Deep denoising autoencoder-assisted continuous scoring of peak quality in high-resolution LC−MS data
Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based...
Saved in:
| Published in: | Chemometrics and intelligent laboratory systems Vol. 231; p. 104694 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.12.2022
|
| ISSN: | 0169-7439, 1873-3239 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based peak classifiers improve the performance significantly. However, their classification strategy loses the continuous criterion for controlling the false positive rate flexibly. Here we put forward AutoMS, which employs a deep learning-based denoising autoencoder to grasp the common characteristics of chromatographic peaks, and predict noise-deducted peaks from the original peak profiles. By comparing the difference before and after processed, it scores the peak quality continuously and precisely. From the evaluating result, AutoMS improved the accuracy for peak picking. AutoMS integrates HPIC for ROI extraction in order to accept raw data directly and output quantitative results. It also supports peak lists obtained from other tools with little adjustment. AutoMS is open source and available at https://github.com/hcji/AutoMS.
[Display omitted]
•AutoMS can grasp the common characteristics and predicting noise-deducted signals from raw chromatographic profiles.•AutoMS Evaluates peak qualities based on the difference between the raw chromatographic profiles and the predicted noise-free signals.•AutoMS Provides continuous and objective criterion for estimating good and poor peaks.•AutoMS Accepts raw files and output quantitative peak lists with little manual operation. |
|---|---|
| AbstractList | Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based peak classifiers improve the performance significantly. However, their classification strategy loses the continuous criterion for controlling the false positive rate flexibly. Here we put forward AutoMS, which employs a deep learning-based denoising autoencoder to grasp the common characteristics of chromatographic peaks, and predict noise-deducted peaks from the original peak profiles. By comparing the difference before and after processed, it scores the peak quality continuously and precisely. From the evaluating result, AutoMS improved the accuracy for peak picking. AutoMS integrates HPIC for ROI extraction in order to accept raw data directly and output quantitative results. It also supports peak lists obtained from other tools with little adjustment. AutoMS is open source and available at https://github.com/hcji/AutoMS.
[Display omitted]
•AutoMS can grasp the common characteristics and predicting noise-deducted signals from raw chromatographic profiles.•AutoMS Evaluates peak qualities based on the difference between the raw chromatographic profiles and the predicted noise-free signals.•AutoMS Provides continuous and objective criterion for estimating good and poor peaks.•AutoMS Accepts raw files and output quantitative peak lists with little manual operation. |
| ArticleNumber | 104694 |
| Author | Ji, Hongchao Tian, Jing |
| Author_xml | – sequence: 1 givenname: Hongchao orcidid: 0000-0002-7364-0741 surname: Ji fullname: Ji, Hongchao email: jihongchao@caas.cn – sequence: 2 givenname: Jing surname: Tian fullname: Tian, Jing |
| BookMark | eNqFkM1KAzEQx4NUsFZfQfICW5NNuh_gQamfUPGgnkOaTNrUbVKTrNA38Owj-iTuUr146WmY4f8bZn7HaOC8A4TOKBlTQovz1VgtYe0bOR_nJM-7IS9qfoCGtCpZxnJWD9CwC9ZZyVl9hI5jXJG-53SIzDXABmtw3kbrFli2yYNTXkPIZIw2JtBYeZesa30bcVQ-9Dlv8AbkG35vZWPTFluHl3axzAJE37TJeodn0-_Pr8dnrGWSJ-jQyCbC6W8dodfbm5fpfTZ7unuYXs0yxWieMlCcz-eVLGtTVryYUK5AG2KqakJUIau8IhNODOeESgYlyavclFpJxsuy4EqxEbrY7VXBxxjACGWT7M9JQdpGUCJ6Z2Il_pyJ3pnYOevw4h--CXYtw3Y_eLkDoXvuw0IQUdnOI2gbQCWhvd234gdd648Z |
| CitedBy_id | crossref_primary_10_1084_jem_20250444 crossref_primary_10_3390_molecules28176406 crossref_primary_10_1016_j_trac_2025_118243 crossref_primary_10_3390_ijms252111847 crossref_primary_10_1016_j_fitote_2025_106385 crossref_primary_10_1016_j_sampre_2025_100186 |
| Cites_doi | 10.1007/s10337-016-3155-4 10.1093/bioinformatics/btk039 10.1021/ac051437y 10.1016/j.talanta.2019.05.053 10.1038/nbt.2377 10.1016/j.chemolab.2017.10.001 10.1021/ac504711d 10.1039/C5AN01816A 10.1021/acs.analchem.1c02220 10.3390/metabo10040162 10.1088/2632-2153/ac567a 10.1093/bioinformatics/btac344 10.1021/acs.analchem.1c01309 10.1021/acs.analchem.7b01547 10.1093/bioinformatics/btl355 10.1021/acs.analchem.9b04811 10.1093/bioinformatics/bty046 10.1021/acs.analchem.1c03250 10.1021/acs.jcim.8b00751 10.1021/acs.analchem.9b02983 10.1016/j.chroma.2020.461713 10.1016/j.chroma.2021.462093 10.1039/C5AN02243F 10.1039/D1SC05248A 10.1186/1471-2105-9-504 10.1021/acs.analchem.1c02178 10.1016/j.talanta.2022.123415 10.1007/s10337-019-03766-1 10.1002/cem.1343 10.1016/j.chroma.2022.463005 10.1021/ac300698c 10.1371/journal.pntd.0005140 10.1002/jms.3512 10.1038/nmeth.3393 10.1021/ac403905h |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chemolab.2022.104694 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3239 |
| ExternalDocumentID | 10_1016_j_chemolab_2022_104694 S0169743922002052 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c312t-ec44bb8a79f7846514cedf0f8850c6a8280540f4401a3e70282f7dca347764cc3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880145900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-7439 |
| IngestDate | Sat Nov 29 07:24:16 EST 2025 Tue Nov 18 21:32:38 EST 2025 Fri Feb 23 02:42:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-ec44bb8a79f7846514cedf0f8850c6a8280540f4401a3e70282f7dca347764cc3 |
| ORCID | 0000-0002-7364-0741 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2022_104694 crossref_primary_10_1016_j_chemolab_2022_104694 elsevier_sciencedirect_doi_10_1016_j_chemolab_2022_104694 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-15 |
| PublicationDateYYYYMMDD | 2022-12-15 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemometrics and intelligent laboratory systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ji, Zeng, Xu, Lu, Zhang (bib7) 2017; 89 Tsugawa, Cajka, Kind, Ma, Higgins, Ikeda, Kanazawa, Vandergheynst, Fiehn, Arita, Dial (bib36) 2015; 12 Du, Kibbe, Lin (bib11) 2006; 22 Kösters, Leufken, Schulze, Sugimoto, Klein, Zahedi, Hippler, Leidel, Fufezan (bib30) 2018; 34 Bueschl, Doppler, Varga, Seidl, Flasch, Warth, Zanghellini (bib19) 2022 Treviño, Yañez-Garza, Rodriguez-López, Urrea-López, Garza-Rodriguez, Barrera-Saldaña, Tamez-Peña, Winkler, Díaz de-la-Garza (bib3) 2015; 50 Tong, Zhang, Zeng, Fu, Ma, Peng, Lu, Liang (bib13) 2016; 79 Tautenhahn, Patti, Rinehart, Siuzdak (bib35) 2012; 84 Kalambet, Kozmin, Mikhailova, Nagaev, Tikhonov (bib10) 2011; 25 Wang, Kuo, Tseng (bib6) 2015; 87 Zhu, Chen, Liu, Wang, Zhao, Hu, Ji, Zhang, Lu (bib9) 2019; 82 Melnikov, Tsentalovich, v Yanshole (bib37) 2020; 92 Lee, Jang, Seo, Lim, Kim (bib28) 2022; 13 Melnikov, Tsentalovich, Yanshole (bib16) 2020; 92 Horgan, Jensen, Nagelkerke, St-Pierre, Vercauteren, Stevens, Bergholt (bib22) 2021 Chambers, Maclean, Burke, Amodei, Ruderman, Neumann, Gatto, Fischer, Pratt, Egertson, Hoff, Kessner, Tasman, Shulman, Frewen, Baker, Brusniak, Paulse, Creasy, Flashner, Kani, Moulding, Seymour, Nuwaysir, Lefebvre, Kuhlmann, Roark, Rainer, Detlev, Hemenway, Huhmer, Langridge, Connolly, Chadick, Holly, Eckels, Deutsch, Moritz, Katz, Agus, MacCoss, Tabb, Mallick (bib33) 2012; 30 Zhang, Tong, Peng, Ma, Zhang, Lu, Chen, Liang (bib12) 2015; 140 Müller, Huber, Beckers, Brack, Krauss, Schulze (bib31) 2020; 10 Kensert, Collaerts, Efthymiadis, Van Broeck, Desmet, Cabooter (bib20) 2021; 1646 Ju, Liu, Zheng, Lu, Xu, Lin (bib25) 2021 Kensert, Bosten, Collaerts, Efthymiadis, Van Broeck, Desmet, Cabooter (bib21) 2022; 1672 Vincent, Larochelle, Bengio, Manzagol (bib29) 2008 Katajamaa, Miettinen, Orešič (bib4) 2006; 22 Vincent, Daly, Courtioux, Cattanach, Biéler, Ndung’u, Bisser, Barrett (bib32) 2016; 10 Kaheman, Brunton, Nathan Kutz (bib34) 2022; 3 Risum, Bro (bib15) 2019; 204 Fan, Xu, Zhang, Liu, Yang, Tao, Wen, Kang, Zhang, Lu (bib24) 2022; 244 Smith, Want, O'Maille, Abagyan, Siuzdak (bib2) 2006; 78 Kantz, Tiwari, Watrous, Cheng, Jain (bib14) 2019; 91 Gloaguen, Kirwan, Beule (bib18) 2022; 94 Fan, Ma, Hou, Ni, Fang, Lu, Zhang (bib23) 2021; 1635 Tautenhahn, Bottcher, Neumann (bib1) 2008; 9 Wang, Ji, Ma, Zeng, Xu, Zhang, Lu (bib8) 2017; 170 Guo, Shen, Xing, Chen, Chen, Porter, Yu, Huan (bib17) 2021; 93 Chen, Bin, Lu, Zhang, Liang (bib26) 2016; 141 Tengstrand, Lindberg, Åberg (bib5) 2014; 86 Sattarov, Baskin, Horvath, Marcou, Bjerrum, Varnek (bib27) 2019; 59 Chen (10.1016/j.chemolab.2022.104694_bib26) 2016; 141 Zhu (10.1016/j.chemolab.2022.104694_bib9) 2019; 82 Sattarov (10.1016/j.chemolab.2022.104694_bib27) 2019; 59 Kaheman (10.1016/j.chemolab.2022.104694_bib34) 2022; 3 Bueschl (10.1016/j.chemolab.2022.104694_bib19) 2022 Melnikov (10.1016/j.chemolab.2022.104694_bib16) 2020; 92 Fan (10.1016/j.chemolab.2022.104694_bib24) 2022; 244 Wang (10.1016/j.chemolab.2022.104694_bib8) 2017; 170 Vincent (10.1016/j.chemolab.2022.104694_bib32) 2016; 10 Tsugawa (10.1016/j.chemolab.2022.104694_bib36) 2015; 12 Melnikov (10.1016/j.chemolab.2022.104694_bib37) 2020; 92 Ji (10.1016/j.chemolab.2022.104694_bib7) 2017; 89 Tautenhahn (10.1016/j.chemolab.2022.104694_bib35) 2012; 84 Du (10.1016/j.chemolab.2022.104694_bib11) 2006; 22 Zhang (10.1016/j.chemolab.2022.104694_bib12) 2015; 140 Chambers (10.1016/j.chemolab.2022.104694_bib33) 2012; 30 Kensert (10.1016/j.chemolab.2022.104694_bib21) 2022; 1672 Ju (10.1016/j.chemolab.2022.104694_bib25) 2021 Vincent (10.1016/j.chemolab.2022.104694_bib29) 2008 Tengstrand (10.1016/j.chemolab.2022.104694_bib5) 2014; 86 Kösters (10.1016/j.chemolab.2022.104694_bib30) 2018; 34 Müller (10.1016/j.chemolab.2022.104694_bib31) 2020; 10 Kalambet (10.1016/j.chemolab.2022.104694_bib10) 2011; 25 Fan (10.1016/j.chemolab.2022.104694_bib23) 2021; 1635 Wang (10.1016/j.chemolab.2022.104694_bib6) 2015; 87 Tautenhahn (10.1016/j.chemolab.2022.104694_bib1) 2008; 9 Smith (10.1016/j.chemolab.2022.104694_bib2) 2006; 78 Lee (10.1016/j.chemolab.2022.104694_bib28) 2022; 13 Gloaguen (10.1016/j.chemolab.2022.104694_bib18) 2022; 94 Kantz (10.1016/j.chemolab.2022.104694_bib14) 2019; 91 Guo (10.1016/j.chemolab.2022.104694_bib17) 2021; 93 Katajamaa (10.1016/j.chemolab.2022.104694_bib4) 2006; 22 Tong (10.1016/j.chemolab.2022.104694_bib13) 2016; 79 Kensert (10.1016/j.chemolab.2022.104694_bib20) 2021; 1646 Horgan (10.1016/j.chemolab.2022.104694_bib22) 2021 Treviño (10.1016/j.chemolab.2022.104694_bib3) 2015; 50 Risum (10.1016/j.chemolab.2022.104694_bib15) 2019; 204 |
| References_xml | – volume: 12 start-page: 523 year: 2015 end-page: 526 ident: bib36 article-title: Data-independent MS/MS deconvolution for comprehensive metabolome analysis publication-title: Nat. Methods – volume: 10 year: 2016 ident: bib32 article-title: Metabolomics identifies multiple candidate biomarkers to diagnose and stage human african trypanosomiasis publication-title: PLoS Neglected Trop. Dis. – volume: 22 start-page: 634 year: 2006 end-page: 636 ident: bib4 article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data publication-title: Bioinformatics – volume: 140 start-page: 7955 year: 2015 end-page: 7964 ident: bib12 article-title: Multiscale peak detection in wavelet space publication-title: Analyst – year: 2021 ident: bib22 article-title: High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy publication-title: Anal. Chem. – volume: 92 start-page: 588 year: 2020 end-page: 592 ident: bib37 article-title: Deep learning for the precise peak detection in high-resolution LC–MS data publication-title: Anal. Chem. – volume: 10 start-page: 162 year: 2020 ident: bib31 article-title: A data set of 255,000 randomly selected and manually classified extracted ion chromatograms for evaluation of peak detection methods publication-title: Metabolites – volume: 22 start-page: 2059 year: 2006 end-page: 2065 ident: bib11 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching publication-title: Bioinformatics – volume: 1635 year: 2021 ident: bib23 article-title: Deep-Learning-Assisted multivariate curve resolution publication-title: J. Chromatogr. A – volume: 244 year: 2022 ident: bib24 article-title: Fully automatic resolution of untargeted GC-MS data with deep learning assistance publication-title: Talanta – volume: 13 start-page: 554 year: 2022 end-page: 565 ident: bib28 article-title: Drug-likeness scoring based on unsupervised learning publication-title: Chem. Sci. – volume: 92 start-page: 588 year: 2020 end-page: 592 ident: bib16 article-title: Deep learning for the precise peak detection in high-resolution LC–MS data publication-title: Anal. Chem. – volume: 25 start-page: 352 year: 2011 end-page: 356 ident: bib10 article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function publication-title: J. Chemom. – volume: 30 start-page: 918 year: 2012 end-page: 920 ident: bib33 article-title: A cross-platform toolkit for mass spectrometry and proteomics publication-title: Nat. Biotechnol. – volume: 141 start-page: 1973 year: 2016 end-page: 1980 ident: bib26 article-title: Calibration transfer via an extreme learning machine auto-encoder publication-title: Analyst – volume: 78 start-page: 779 year: 2006 end-page: 787 ident: bib2 article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. – volume: 86 start-page: 3435 year: 2014 end-page: 3442 ident: bib5 article-title: TracMass 2—a modular suite of tools for processing chromatography-full scan mass spectrometry data publication-title: Anal. Chem. – volume: 87 start-page: 3048 year: 2015 end-page: 3055 ident: bib6 article-title: Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data publication-title: Anal. Chem. – volume: 3 year: 2022 ident: bib34 article-title: Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data publication-title: Mach Learn Sci. Technol. – year: 2021 ident: bib25 article-title: Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules publication-title: Anal. Chem. – start-page: 1096 year: 2008 end-page: 1103 ident: bib29 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning - ICML ’08 – volume: 84 start-page: 5035 year: 2012 end-page: 5039 ident: bib35 article-title: XCMS online: a web-based platform to process untargeted metabolomic data publication-title: Anal. Chem. – year: 2022 ident: bib19 article-title: PeakBot: machine-learning-based chromatographic peak picking publication-title: Bioinformatics – volume: 50 start-page: 165 year: 2015 end-page: 174 ident: bib3 article-title: GridMass: a fast two-dimensional feature detection method for LC/MS publication-title: J. Mass Spectrom. – volume: 82 start-page: 1449 year: 2019 end-page: 1457 ident: bib9 article-title: Feature extraction for LC–MS via hierarchical density clustering publication-title: Chromatographia – volume: 204 start-page: 255 year: 2019 end-page: 260 ident: bib15 article-title: Using deep learning to evaluate peaks in chromatographic data publication-title: Talanta – volume: 9 start-page: 1 year: 2008 end-page: 16 ident: bib1 article-title: Highly sensitive feature detection for high resolution LC/MS publication-title: BMC Bioinf. – volume: 79 start-page: 1247 year: 2016 end-page: 1255 ident: bib13 article-title: Recursive wavelet peak detection of analytical signals publication-title: Chromatographia – volume: 1646 year: 2021 ident: bib20 article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms publication-title: J. Chromatogr. A – volume: 1672 year: 2022 ident: bib21 article-title: Convolutional neural network for automated peak detection in reversed-phase liquid chromatography publication-title: J. Chromatogr. A – volume: 170 start-page: 68 year: 2017 end-page: 74 ident: bib8 article-title: Fast pure ion chromatograms extraction method for LC-MS publication-title: Chemometr. Intell. Lab. Syst. – volume: 59 start-page: 1182 year: 2019 end-page: 1196 ident: bib27 article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping publication-title: J. Chem. Inf. Model. – volume: 91 start-page: 12407 year: 2019 end-page: 12413 ident: bib14 article-title: Deep neural networks for classification of LC-MS spectral peaks publication-title: Anal. Chem. – volume: 94 start-page: 4930 year: 2022 end-page: 4937 ident: bib18 article-title: Deep learning-assisted peak curation for large-scale LC-MS metabolomics publication-title: Anal. Chem. – volume: 89 start-page: 7631 year: 2017 end-page: 7640 ident: bib7 article-title: KPIC2: an effective framework for mass spectrometry-based metabolomics using pure ion chromatograms publication-title: Anal. Chem. – volume: 34 start-page: 2513 year: 2018 end-page: 2514 ident: bib30 article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format publication-title: Bioinformatics – volume: 93 start-page: 12181 year: 2021 end-page: 12186 ident: bib17 article-title: EVA: evaluation of metabolic feature fidelity using a deep learning model trained with over 25000 extracted ion chromatograms publication-title: Anal. Chem. – volume: 79 start-page: 1247 year: 2016 ident: 10.1016/j.chemolab.2022.104694_bib13 article-title: Recursive wavelet peak detection of analytical signals publication-title: Chromatographia doi: 10.1007/s10337-016-3155-4 – volume: 22 start-page: 634 year: 2006 ident: 10.1016/j.chemolab.2022.104694_bib4 article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk039 – volume: 78 start-page: 779 year: 2006 ident: 10.1016/j.chemolab.2022.104694_bib2 article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. doi: 10.1021/ac051437y – volume: 204 start-page: 255 year: 2019 ident: 10.1016/j.chemolab.2022.104694_bib15 article-title: Using deep learning to evaluate peaks in chromatographic data publication-title: Talanta doi: 10.1016/j.talanta.2019.05.053 – volume: 30 start-page: 918 year: 2012 ident: 10.1016/j.chemolab.2022.104694_bib33 article-title: A cross-platform toolkit for mass spectrometry and proteomics publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2377 – volume: 170 start-page: 68 year: 2017 ident: 10.1016/j.chemolab.2022.104694_bib8 article-title: Fast pure ion chromatograms extraction method for LC-MS publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.10.001 – volume: 87 start-page: 3048 year: 2015 ident: 10.1016/j.chemolab.2022.104694_bib6 article-title: Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data publication-title: Anal. Chem. doi: 10.1021/ac504711d – volume: 140 start-page: 7955 year: 2015 ident: 10.1016/j.chemolab.2022.104694_bib12 article-title: Multiscale peak detection in wavelet space publication-title: Analyst doi: 10.1039/C5AN01816A – volume: 94 start-page: 4930 year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib18 article-title: Deep learning-assisted peak curation for large-scale LC-MS metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02220 – volume: 10 start-page: 162 year: 2020 ident: 10.1016/j.chemolab.2022.104694_bib31 article-title: A data set of 255,000 randomly selected and manually classified extracted ion chromatograms for evaluation of peak detection methods publication-title: Metabolites doi: 10.3390/metabo10040162 – volume: 3 year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib34 article-title: Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data publication-title: Mach Learn Sci. Technol. doi: 10.1088/2632-2153/ac567a – year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib19 article-title: PeakBot: machine-learning-based chromatographic peak picking publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac344 – volume: 93 start-page: 12181 year: 2021 ident: 10.1016/j.chemolab.2022.104694_bib17 article-title: EVA: evaluation of metabolic feature fidelity using a deep learning model trained with over 25000 extracted ion chromatograms publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01309 – volume: 89 start-page: 7631 year: 2017 ident: 10.1016/j.chemolab.2022.104694_bib7 article-title: KPIC2: an effective framework for mass spectrometry-based metabolomics using pure ion chromatograms publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01547 – volume: 22 start-page: 2059 year: 2006 ident: 10.1016/j.chemolab.2022.104694_bib11 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl355 – volume: 92 start-page: 588 year: 2020 ident: 10.1016/j.chemolab.2022.104694_bib37 article-title: Deep learning for the precise peak detection in high-resolution LC–MS data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04811 – volume: 34 start-page: 2513 year: 2018 ident: 10.1016/j.chemolab.2022.104694_bib30 article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty046 – year: 2021 ident: 10.1016/j.chemolab.2022.104694_bib25 article-title: Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03250 – volume: 59 start-page: 1182 year: 2019 ident: 10.1016/j.chemolab.2022.104694_bib27 article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00751 – volume: 91 start-page: 12407 year: 2019 ident: 10.1016/j.chemolab.2022.104694_bib14 article-title: Deep neural networks for classification of LC-MS spectral peaks publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02983 – volume: 1635 year: 2021 ident: 10.1016/j.chemolab.2022.104694_bib23 article-title: Deep-Learning-Assisted multivariate curve resolution publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2020.461713 – volume: 1646 year: 2021 ident: 10.1016/j.chemolab.2022.104694_bib20 article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2021.462093 – volume: 141 start-page: 1973 year: 2016 ident: 10.1016/j.chemolab.2022.104694_bib26 article-title: Calibration transfer via an extreme learning machine auto-encoder publication-title: Analyst doi: 10.1039/C5AN02243F – volume: 13 start-page: 554 year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib28 article-title: Drug-likeness scoring based on unsupervised learning publication-title: Chem. Sci. doi: 10.1039/D1SC05248A – volume: 9 start-page: 1 year: 2008 ident: 10.1016/j.chemolab.2022.104694_bib1 article-title: Highly sensitive feature detection for high resolution LC/MS publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-504 – year: 2021 ident: 10.1016/j.chemolab.2022.104694_bib22 article-title: High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02178 – volume: 244 year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib24 article-title: Fully automatic resolution of untargeted GC-MS data with deep learning assistance publication-title: Talanta doi: 10.1016/j.talanta.2022.123415 – volume: 82 start-page: 1449 year: 2019 ident: 10.1016/j.chemolab.2022.104694_bib9 article-title: Feature extraction for LC–MS via hierarchical density clustering publication-title: Chromatographia doi: 10.1007/s10337-019-03766-1 – volume: 25 start-page: 352 year: 2011 ident: 10.1016/j.chemolab.2022.104694_bib10 article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function publication-title: J. Chemom. doi: 10.1002/cem.1343 – volume: 1672 year: 2022 ident: 10.1016/j.chemolab.2022.104694_bib21 article-title: Convolutional neural network for automated peak detection in reversed-phase liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2022.463005 – start-page: 1096 year: 2008 ident: 10.1016/j.chemolab.2022.104694_bib29 article-title: Extracting and composing robust features with denoising autoencoders – volume: 84 start-page: 5035 year: 2012 ident: 10.1016/j.chemolab.2022.104694_bib35 article-title: XCMS online: a web-based platform to process untargeted metabolomic data publication-title: Anal. Chem. doi: 10.1021/ac300698c – volume: 92 start-page: 588 year: 2020 ident: 10.1016/j.chemolab.2022.104694_bib16 article-title: Deep learning for the precise peak detection in high-resolution LC–MS data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04811 – volume: 10 year: 2016 ident: 10.1016/j.chemolab.2022.104694_bib32 article-title: Metabolomics identifies multiple candidate biomarkers to diagnose and stage human african trypanosomiasis publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0005140 – volume: 50 start-page: 165 year: 2015 ident: 10.1016/j.chemolab.2022.104694_bib3 article-title: GridMass: a fast two-dimensional feature detection method for LC/MS publication-title: J. Mass Spectrom. doi: 10.1002/jms.3512 – volume: 12 start-page: 523 year: 2015 ident: 10.1016/j.chemolab.2022.104694_bib36 article-title: Data-independent MS/MS deconvolution for comprehensive metabolome analysis publication-title: Nat. Methods doi: 10.1038/nmeth.3393 – volume: 86 start-page: 3435 year: 2014 ident: 10.1016/j.chemolab.2022.104694_bib5 article-title: TracMass 2—a modular suite of tools for processing chromatography-full scan mass spectrometry data publication-title: Anal. Chem. doi: 10.1021/ac403905h |
| SSID | ssj0016941 |
| Score | 2.4078932 |
| Snippet | Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104694 |
| Title | Deep denoising autoencoder-assisted continuous scoring of peak quality in high-resolution LC−MS data |
| URI | https://dx.doi.org/10.1016/j.chemolab.2022.104694 |
| Volume | 231 |
| WOSCitedRecordID | wos000880145900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZQWwkuqBQQLQX5AKeVS0icdXystkVQlV5apL1FtmPT9CdZ7WZRH4Ezj8iTdCZ2sqt2pYIQl2hlyWvH88WeGc98Q8i7QjhMzFPM6KFj8CValmknmUoUN6AQaFsUbbEJcXKSjceyu9GdteUERFVlNzdy8l9FDW0gbEyd_Qtx938KDfAbhA5PEDs8_0jwB9ZOBrCb1GXrBlDzpkayysJOGSjKKNWiDVAvqzmGv86MD8HDyGerLkOWZZsNiFTGDMzxMN3B8agNjcjeyxjM_5DVtuA5OLfX9TUW6Aq8z2XP9tkMAtbwQn-2xJGOoTu-bHZdfTfnqu4dCaV3zB51J2twTMRtjRSfmum9ZfcyZrwDcygZGkH-_PGbbiYSlsShLezKsT8c7u3w3tlwsWfwpWDyezh0e1PtiyXfYc8-xQFxvBijUaIUTuv1WKQSNsD1_S-H46P-ygkzej0RvJ_gUjr56tFWazJL2snZJnkazAq67-HwjDyy1RZ5POqq-T0nDmFBe1jQVbCgC1jQAAtaO4qwoAEWtKzoHVjQ49Hvn7--nlIExAvy7dPh2egzCzU2mEk-xg2zhnOtMyWkE6CKgvpsbOEil2VpZIYK7HHU6R0HM1wlVqCF7kRhVMKFGHJjkpdkraor-4pQwW3KXZomQhpupFZaC61tZGVUSBeLbZJ265WbQECPdVCu8i7S8CLv1jnHdc79Om-TD32_iadgebCH7MSRB0XSK4g5oOiBvjv_0Pc1ebL4EHbJWjOd2zdkw_xoytn0bQDcLbEMn7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+denoising+autoencoder-assisted+continuous+scoring+of+peak+quality+in+high-resolution+LC%E2%88%92MS+data&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Ji%2C+Hongchao&rft.au=Tian%2C+Jing&rft.date=2022-12-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=231&rft_id=info:doi/10.1016%2Fj.chemolab.2022.104694&rft.externalDocID=S0169743922002052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |