Deep denoising autoencoder-assisted continuous scoring of peak quality in high-resolution LC−MS data

Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based...

Full description

Saved in:
Bibliographic Details
Published in:Chemometrics and intelligent laboratory systems Vol. 231; p. 104694
Main Authors: Ji, Hongchao, Tian, Jing
Format: Journal Article
Language:English
Published: Elsevier B.V 15.12.2022
ISSN:0169-7439, 1873-3239
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based peak classifiers improve the performance significantly. However, their classification strategy loses the continuous criterion for controlling the false positive rate flexibly. Here we put forward AutoMS, which employs a deep learning-based denoising autoencoder to grasp the common characteristics of chromatographic peaks, and predict noise-deducted peaks from the original peak profiles. By comparing the difference before and after processed, it scores the peak quality continuously and precisely. From the evaluating result, AutoMS improved the accuracy for peak picking. AutoMS integrates HPIC for ROI extraction in order to accept raw data directly and output quantitative results. It also supports peak lists obtained from other tools with little adjustment. AutoMS is open source and available at https://github.com/hcji/AutoMS. [Display omitted] •AutoMS can grasp the common characteristics and predicting noise-deducted signals from raw chromatographic profiles.•AutoMS Evaluates peak qualities based on the difference between the raw chromatographic profiles and the predicted noise-free signals.•AutoMS Provides continuous and objective criterion for estimating good and poor peaks.•AutoMS Accepts raw files and output quantitative peak lists with little manual operation.
AbstractList Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform (CWT) based peak detection, which is highly sensitive while suffers from unsatisfactory precision. Recently proposed deep learning (DL) based peak classifiers improve the performance significantly. However, their classification strategy loses the continuous criterion for controlling the false positive rate flexibly. Here we put forward AutoMS, which employs a deep learning-based denoising autoencoder to grasp the common characteristics of chromatographic peaks, and predict noise-deducted peaks from the original peak profiles. By comparing the difference before and after processed, it scores the peak quality continuously and precisely. From the evaluating result, AutoMS improved the accuracy for peak picking. AutoMS integrates HPIC for ROI extraction in order to accept raw data directly and output quantitative results. It also supports peak lists obtained from other tools with little adjustment. AutoMS is open source and available at https://github.com/hcji/AutoMS. [Display omitted] •AutoMS can grasp the common characteristics and predicting noise-deducted signals from raw chromatographic profiles.•AutoMS Evaluates peak qualities based on the difference between the raw chromatographic profiles and the predicted noise-free signals.•AutoMS Provides continuous and objective criterion for estimating good and poor peaks.•AutoMS Accepts raw files and output quantitative peak lists with little manual operation.
ArticleNumber 104694
Author Ji, Hongchao
Tian, Jing
Author_xml – sequence: 1
  givenname: Hongchao
  orcidid: 0000-0002-7364-0741
  surname: Ji
  fullname: Ji, Hongchao
  email: jihongchao@caas.cn
– sequence: 2
  givenname: Jing
  surname: Tian
  fullname: Tian, Jing
BookMark eNqFkM1KAzEQx4NUsFZfQfICW5NNuh_gQamfUPGgnkOaTNrUbVKTrNA38Owj-iTuUr146WmY4f8bZn7HaOC8A4TOKBlTQovz1VgtYe0bOR_nJM-7IS9qfoCGtCpZxnJWD9CwC9ZZyVl9hI5jXJG-53SIzDXABmtw3kbrFli2yYNTXkPIZIw2JtBYeZesa30bcVQ-9Dlv8AbkG35vZWPTFluHl3axzAJE37TJeodn0-_Pr8dnrGWSJ-jQyCbC6W8dodfbm5fpfTZ7unuYXs0yxWieMlCcz-eVLGtTVryYUK5AG2KqakJUIau8IhNODOeESgYlyavclFpJxsuy4EqxEbrY7VXBxxjACGWT7M9JQdpGUCJ6Z2Il_pyJ3pnYOevw4h--CXYtw3Y_eLkDoXvuw0IQUdnOI2gbQCWhvd234gdd648Z
CitedBy_id crossref_primary_10_1084_jem_20250444
crossref_primary_10_3390_molecules28176406
crossref_primary_10_1016_j_trac_2025_118243
crossref_primary_10_3390_ijms252111847
crossref_primary_10_1016_j_fitote_2025_106385
crossref_primary_10_1016_j_sampre_2025_100186
Cites_doi 10.1007/s10337-016-3155-4
10.1093/bioinformatics/btk039
10.1021/ac051437y
10.1016/j.talanta.2019.05.053
10.1038/nbt.2377
10.1016/j.chemolab.2017.10.001
10.1021/ac504711d
10.1039/C5AN01816A
10.1021/acs.analchem.1c02220
10.3390/metabo10040162
10.1088/2632-2153/ac567a
10.1093/bioinformatics/btac344
10.1021/acs.analchem.1c01309
10.1021/acs.analchem.7b01547
10.1093/bioinformatics/btl355
10.1021/acs.analchem.9b04811
10.1093/bioinformatics/bty046
10.1021/acs.analchem.1c03250
10.1021/acs.jcim.8b00751
10.1021/acs.analchem.9b02983
10.1016/j.chroma.2020.461713
10.1016/j.chroma.2021.462093
10.1039/C5AN02243F
10.1039/D1SC05248A
10.1186/1471-2105-9-504
10.1021/acs.analchem.1c02178
10.1016/j.talanta.2022.123415
10.1007/s10337-019-03766-1
10.1002/cem.1343
10.1016/j.chroma.2022.463005
10.1021/ac300698c
10.1371/journal.pntd.0005140
10.1002/jms.3512
10.1038/nmeth.3393
10.1021/ac403905h
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2022.104694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2022_104694
S0169743922002052
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-ec44bb8a79f7846514cedf0f8850c6a8280540f4401a3e70282f7dca347764cc3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880145900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Sat Nov 29 07:24:16 EST 2025
Tue Nov 18 21:32:38 EST 2025
Fri Feb 23 02:42:15 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-ec44bb8a79f7846514cedf0f8850c6a8280540f4401a3e70282f7dca347764cc3
ORCID 0000-0002-7364-0741
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2022_104694
crossref_primary_10_1016_j_chemolab_2022_104694
elsevier_sciencedirect_doi_10_1016_j_chemolab_2022_104694
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ji, Zeng, Xu, Lu, Zhang (bib7) 2017; 89
Tsugawa, Cajka, Kind, Ma, Higgins, Ikeda, Kanazawa, Vandergheynst, Fiehn, Arita, Dial (bib36) 2015; 12
Du, Kibbe, Lin (bib11) 2006; 22
Kösters, Leufken, Schulze, Sugimoto, Klein, Zahedi, Hippler, Leidel, Fufezan (bib30) 2018; 34
Bueschl, Doppler, Varga, Seidl, Flasch, Warth, Zanghellini (bib19) 2022
Treviño, Yañez-Garza, Rodriguez-López, Urrea-López, Garza-Rodriguez, Barrera-Saldaña, Tamez-Peña, Winkler, Díaz de-la-Garza (bib3) 2015; 50
Tong, Zhang, Zeng, Fu, Ma, Peng, Lu, Liang (bib13) 2016; 79
Tautenhahn, Patti, Rinehart, Siuzdak (bib35) 2012; 84
Kalambet, Kozmin, Mikhailova, Nagaev, Tikhonov (bib10) 2011; 25
Wang, Kuo, Tseng (bib6) 2015; 87
Zhu, Chen, Liu, Wang, Zhao, Hu, Ji, Zhang, Lu (bib9) 2019; 82
Melnikov, Tsentalovich, v Yanshole (bib37) 2020; 92
Lee, Jang, Seo, Lim, Kim (bib28) 2022; 13
Melnikov, Tsentalovich, Yanshole (bib16) 2020; 92
Horgan, Jensen, Nagelkerke, St-Pierre, Vercauteren, Stevens, Bergholt (bib22) 2021
Chambers, Maclean, Burke, Amodei, Ruderman, Neumann, Gatto, Fischer, Pratt, Egertson, Hoff, Kessner, Tasman, Shulman, Frewen, Baker, Brusniak, Paulse, Creasy, Flashner, Kani, Moulding, Seymour, Nuwaysir, Lefebvre, Kuhlmann, Roark, Rainer, Detlev, Hemenway, Huhmer, Langridge, Connolly, Chadick, Holly, Eckels, Deutsch, Moritz, Katz, Agus, MacCoss, Tabb, Mallick (bib33) 2012; 30
Zhang, Tong, Peng, Ma, Zhang, Lu, Chen, Liang (bib12) 2015; 140
Müller, Huber, Beckers, Brack, Krauss, Schulze (bib31) 2020; 10
Kensert, Collaerts, Efthymiadis, Van Broeck, Desmet, Cabooter (bib20) 2021; 1646
Ju, Liu, Zheng, Lu, Xu, Lin (bib25) 2021
Kensert, Bosten, Collaerts, Efthymiadis, Van Broeck, Desmet, Cabooter (bib21) 2022; 1672
Vincent, Larochelle, Bengio, Manzagol (bib29) 2008
Katajamaa, Miettinen, Orešič (bib4) 2006; 22
Vincent, Daly, Courtioux, Cattanach, Biéler, Ndung’u, Bisser, Barrett (bib32) 2016; 10
Kaheman, Brunton, Nathan Kutz (bib34) 2022; 3
Risum, Bro (bib15) 2019; 204
Fan, Xu, Zhang, Liu, Yang, Tao, Wen, Kang, Zhang, Lu (bib24) 2022; 244
Smith, Want, O'Maille, Abagyan, Siuzdak (bib2) 2006; 78
Kantz, Tiwari, Watrous, Cheng, Jain (bib14) 2019; 91
Gloaguen, Kirwan, Beule (bib18) 2022; 94
Fan, Ma, Hou, Ni, Fang, Lu, Zhang (bib23) 2021; 1635
Tautenhahn, Bottcher, Neumann (bib1) 2008; 9
Wang, Ji, Ma, Zeng, Xu, Zhang, Lu (bib8) 2017; 170
Guo, Shen, Xing, Chen, Chen, Porter, Yu, Huan (bib17) 2021; 93
Chen, Bin, Lu, Zhang, Liang (bib26) 2016; 141
Tengstrand, Lindberg, Åberg (bib5) 2014; 86
Sattarov, Baskin, Horvath, Marcou, Bjerrum, Varnek (bib27) 2019; 59
Chen (10.1016/j.chemolab.2022.104694_bib26) 2016; 141
Zhu (10.1016/j.chemolab.2022.104694_bib9) 2019; 82
Sattarov (10.1016/j.chemolab.2022.104694_bib27) 2019; 59
Kaheman (10.1016/j.chemolab.2022.104694_bib34) 2022; 3
Bueschl (10.1016/j.chemolab.2022.104694_bib19) 2022
Melnikov (10.1016/j.chemolab.2022.104694_bib16) 2020; 92
Fan (10.1016/j.chemolab.2022.104694_bib24) 2022; 244
Wang (10.1016/j.chemolab.2022.104694_bib8) 2017; 170
Vincent (10.1016/j.chemolab.2022.104694_bib32) 2016; 10
Tsugawa (10.1016/j.chemolab.2022.104694_bib36) 2015; 12
Melnikov (10.1016/j.chemolab.2022.104694_bib37) 2020; 92
Ji (10.1016/j.chemolab.2022.104694_bib7) 2017; 89
Tautenhahn (10.1016/j.chemolab.2022.104694_bib35) 2012; 84
Du (10.1016/j.chemolab.2022.104694_bib11) 2006; 22
Zhang (10.1016/j.chemolab.2022.104694_bib12) 2015; 140
Chambers (10.1016/j.chemolab.2022.104694_bib33) 2012; 30
Kensert (10.1016/j.chemolab.2022.104694_bib21) 2022; 1672
Ju (10.1016/j.chemolab.2022.104694_bib25) 2021
Vincent (10.1016/j.chemolab.2022.104694_bib29) 2008
Tengstrand (10.1016/j.chemolab.2022.104694_bib5) 2014; 86
Kösters (10.1016/j.chemolab.2022.104694_bib30) 2018; 34
Müller (10.1016/j.chemolab.2022.104694_bib31) 2020; 10
Kalambet (10.1016/j.chemolab.2022.104694_bib10) 2011; 25
Fan (10.1016/j.chemolab.2022.104694_bib23) 2021; 1635
Wang (10.1016/j.chemolab.2022.104694_bib6) 2015; 87
Tautenhahn (10.1016/j.chemolab.2022.104694_bib1) 2008; 9
Smith (10.1016/j.chemolab.2022.104694_bib2) 2006; 78
Lee (10.1016/j.chemolab.2022.104694_bib28) 2022; 13
Gloaguen (10.1016/j.chemolab.2022.104694_bib18) 2022; 94
Kantz (10.1016/j.chemolab.2022.104694_bib14) 2019; 91
Guo (10.1016/j.chemolab.2022.104694_bib17) 2021; 93
Katajamaa (10.1016/j.chemolab.2022.104694_bib4) 2006; 22
Tong (10.1016/j.chemolab.2022.104694_bib13) 2016; 79
Kensert (10.1016/j.chemolab.2022.104694_bib20) 2021; 1646
Horgan (10.1016/j.chemolab.2022.104694_bib22) 2021
Treviño (10.1016/j.chemolab.2022.104694_bib3) 2015; 50
Risum (10.1016/j.chemolab.2022.104694_bib15) 2019; 204
References_xml – volume: 12
  start-page: 523
  year: 2015
  end-page: 526
  ident: bib36
  article-title: Data-independent MS/MS deconvolution for comprehensive metabolome analysis
  publication-title: Nat. Methods
– volume: 10
  year: 2016
  ident: bib32
  article-title: Metabolomics identifies multiple candidate biomarkers to diagnose and stage human african trypanosomiasis
  publication-title: PLoS Neglected Trop. Dis.
– volume: 22
  start-page: 634
  year: 2006
  end-page: 636
  ident: bib4
  article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
  publication-title: Bioinformatics
– volume: 140
  start-page: 7955
  year: 2015
  end-page: 7964
  ident: bib12
  article-title: Multiscale peak detection in wavelet space
  publication-title: Analyst
– year: 2021
  ident: bib22
  article-title: High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy
  publication-title: Anal. Chem.
– volume: 92
  start-page: 588
  year: 2020
  end-page: 592
  ident: bib37
  article-title: Deep learning for the precise peak detection in high-resolution LC–MS data
  publication-title: Anal. Chem.
– volume: 10
  start-page: 162
  year: 2020
  ident: bib31
  article-title: A data set of 255,000 randomly selected and manually classified extracted ion chromatograms for evaluation of peak detection methods
  publication-title: Metabolites
– volume: 22
  start-page: 2059
  year: 2006
  end-page: 2065
  ident: bib11
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
– volume: 1635
  year: 2021
  ident: bib23
  article-title: Deep-Learning-Assisted multivariate curve resolution
  publication-title: J. Chromatogr. A
– volume: 244
  year: 2022
  ident: bib24
  article-title: Fully automatic resolution of untargeted GC-MS data with deep learning assistance
  publication-title: Talanta
– volume: 13
  start-page: 554
  year: 2022
  end-page: 565
  ident: bib28
  article-title: Drug-likeness scoring based on unsupervised learning
  publication-title: Chem. Sci.
– volume: 92
  start-page: 588
  year: 2020
  end-page: 592
  ident: bib16
  article-title: Deep learning for the precise peak detection in high-resolution LC–MS data
  publication-title: Anal. Chem.
– volume: 25
  start-page: 352
  year: 2011
  end-page: 356
  ident: bib10
  article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function
  publication-title: J. Chemom.
– volume: 30
  start-page: 918
  year: 2012
  end-page: 920
  ident: bib33
  article-title: A cross-platform toolkit for mass spectrometry and proteomics
  publication-title: Nat. Biotechnol.
– volume: 141
  start-page: 1973
  year: 2016
  end-page: 1980
  ident: bib26
  article-title: Calibration transfer via an extreme learning machine auto-encoder
  publication-title: Analyst
– volume: 78
  start-page: 779
  year: 2006
  end-page: 787
  ident: bib2
  article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
– volume: 86
  start-page: 3435
  year: 2014
  end-page: 3442
  ident: bib5
  article-title: TracMass 2—a modular suite of tools for processing chromatography-full scan mass spectrometry data
  publication-title: Anal. Chem.
– volume: 87
  start-page: 3048
  year: 2015
  end-page: 3055
  ident: bib6
  article-title: Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data
  publication-title: Anal. Chem.
– volume: 3
  year: 2022
  ident: bib34
  article-title: Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data
  publication-title: Mach Learn Sci. Technol.
– year: 2021
  ident: bib25
  article-title: Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules
  publication-title: Anal. Chem.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib29
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning - ICML ’08
– volume: 84
  start-page: 5035
  year: 2012
  end-page: 5039
  ident: bib35
  article-title: XCMS online: a web-based platform to process untargeted metabolomic data
  publication-title: Anal. Chem.
– year: 2022
  ident: bib19
  article-title: PeakBot: machine-learning-based chromatographic peak picking
  publication-title: Bioinformatics
– volume: 50
  start-page: 165
  year: 2015
  end-page: 174
  ident: bib3
  article-title: GridMass: a fast two-dimensional feature detection method for LC/MS
  publication-title: J. Mass Spectrom.
– volume: 82
  start-page: 1449
  year: 2019
  end-page: 1457
  ident: bib9
  article-title: Feature extraction for LC–MS via hierarchical density clustering
  publication-title: Chromatographia
– volume: 204
  start-page: 255
  year: 2019
  end-page: 260
  ident: bib15
  article-title: Using deep learning to evaluate peaks in chromatographic data
  publication-title: Talanta
– volume: 9
  start-page: 1
  year: 2008
  end-page: 16
  ident: bib1
  article-title: Highly sensitive feature detection for high resolution LC/MS
  publication-title: BMC Bioinf.
– volume: 79
  start-page: 1247
  year: 2016
  end-page: 1255
  ident: bib13
  article-title: Recursive wavelet peak detection of analytical signals
  publication-title: Chromatographia
– volume: 1646
  year: 2021
  ident: bib20
  article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
  publication-title: J. Chromatogr. A
– volume: 1672
  year: 2022
  ident: bib21
  article-title: Convolutional neural network for automated peak detection in reversed-phase liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 170
  start-page: 68
  year: 2017
  end-page: 74
  ident: bib8
  article-title: Fast pure ion chromatograms extraction method for LC-MS
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 59
  start-page: 1182
  year: 2019
  end-page: 1196
  ident: bib27
  article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping
  publication-title: J. Chem. Inf. Model.
– volume: 91
  start-page: 12407
  year: 2019
  end-page: 12413
  ident: bib14
  article-title: Deep neural networks for classification of LC-MS spectral peaks
  publication-title: Anal. Chem.
– volume: 94
  start-page: 4930
  year: 2022
  end-page: 4937
  ident: bib18
  article-title: Deep learning-assisted peak curation for large-scale LC-MS metabolomics
  publication-title: Anal. Chem.
– volume: 89
  start-page: 7631
  year: 2017
  end-page: 7640
  ident: bib7
  article-title: KPIC2: an effective framework for mass spectrometry-based metabolomics using pure ion chromatograms
  publication-title: Anal. Chem.
– volume: 34
  start-page: 2513
  year: 2018
  end-page: 2514
  ident: bib30
  article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format
  publication-title: Bioinformatics
– volume: 93
  start-page: 12181
  year: 2021
  end-page: 12186
  ident: bib17
  article-title: EVA: evaluation of metabolic feature fidelity using a deep learning model trained with over 25000 extracted ion chromatograms
  publication-title: Anal. Chem.
– volume: 79
  start-page: 1247
  year: 2016
  ident: 10.1016/j.chemolab.2022.104694_bib13
  article-title: Recursive wavelet peak detection of analytical signals
  publication-title: Chromatographia
  doi: 10.1007/s10337-016-3155-4
– volume: 22
  start-page: 634
  year: 2006
  ident: 10.1016/j.chemolab.2022.104694_bib4
  article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk039
– volume: 78
  start-page: 779
  year: 2006
  ident: 10.1016/j.chemolab.2022.104694_bib2
  article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
– volume: 204
  start-page: 255
  year: 2019
  ident: 10.1016/j.chemolab.2022.104694_bib15
  article-title: Using deep learning to evaluate peaks in chromatographic data
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.05.053
– volume: 30
  start-page: 918
  year: 2012
  ident: 10.1016/j.chemolab.2022.104694_bib33
  article-title: A cross-platform toolkit for mass spectrometry and proteomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2377
– volume: 170
  start-page: 68
  year: 2017
  ident: 10.1016/j.chemolab.2022.104694_bib8
  article-title: Fast pure ion chromatograms extraction method for LC-MS
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.10.001
– volume: 87
  start-page: 3048
  year: 2015
  ident: 10.1016/j.chemolab.2022.104694_bib6
  article-title: Ion trace detection algorithm to extract pure ion chromatograms to improve untargeted peak detection quality for liquid chromatography/time-of-flight mass spectrometry-based metabolomics data
  publication-title: Anal. Chem.
  doi: 10.1021/ac504711d
– volume: 140
  start-page: 7955
  year: 2015
  ident: 10.1016/j.chemolab.2022.104694_bib12
  article-title: Multiscale peak detection in wavelet space
  publication-title: Analyst
  doi: 10.1039/C5AN01816A
– volume: 94
  start-page: 4930
  year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib18
  article-title: Deep learning-assisted peak curation for large-scale LC-MS metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02220
– volume: 10
  start-page: 162
  year: 2020
  ident: 10.1016/j.chemolab.2022.104694_bib31
  article-title: A data set of 255,000 randomly selected and manually classified extracted ion chromatograms for evaluation of peak detection methods
  publication-title: Metabolites
  doi: 10.3390/metabo10040162
– volume: 3
  year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib34
  article-title: Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data
  publication-title: Mach Learn Sci. Technol.
  doi: 10.1088/2632-2153/ac567a
– year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib19
  article-title: PeakBot: machine-learning-based chromatographic peak picking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac344
– volume: 93
  start-page: 12181
  year: 2021
  ident: 10.1016/j.chemolab.2022.104694_bib17
  article-title: EVA: evaluation of metabolic feature fidelity using a deep learning model trained with over 25000 extracted ion chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c01309
– volume: 89
  start-page: 7631
  year: 2017
  ident: 10.1016/j.chemolab.2022.104694_bib7
  article-title: KPIC2: an effective framework for mass spectrometry-based metabolomics using pure ion chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01547
– volume: 22
  start-page: 2059
  year: 2006
  ident: 10.1016/j.chemolab.2022.104694_bib11
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl355
– volume: 92
  start-page: 588
  year: 2020
  ident: 10.1016/j.chemolab.2022.104694_bib37
  article-title: Deep learning for the precise peak detection in high-resolution LC–MS data
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04811
– volume: 34
  start-page: 2513
  year: 2018
  ident: 10.1016/j.chemolab.2022.104694_bib30
  article-title: pymzML v2.0: introducing a highly compressed and seekable gzip format
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty046
– year: 2021
  ident: 10.1016/j.chemolab.2022.104694_bib25
  article-title: Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03250
– volume: 59
  start-page: 1182
  year: 2019
  ident: 10.1016/j.chemolab.2022.104694_bib27
  article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00751
– volume: 91
  start-page: 12407
  year: 2019
  ident: 10.1016/j.chemolab.2022.104694_bib14
  article-title: Deep neural networks for classification of LC-MS spectral peaks
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02983
– volume: 1635
  year: 2021
  ident: 10.1016/j.chemolab.2022.104694_bib23
  article-title: Deep-Learning-Assisted multivariate curve resolution
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2020.461713
– volume: 1646
  year: 2021
  ident: 10.1016/j.chemolab.2022.104694_bib20
  article-title: Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2021.462093
– volume: 141
  start-page: 1973
  year: 2016
  ident: 10.1016/j.chemolab.2022.104694_bib26
  article-title: Calibration transfer via an extreme learning machine auto-encoder
  publication-title: Analyst
  doi: 10.1039/C5AN02243F
– volume: 13
  start-page: 554
  year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib28
  article-title: Drug-likeness scoring based on unsupervised learning
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05248A
– volume: 9
  start-page: 1
  year: 2008
  ident: 10.1016/j.chemolab.2022.104694_bib1
  article-title: Highly sensitive feature detection for high resolution LC/MS
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-9-504
– year: 2021
  ident: 10.1016/j.chemolab.2022.104694_bib22
  article-title: High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02178
– volume: 244
  year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib24
  article-title: Fully automatic resolution of untargeted GC-MS data with deep learning assistance
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123415
– volume: 82
  start-page: 1449
  year: 2019
  ident: 10.1016/j.chemolab.2022.104694_bib9
  article-title: Feature extraction for LC–MS via hierarchical density clustering
  publication-title: Chromatographia
  doi: 10.1007/s10337-019-03766-1
– volume: 25
  start-page: 352
  year: 2011
  ident: 10.1016/j.chemolab.2022.104694_bib10
  article-title: Reconstruction of chromatographic peaks using the exponentially modified Gaussian function
  publication-title: J. Chemom.
  doi: 10.1002/cem.1343
– volume: 1672
  year: 2022
  ident: 10.1016/j.chemolab.2022.104694_bib21
  article-title: Convolutional neural network for automated peak detection in reversed-phase liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2022.463005
– start-page: 1096
  year: 2008
  ident: 10.1016/j.chemolab.2022.104694_bib29
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 84
  start-page: 5035
  year: 2012
  ident: 10.1016/j.chemolab.2022.104694_bib35
  article-title: XCMS online: a web-based platform to process untargeted metabolomic data
  publication-title: Anal. Chem.
  doi: 10.1021/ac300698c
– volume: 92
  start-page: 588
  year: 2020
  ident: 10.1016/j.chemolab.2022.104694_bib16
  article-title: Deep learning for the precise peak detection in high-resolution LC–MS data
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04811
– volume: 10
  year: 2016
  ident: 10.1016/j.chemolab.2022.104694_bib32
  article-title: Metabolomics identifies multiple candidate biomarkers to diagnose and stage human african trypanosomiasis
  publication-title: PLoS Neglected Trop. Dis.
  doi: 10.1371/journal.pntd.0005140
– volume: 50
  start-page: 165
  year: 2015
  ident: 10.1016/j.chemolab.2022.104694_bib3
  article-title: GridMass: a fast two-dimensional feature detection method for LC/MS
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.3512
– volume: 12
  start-page: 523
  year: 2015
  ident: 10.1016/j.chemolab.2022.104694_bib36
  article-title: Data-independent MS/MS deconvolution for comprehensive metabolome analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3393
– volume: 86
  start-page: 3435
  year: 2014
  ident: 10.1016/j.chemolab.2022.104694_bib5
  article-title: TracMass 2—a modular suite of tools for processing chromatography-full scan mass spectrometry data
  publication-title: Anal. Chem.
  doi: 10.1021/ac403905h
SSID ssj0016941
Score 2.407292
Snippet Accurate peak picking is a challenging but fundamental problem in LC-MS-based omics analysis. Previous efforts mainly focused on continuous wavelet transform...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104694
Title Deep denoising autoencoder-assisted continuous scoring of peak quality in high-resolution LC−MS data
URI https://dx.doi.org/10.1016/j.chemolab.2022.104694
Volume 231
WOSCitedRecordID wos000880145900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZQiwQXxK8of_KhnFYuaeys42O1FLXV0ksL2lvkODZNS5PVbhb1ETjziDwJM7GTXbUrtQhxiVaWHHs9X-yZ8cw3hGxzkSqhlWG6EI6JYS6Z0lIypwEtu5ERPnj861geH6eTiepudOdtOQFZVenVlZr-V1FDGwgbU2f_Qtz9S6EBfoPQ4Qlih-edBP_R2ukAdpO6bN0AetHUSFZZ2BkDRRmlWrQB6mW1wPDXufEheBj5bPVFyLJsswGRypiBOR6mOxiP2tCI9L2KwfwPWW1LnoMze1lfYoGuwPtc9myfzSBgDS_05ysc6Ri648tm19U3c6br3pFQesfsUXeyBsdE3NZI8amZ3lt2I2PGOzCHiqER5M8fv-mmkjMeh7awK8f-cLixw3tnw_mOwT8Fk9_Bodubal8s-Rp79gkOiOPFGI0SJXBab8YyUbABbu4d7k-O-isnzOj1RPB-givp5OtHW6_JrGgnp4_Jo2BW0D0Phyfknq2ekgejrprfM-IQFrSHBV0HC7qEBQ2woLWjCAsaYEHLil6DBR2Pfv_89fmEIiCeky-f9k9HByzU2GCG78YNs0aIPE-1VE6CKgpfprGFi1yaJpEZarDHUad3Asxwza1EC93JwmgupBwKY_gLslHVlX1JaCGEAnUxKuI8ETbnuXK5BA2Rw1vBqE22SNKtV2YCAT3WQfmedZGG51m3zhmuc-bXeYt86PtNPQXLrT1UJ44sKJJeQcwARbf0ffUPfV-Th8sP4Q3ZaGYL-5bcNz-acj57FwD3B9NZnW8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+denoising+autoencoder-assisted+continuous+scoring+of+peak+quality+in+high-resolution+LC%E2%88%92MS+data&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Ji%2C+Hongchao&rft.au=Tian%2C+Jing&rft.date=2022-12-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=231&rft_id=info:doi/10.1016%2Fj.chemolab.2022.104694&rft.externalDocID=S0169743922002052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon