979715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 20:47:30 EST 2025
Sat Nov 29 07:08:16 EST 2025
Fri Feb 23 02:36:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TLBO
PV system
Meta-heuristic algorithm
Parameter identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-f16218cab11d24e698b7cb2c906b7260c4ee5d1905e1585ffc8a973e5de85e0f3
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_106225
crossref_citationtrail_10_1016_j_engappai_2023_106225
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106225
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Gong, Yan, Hu, Bai, Wang, Gao (b20) 2019; 186
Das, Suganthan (b6) 2011
Easwarakhanthan, Bottin, Bouhouch, Boutrit (b10) 1986; 4
Mirjalili, Lewis (b26) 2016; 95
Liang, Ge, Qu, Yu, Liu, Yang, Wei, Li (b21) 2020; 203
Tang, Fang, Liu, Li, Guo (b40) 2022; 120
Qu, Zhang, Liu, Li (b31) 2017; 57
Song, Liu, Yang, Yang, Su, Wang, Gui, Yang, Huang, Hoon Joo (b37) 2021; 221
Li, Gong, Gu (b18) 2021; 141
Oliva, Abd El Aziz, Ella Hassanien (b29) 2017; 200
Yan, Li, Gong (b50) 2021; 18
Yu, Chen, Wang, Wang (b52) 2017; 145
Chen, Yu (b4) 2019; 180
Tong, Pora (b41) 2016; 176
Li, Gong, Wang, Yan, Hu (b19) 2020; 225
Ortizconde, Garciasanchez, Muci (b30) 2006; 90
Yang, Gong (b51) 2021; 104
Jiang, Zou, Chen, Cao, Liu, Guo (b14) 2022; 130
Shukla, Singh, Vardhan (b35) 2020; 77
Chen, Yu, Du, Zhao, Liu (b5) 2016; 99
Yu, Qu, Yue, Ge, Chen, Liang (b54) 2019; 237
Mirjalili, Mirjalili, Hatamlou (b27) 2015; 27
Hansen, Ostermeier (b12) 2001; 9
Yu, Liang, Qu, Chen, Wang (b53) 2017; 150
Zagrouba, Sellami, Bouaïcha, Ksouri (b55) 2010; 84
Chan, Phang (b2) 1987; 34
Vijaya Lakshmi, Mohanaiah (b44) 2021; 110
Saleem, Karmalkar (b34) 2009; 30
Saadaoui, Elyaqouti, Assalaou, Ben hmamou, Lidaighbi (b33) 2021
Mirjalili, Mirjalili, Lewis (b28) 2014; 69
Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b48) 2020; 50
Durmuş, Gün (b9) 2022; 244
Wang, Sun, Kang, Shen, Chen (b45) 2022; 8
Dong, Xu, Cao, Zhang, Yang, Li (b8) 2022; 258
Chen, Xu, Mei, Ding, Li (b3) 2018; 212
Liao, Chen, Li (b22) 2020; 8
Storn, Price (b38) 1997; 11
Mi, Liao, Li, Gu (b25) 2021; 7
Kumar Roy, Sur, Pradhan (b17) 2013; 26
Rao, Savsani, Vakharia (b32) 2012; 183
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 1944. pp. 1942–1948.
Venkata Rao (b43) 2016
Dastan, Shojaee, Hamzehei-Javaran, Goodarzimehr (b7) 2022; 44
Gong, Cai (b11) 2013; 43
Jin, Jiang, Lv, He, Liao (b15) 2022; 104
Wang, Xia, Li, Sun, Li (b46) 2022; 261
Abdel-Basset, Mohamed, Chakrabortty, Sallam, Ryan (b1) 2021; 227
Taheri, RahimiZadeh, Rao (b39) 2021; 576
Wu, Wang, Liu, Abualigah, Jia (b47) 2022; 2022
Xiong, Zhang, Shi, He (b49) 2018; 174
Luo, Yu (b23) 2022; 243
Ma, Zhang, Song, Chen (b24) 2021; 212
Solis, Wets (b36) 1981; 6
Vamsi Krishna Reddy, Venkata Lakshmi Narayana (b42) 2022; 268
Hao, Zhou, Wei, Chen (b13) 2020; 8
Yang (10.1016/j.engappai.2023.106225_b51) 2021; 104
Mi (10.1016/j.engappai.2023.106225_b25) 2021; 7
Kumar Roy (10.1016/j.engappai.2023.106225_b17) 2013; 26
Saleem (10.1016/j.engappai.2023.106225_b34) 2009; 30
Venkata Rao (10.1016/j.engappai.2023.106225_b43) 2016
Luo (10.1016/j.engappai.2023.106225_b23) 2022; 243
Tong (10.1016/j.engappai.2023.106225_b41) 2016; 176
Ortizconde (10.1016/j.engappai.2023.106225_b30) 2006; 90
Solis (10.1016/j.engappai.2023.106225_b36) 1981; 6
Xia (10.1016/j.engappai.2023.106225_b48) 2020; 50
Zagrouba (10.1016/j.engappai.2023.106225_b55) 2010; 84
Easwarakhanthan (10.1016/j.engappai.2023.106225_b10) 1986; 4
Yu (10.1016/j.engappai.2023.106225_b52) 2017; 145
Liao (10.1016/j.engappai.2023.106225_b22) 2020; 8
Li (10.1016/j.engappai.2023.106225_b19) 2020; 225
Liang (10.1016/j.engappai.2023.106225_b21) 2020; 203
Li (10.1016/j.engappai.2023.106225_b20) 2019; 186
Mirjalili (10.1016/j.engappai.2023.106225_b28) 2014; 69
Das (10.1016/j.engappai.2023.106225_b6) 2011
Wu (10.1016/j.engappai.2023.106225_b47) 2022; 2022
Mirjalili (10.1016/j.engappai.2023.106225_b26) 2016; 95
Rao (10.1016/j.engappai.2023.106225_b32) 2012; 183
Durmuş (10.1016/j.engappai.2023.106225_b9) 2022; 244
Vamsi Krishna Reddy (10.1016/j.engappai.2023.106225_b42) 2022; 268
Qu (10.1016/j.engappai.2023.106225_b31) 2017; 57
Jiang (10.1016/j.engappai.2023.106225_b14) 2022; 130
Ma (10.1016/j.engappai.2023.106225_b24) 2021; 212
Shukla (10.1016/j.engappai.2023.106225_b35) 2020; 77
Yu (10.1016/j.engappai.2023.106225_b54) 2019; 237
Chen (10.1016/j.engappai.2023.106225_b4) 2019; 180
Yan (10.1016/j.engappai.2023.106225_b50) 2021; 18
Hansen (10.1016/j.engappai.2023.106225_b12) 2001; 9
Mirjalili (10.1016/j.engappai.2023.106225_b27) 2015; 27
Xiong (10.1016/j.engappai.2023.106225_b49) 2018; 174
Taheri (10.1016/j.engappai.2023.106225_b39) 2021; 576
Dastan (10.1016/j.engappai.2023.106225_b7) 2022; 44
Chan (10.1016/j.engappai.2023.106225_b2) 1987; 34
Wang (10.1016/j.engappai.2023.106225_b45) 2022; 8
Hao (10.1016/j.engappai.2023.106225_b13) 2020; 8
10.1016/j.engappai.2023.106225_b16
Li (10.1016/j.engappai.2023.106225_b18) 2021; 141
Wang (10.1016/j.engappai.2023.106225_b46) 2022; 261
Dong (10.1016/j.engappai.2023.106225_b8) 2022; 258
Song (10.1016/j.engappai.2023.106225_b37) 2021; 221
Jin (10.1016/j.engappai.2023.106225_b15) 2022; 104
Chen (10.1016/j.engappai.2023.106225_b5) 2016; 99
Tang (10.1016/j.engappai.2023.106225_b40) 2022; 120
Vijaya Lakshmi (10.1016/j.engappai.2023.106225_b44) 2021; 110
Chen (10.1016/j.engappai.2023.106225_b3) 2018; 212
Yu (10.1016/j.engappai.2023.106225_b53) 2017; 150
Storn (10.1016/j.engappai.2023.106225_b38) 1997; 11
Oliva (10.1016/j.engappai.2023.106225_b29) 2017; 200
Abdel-Basset (10.1016/j.engappai.2023.106225_b1) 2021; 227
Saadaoui (10.1016/j.engappai.2023.106225_b33) 2021
Gong (10.1016/j.engappai.2023.106225_b11) 2013; 43
References_xml – volume: 7
  start-page: 4114
  year: 2021
  end-page: 4125
  ident: b25
  article-title: Adaptive teaching–learning-based optimization with experience learning to identify photovoltaic cell parameters
  publication-title: Energy Rep.
