Distributed multi-step subgradient optimization for multi-agent system

This paper proposes a novel multi-step subgradient scheme to solve distributed optimization problem with a balanced digraph. To this end, matrix diameter and radius are first introduced to describe the convergence rate of the adjacency matrix. Then, we propose a hierarchical and recursive observer t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters Jg. 128; S. 26 - 33
Hauptverfasser: Li, Chaoyong, Chen, Sai, Li, Jianqing, Wang, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2019
Schlagworte:
ISSN:0167-6911, 1872-7956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel multi-step subgradient scheme to solve distributed optimization problem with a balanced digraph. To this end, matrix diameter and radius are first introduced to describe the convergence rate of the adjacency matrix. Then, we propose a hierarchical and recursive observer to estimate the desired optimal solution, and we prove that the proposed strategy can asymptotically obtain an optimal solution, while all networked systems achieve a consensus among estimates in a finite-time. Simulation results verified the effectiveness of the proposed algorithm.
ISSN:0167-6911
1872-7956
DOI:10.1016/j.sysconle.2019.04.008