– volume: 227
  year: 2021
  ident: b1
  article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations
  publication-title: Energy Convers. Manage.
– volume: 141
  year: 2021
  ident: b18
  article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: b49
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 34
  start-page: 286
  year: 1987
  end-page: 293
  ident: b2
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron Devices
– volume: 27
  start-page: 495
  year: 2015
  end-page: 513
  ident: b27
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 8
  start-page: 4724
  year: 2022
  end-page: 4746
  ident: b45
  article-title: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models
  publication-title: Energy Rep.
– volume: 237
  start-page: 241
  year: 2019
  end-page: 257
  ident: b54
  article-title: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module
  publication-title: Appl. Energy
– volume: 258
  year: 2022
  ident: b8
  article-title: An improved teaching–learning-based optimization algorithm with a modified learner phase and a new mutation-restarting phase
  publication-title: Knowl.-Based Syst.
– volume: 90
  start-page: 352
  year: 2006
  end-page: 361
  ident: b30
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 44
  year: 2022
  ident: b7
  article-title: Hybrid teaching–learning-based optimization for solving engineering and mathematical problems
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– start-page: 19
  year: 2016
  end-page: 34
  ident: b43
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 30
  start-page: 349
  year: 2009
  end-page: 352
  ident: b34
  article-title: An analytical method to extract the physical parameters of a solar cell from four points on the illuminated
  publication-title: IEEE Electron Device Lett.
– volume: 212
  start-page: 1578
  year: 2018
  end-page: 1588
  ident: b3
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl. Energy
– year: 2011
  ident: b6
  article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b52
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
– volume: 2022
  year: 2022
  ident: b47
  article-title: An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems
  publication-title: Comput. Intell. Neurosci.
– volume: 180
  start-page: 192
  year: 2019
  end-page: 206
  ident: b4
  article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters
  publication-title: Sol. Energy
– volume: 57
  start-page: 1
  year: 2017
  end-page: 15
  ident: b31
  article-title: An improved TLBO based memetic algorithm for aerodynamic shape optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 176
  start-page: 104
  year: 2016
  end-page: 115
  ident: b41
  article-title: A parameter extraction technique exploiting intrinsic properties of solar cells
  publication-title: Appl. Energy
– volume: 84
  start-page: 860
  year: 2010
  end-page: 866
  ident: b55
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction
  publication-title: Sol. Energy
– volume: 186
  start-page: 293
  year: 2019
  end-page: 305
  ident: b20
  article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
– volume: 212
  year: 2021
  ident: b24
  article-title: A modified teaching–learning-based optimization algorithm for solving optimization problem
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 2516
  year: 2013
  end-page: 2524
  ident: b17
  article-title: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 221
  year: 2021
  ident: b37
  article-title: Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm
  publication-title: Energy
– volume: 225
  year: 2020
  ident: b19
  article-title: A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 6
  start-page: 19
  year: 1981
  end-page: 30
  ident: b36
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
– volume: 130
  year: 2022
  ident: b14
  article-title: An ensemble multi-swarm teaching–learning-based optimization algorithm for function optimization and image segmentation
  publication-title: Appl. Soft Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b28
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 244
  start-page: 242
  year: 2022
  end-page: 254
  ident: b9
  article-title: Development of incremental average differential evolution algorithm for photovoltaic system identification
  publication-title: Sol. Energy
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b26
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 77
  start-page: 309
  year: 2020
  end-page: 326
  ident: b35
  article-title: An adaptive inertia weight teaching-learning-based optimization algorithm and its applications
  publication-title: Appl. Math. Model.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 1944. pp. 1942–1948.
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b32
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
– volume: 104
  year: 2021
  ident: b51
  article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: b12
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– volume: 203
  year: 2020
  ident: b21
  article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
– volume: 8
  start-page: 69937
  year: 2020
  end-page: 69952
  ident: b22
  article-title: Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization
  publication-title: IEEE Access
– volume: 268
  year: 2022
  ident: b42
  article-title: Investigation of a social group assisted differential evolution for the optimal PV parameter extraction of standard and modified diode models
  publication-title: Energy Convers. Manage.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b38
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 150
  start-page: 742
  year: 2017
  end-page: 753
  ident: b53
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 110
  year: 2021
  ident: b44
  article-title: WOA-TLBO: Whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 35979
  year: 2020
  end-page: 35994
  ident: b13
  article-title: Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution
  publication-title: IEEE Access
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b29
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
– volume: 4
  start-page: 1
  year: 1986
  end-page: 12
  ident: b10
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int. J. Sol. Energy
– volume: 261
  year: 2022
  ident: b46
  article-title: Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm
  publication-title: Energy
– volume: 104
  start-page: 2489
  year: 2022
  end-page: 2509
  ident: b15
  article-title: A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition
  publication-title: Computing
– volume: 50
  start-page: 4862
  year: 2020
  end-page: 4875
  ident: b48
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– year: 2021
  ident: b33
  article-title: Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation
  publication-title: Energy Convers. Manage.
– volume: 243
  start-page: 264
  year: 2022
  end-page: 278
  ident: b23
  article-title: Quasi-reflection based multi-strategy cuckoo search for parameter estimation of photovoltaic solar modules
  publication-title: Sol. Energy
– volume: 576
  start-page: 68
  year: 2021
  end-page: 104
  ident: b39
  article-title: An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems
  publication-title: Inform. Sci.
– volume: 43
  start-page: 2066
  year: 2013
  end-page: 2081
  ident: b11
  article-title: Differential evolution with ranking-based mutation operators
  publication-title: IEEE Trans. Cybern.
– volume: 99
  start-page: 170
  year: 2016
  end-page: 180
  ident: b5
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
– volume: 120
  year: 2022
  ident: b40
  article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 7363
  year: 2021
  end-page: 7388
  ident: b50
  article-title: An adaptive differential evolution with decomposition for photovoltaic parameter extraction
  publication-title: Math. Biosci. Eng.
– year: 2021
  ident: 10.1016/j.engappai.2023.106225_b33
  article-title: Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation
  publication-title: Energy Convers. Manage.
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.engappai.2023.106225_b52
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.054
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2023.106225_b26
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 212
  start-page: 1578
  year: 2018
  ident: 10.1016/j.engappai.2023.106225_b3
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.115
– volume: 8
  start-page: 35979
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b13
  article-title: Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975078
– volume: 212
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b24
  article-title: A modified teaching–learning-based optimization algorithm for solving optimization problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106599
– volume: 84
  start-page: 860
  year: 2010
  ident: 10.1016/j.engappai.2023.106225_b55
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.012
– volume: 44
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b7
  article-title: Hybrid teaching–learning-based optimization for solving engineering and mathematical problems
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-022-03700-x
– volume: 104
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b51
  article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107218
– volume: 30
  start-page: 349
  year: 2009
  ident: 10.1016/j.engappai.2023.106225_b34
  article-title: An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J−V curve
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2009.2013882
– volume: 258
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b8
  article-title: An improved teaching–learning-based optimization algorithm with a modified learner phase and a new mutation-restarting phase
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109989
– volume: 7
  start-page: 4114
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b25
  article-title: Adaptive teaching–learning-based optimization with experience learning to identify photovoltaic cell parameters
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.06.097
– volume: 6
  start-page: 19
  year: 1981
  ident: 10.1016/j.engappai.2023.106225_b36
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.6.1.19
– volume: 150
  start-page: 742
  year: 2017
  ident: 10.1016/j.engappai.2023.106225_b53
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.08.063
– volume: 43
  start-page: 2066
  year: 2013
  ident: 10.1016/j.engappai.2023.106225_b11
  article-title: Differential evolution with ranking-based mutation operators
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2239988
– start-page: 19
  year: 2016
  ident: 10.1016/j.engappai.2023.106225_b43
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 27
  start-page: 495
  year: 2015
  ident: 10.1016/j.engappai.2023.106225_b27
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 243
  start-page: 264
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b23
  article-title: Quasi-reflection based multi-strategy cuckoo search for parameter estimation of photovoltaic solar modules
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.08.004
– volume: 4
  start-page: 1
  year: 1986
  ident: 10.1016/j.engappai.2023.106225_b10
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int. J. Sol. Energy
  doi: 10.1080/01425918608909835
– volume: 26
  start-page: 2516
  year: 2013
  ident: 10.1016/j.engappai.2023.106225_b17
  article-title: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.08.002
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.engappai.2023.106225_b28
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 227
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b1
  article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113614
– volume: 183
  start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2023.106225_b32
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 237
  start-page: 241
  year: 2019
  ident: 10.1016/j.engappai.2023.106225_b54
  article-title: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.008
– volume: 141
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b18
  article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110828
– volume: 90
  start-page: 352
  year: 2006
  ident: 10.1016/j.engappai.2023.106225_b30
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.04.023
– volume: 225
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b19
  article-title: A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113474
– volume: 50
  start-page: 4862
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b48
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2943928
– volume: 186
  start-page: 293
  year: 2019
  ident: 10.1016/j.engappai.2023.106225_b20
  article-title: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.02.048
– volume: 110
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b44
  article-title: WOA-TLBO: Whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107623
– volume: 180
  start-page: 192
  year: 2019
  ident: 10.1016/j.engappai.2023.106225_b4
  article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.01.025
– volume: 8
  start-page: 69937
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b22
  article-title: Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984728
– volume: 576
  start-page: 68
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b39
  article-title: An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.06.064
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.engappai.2023.106225_b49
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.08.053
– volume: 261
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b46
  article-title: Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125146
– year: 2011
  ident: 10.1016/j.engappai.2023.106225_b6
– volume: 120
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b40
  article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108694
– volume: 99
  start-page: 170
  year: 2016
  ident: 10.1016/j.engappai.2023.106225_b5
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.052
– volume: 221
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b37
  article-title: Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119866
– volume: 176
  start-page: 104
  year: 2016
  ident: 10.1016/j.engappai.2023.106225_b41
  article-title: A parameter extraction technique exploiting intrinsic properties of solar cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.064
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.engappai.2023.106225_b29
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 18
  start-page: 7363
  year: 2021
  ident: 10.1016/j.engappai.2023.106225_b50
  article-title: An adaptive differential evolution with decomposition for photovoltaic parameter extraction
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2021364
– volume: 34
  start-page: 286
  year: 1987
  ident: 10.1016/j.engappai.2023.106225_b2
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1987.22920
– volume: 104
  start-page: 2489
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b15
  article-title: A hybrid teaching-learning-based optimization algorithm for QoS-aware manufacturing cloud service composition
  publication-title: Computing
  doi: 10.1007/s00607-022-01083-4
– volume: 203
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b21
  article-title: Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112138
– volume: 244
  start-page: 242
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b9
  article-title: Development of incremental average differential evolution algorithm for photovoltaic system identification
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.08.046
– volume: 130
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b14
  article-title: An ensemble multi-swarm teaching–learning-based optimization algorithm for function optimization and image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109653
– volume: 9
  start-page: 159
  year: 2001
  ident: 10.1016/j.engappai.2023.106225_b12
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 57
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2023.106225_b31
  article-title: An improved TLBO based memetic algorithm for aerodynamic shape optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.10.009
– volume: 77
  start-page: 309
  year: 2020
  ident: 10.1016/j.engappai.2023.106225_b35
  article-title: An adaptive inertia weight teaching-learning-based optimization algorithm and its applications
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.07.046
– ident: 10.1016/j.engappai.2023.106225_b16
  doi: 10.1109/ICNN.1995.488968
– volume: 8
  start-page: 4724
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b45
  article-title: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.144
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.engappai.2023.106225_b38
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 268
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b42
  article-title: Investigation of a social group assisted differential evolution for the optimal PV parameter extraction of standard and modified diode models
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2022.115955
– volume: 2022
  year: 2022
  ident: 10.1016/j.engappai.2023.106225_b47
  article-title: An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems
  publication-title: Comput. Intell. Neurosci.
SSID ssj0003846
Score 2.5123203
Snippet As one of the most promising renewable energies, solar energy can be converted to electricity through photovoltaic (PV) systems. It is indispensable to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106225
SubjectTerms Meta-heuristic algorithm
Parameter identification
PV system
TLBO
Title Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models
URI https://dx.doi.org/10.1016/j.engappai.2023.106225
Volume 123
WOSCitedRecordID wos000979715300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_cVi6bxIntY4WKAKEKQVFzixLH3m61m6x2s1WP_Iee-vf4JYxjO8lCpYIQlygareOs58t4ZjwPhF6rQgrBJozIsKSE6oCSnApKeJAUVOkySjRvm02woyOepuLzaHTlc2HO56yq-MWFWP5XVgMNmG1SZ_-C3d1DgQD3wHS4Atvh-keM_5K33RDGjYuT9OEMkWsQMSVm5yrHNQiLhcvCHOfzab2aNacLo4uawhugyCqbRpWb8C1Tg9PolWtjCdv2Oestp35f1nA8PBNvwwxWbTxS2x1kUAC0kzcbw-Z0lptMtGkPs_bY5FRV06XqySfOvZ1uFoMff9q0Dt8TZXyv1dCREUZdGJ3zrvkMmz6cybopQxII5splWyHNWURMaO6WFLdpy7_tCNY5cbYPbwB_P5_tm6mBnIQ24fqXattfzYRmvtCUIpsIfgvthiwWIPN3Dz4cph-7bT7iNgvMv-Ag_fz62a7XfAbazPF9dNeZIfjAwucBGqnqIbrnTBLsBP4aSL7rh6c9QtIBDHuA_fh-uQ0tPIQW7qCFmxp7aGGAFu6hhWuNW2hhC63H6Nu7w-O374lr1UFkFIQN0UECuqLMiyAoQ6oSwQsmi1CKSVIwMJklVSouQfmMVQAGqtaS54JFQFM8VhMdPUE7VV2ppwjTuIRNRKq4SDRtj_ELXYJeXpbwFB4neyj2y5hJV8fetFOZZz5g8Szzy5-Z5c_s8u-hN924pa3kcuMI4bmUOX3U6pkZgOuGsc_-YexzdKf_Pl6gnWa1US_RbXnezNarVw6HPwE6Nbka
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+teaching%E2%80%93learning-based+optimization+algorithm+to+estimate+the+parameters+of+solar+models&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yu%2C+Xiaobing&rft.au=Hu%2C+Zhengpeng&rft.au=Wang%2C+Xuming&rft.au=Luo%2C+Wenguan&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engappai.2023.106225&rft.externalDocID=S0952197623004098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon