A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance

In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robus...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 103; p. 104305
Main Authors: Varghese, Elizabeth B., Thampi, Sabu M.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2021
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robustness sought in detecting these groups cannot be achieved when there are illumination variation and occlusion among subjects by solely relying on video data from distributed cameras. In this paper, we propose a deep learning framework for integrating data from multiple sensor modalities taking into account the spatial properties necessary to manage illumination variation and occlusion of video data. From the fused data, social distance compliance violations are notified by the presence of social groups as graphs detected using a pre-trained deep framework and connected components in graph theory. A cost function is devised for social group graph clustering to identify FCGs by using the socio-psychological theory of Friends-formation. Experiment analysis on four benchmark datasets shows that the proposed approach excels at detecting social distance violations and FCGs, and succeeds in analyzing the potential risk of pandemic spread in an area by the calculation of violation scores and rate of violation. •Proposed convolutional variational autoencoder based multimodal fusion to detect social distancing violations.•Detected violations from the fusion of multimodal data by identifying social groups.•Addressed the problem of occlusion and illumination variation through multimodal fusion.•Defined a cost function for social group graph clustering to detect F-formations.
AbstractList In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robustness sought in detecting these groups cannot be achieved when there are illumination variation and occlusion among subjects by solely relying on video data from distributed cameras. In this paper, we propose a deep learning framework for integrating data from multiple sensor modalities taking into account the spatial properties necessary to manage illumination variation and occlusion of video data. From the fused data, social distance compliance violations are notified by the presence of social groups as graphs detected using a pre-trained deep framework and connected components in graph theory. A cost function is devised for social group graph clustering to identify FCGs by using the socio-psychological theory of Friends-formation. Experiment analysis on four benchmark datasets shows that the proposed approach excels at detecting social distance violations and FCGs, and succeeds in analyzing the potential risk of pandemic spread in an area by the calculation of violation scores and rate of violation. •Proposed convolutional variational autoencoder based multimodal fusion to detect social distancing violations.•Detected violations from the fusion of multimodal data by identifying social groups.•Addressed the problem of occlusion and illumination variation through multimodal fusion.•Defined a cost function for social group graph clustering to detect F-formations.
ArticleNumber 104305
Author Varghese, Elizabeth B.
Thampi, Sabu M.
Author_xml – sequence: 1
  givenname: Elizabeth B.
  orcidid: 0000-0003-4274-7092
  surname: Varghese
  fullname: Varghese, Elizabeth B.
  email: elizabeth.varghese@iiitmk.ac.in
  organization: Center for Research and Innovation in Cyber Threat Resilience (CRICTR), Indian Institute of Information Technology and Management-Kerala (IIITM-K), Trivandrum, 695581, Kerala, India
– sequence: 2
  givenname: Sabu M.
  orcidid: 0000-0001-6453-5520
  surname: Thampi
  fullname: Thampi, Sabu M.
  email: sabu.thampi@iiitmk.ac.in
  organization: Center for Research and Innovation in Cyber Threat Resilience (CRICTR), Indian Institute of Information Technology and Management-Kerala (IIITM-K), Trivandrum, 695581, Kerala, India
BookMark eNqFkMlu2zAQQIkiAeosv1DwB-SSWigRyCGBkaVAgFzaMzEmR864kqiQtIP-feg4veSS02CWN5h5Z-xk8hMy9kOKpRRS_dwucdrAPAMtS1HKXKwr0XxjC9m1VaFapU_YQuimLKRu1Xd2FuNWCFF1tVqwlxs-7oZEo3cwcIc4834XyU98E2B-5n2AEV99-MuTz-2ENvHoLR2GKSaYLE0bvic_QMpU5DA5fre6j5wmPucER7I87sIeaRjyOF6w0x6GiJcf8Zz9ubv9vXooHp_uf61uHgtbyTIVqMvaNoAAopJ1p9dOd1A60E5YkG7d9qChKqFXILEWjbKgZaUbsFK10K2rc3Z13GuDjzFgbyyl9yNTABqMFOagz2zNf33moM8c9WVcfcLnQCOEf1-D10cQ83N7wmCiJcyPOwrZnnGevlrxBh-Ak1c
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106238
crossref_primary_10_1016_j_engappai_2023_106586
crossref_primary_10_1016_j_engappai_2022_105211
crossref_primary_10_1038_s41591_022_01981_2
crossref_primary_10_1016_j_scs_2022_104064
Cites_doi 10.1186/s12889-018-5446-1
10.1016/j.inffus.2019.02.010
10.1371/journal.pone.0123783
10.1145/2733373.2806238
10.1109/TPAMI.2015.2470658
10.1109/TPAMI.2016.2560807
10.5244/C.27.121
10.1145/2663204.2663228
10.1109/ICCV.2015.529
10.1109/CVPR.2018.00528
10.1109/JPROC.2015.2460697
10.1109/TPAMI.2015.2496269
10.1145/3287041
10.1007/s11263-017-1026-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104305
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104305
S0952197621001536
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-e924c5aeaa031489bd98a2da9d0ca1db7fa9a32af6a1e4056ca91395ac167a8b3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659848800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:06:27 EST 2025
Tue Nov 18 22:36:14 EST 2025
Fri Feb 23 02:44:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pandemic surveillance
Free-standing conversation group (FCG)
Convolutional Variational Autoencoder (CVAE)
Social distancing
Multimodal data fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-e924c5aeaa031489bd98a2da9d0ca1db7fa9a32af6a1e4056ca91395ac167a8b3
ORCID 0000-0001-6453-5520
0000-0003-4274-7092
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2021_104305
crossref_primary_10_1016_j_engappai_2021_104305
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104305
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References LandingAI (b22) 2020
Khandelwal, Khandelwal, Agarwal (b20) 2020
Organisation (b24) 2020
Ahmed, Zviedrite, Uzicanin (b1) 2018; 18
Alameda-Pineda, Subramanian, Ricci, Lanz, Sebe (b3) 2017
StereoLabs (b35) 2020
Ge, Collins, Ruback (b14) 2009
COCO (b10) 2017
Hung, H., Englebienne, G., Cabrera Quiros, L., 2014. Detecting conversing groups with a single worn accelerometer. In: Proceedings of the 16th International Conference on Multimodal Interaction. pp. 84–91.
Hedayati, Szafir, Andrist (b16) 2019
Alameda-Pineda, Staiano, Subramanian, Batrinca, Ricci, Lepri, Lanz, Sebe (b2) 2015; 38
Kendon (b19) 1976; 6
Solera, Calderara, Cucchiara (b32) 2015; 38
Lahat, Adali, Jutten (b21) 2015; 103
LevelFiveSupplies (b23) 2020
Setti, Russell, Bassetti, Cristani (b31) 2015; 10
Chamveha, I., Sugano, Y., Sato, Y., Sugimoto, A., 2013. Social group discovery from surveillance videos: A data-driven approach with attention-based cues. In: British Machine Vision Conference. pp. 1–11.
Farnebäck (b12) 2003
Ferguson, Laydon, Nedjati-Gilani, Imai, Ainslie, Baguelin, Bhatia, Boonyasiri, Cucunubá, Cuomo-Dannenburg (b13) 2020
PETS (b25) 2009
Chang, Krahnstoever, Lim, Yu (b7) 2010
Alameda-Pineda, X., Yan, Y., Ricci, E., Lanz, O., Sebe, N., 2015b. Analyzing free-standing conversational groups: A multimodal approach. In: Proceedings of the 23rd ACM International Conference on Multimedia. pp. 5–14.
Swofford, Peruzzi, Vázquez (b36) 2018
Wu, Kirillov, Massa, Lo, Girshick (b38) 2019
Joze, Shaban, Iuzzolino, Koishida (b18) 2019
Ricci, E., Varadarajan, J., Subramanian, R., Rota Bulo, S., Ahuja, N., Lanz, O., 2015. Uncovering interactions and interactors: Joint estimation of head, body orientation and F-formations from surveillance videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4660–4668.
Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L., Fleuret, F., 2018. WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039.
Yang, Yurtsever, Renganathan, Redmill, Ozgüner (b39) 2020
Zhang, Hung (b41) 2018
Gedik, Hung (b15) 2018; 2
Rezaei, Klette (b28) 2017
Varadarajan, Subramanian, Bulò, Ahuja, Lanz, Ricci (b37) 2018; 126
Cristani, Del Bue, Murino, Setti, Vinciarelli (b11) 2020
Rosatelli, Gedik, Hung (b30) 2019
Soures, Chambers, Carmichael, Daram, Shah, Clark, Potter, Kudithipudi (b33) 2020
Choi, Lee (b9) 2019; 51
Punn, Sonbhadra, Agarwal (b26) 2020
Cabrera-Quiros, Demetriou, Gedik, van der Meij, Hung (b5) 2018
Yi, Wang, Lu, Jia, Li (b40) 2016; 39
SpanishFlu1918 (b34) 2020
Ren, He, Girshick, Sun (b27) 2015
LandingAI (10.1016/j.engappai.2021.104305_b22) 2020
Ahmed (10.1016/j.engappai.2021.104305_b1) 2018; 18
10.1016/j.engappai.2021.104305_b8
10.1016/j.engappai.2021.104305_b4
10.1016/j.engappai.2021.104305_b6
Solera (10.1016/j.engappai.2021.104305_b32) 2015; 38
SpanishFlu1918 (10.1016/j.engappai.2021.104305_b34) 2020
Kendon (10.1016/j.engappai.2021.104305_b19) 1976; 6
LevelFiveSupplies (10.1016/j.engappai.2021.104305_b23) 2020
Ferguson (10.1016/j.engappai.2021.104305_b13) 2020
Rosatelli (10.1016/j.engappai.2021.104305_b30) 2019
Setti (10.1016/j.engappai.2021.104305_b31) 2015; 10
Cristani (10.1016/j.engappai.2021.104305_b11) 2020
Joze (10.1016/j.engappai.2021.104305_b18) 2019
Swofford (10.1016/j.engappai.2021.104305_b36) 2018
StereoLabs (10.1016/j.engappai.2021.104305_b35) 2020
Varadarajan (10.1016/j.engappai.2021.104305_b37) 2018; 126
Gedik (10.1016/j.engappai.2021.104305_b15) 2018; 2
10.1016/j.engappai.2021.104305_b29
Wu (10.1016/j.engappai.2021.104305_b38) 2019
Yang (10.1016/j.engappai.2021.104305_b39) 2020
Farnebäck (10.1016/j.engappai.2021.104305_b12) 2003
Choi (10.1016/j.engappai.2021.104305_b9) 2019; 51
Rezaei (10.1016/j.engappai.2021.104305_b28) 2017
Alameda-Pineda (10.1016/j.engappai.2021.104305_b2) 2015; 38
Punn (10.1016/j.engappai.2021.104305_b26) 2020
Soures (10.1016/j.engappai.2021.104305_b33) 2020
Cabrera-Quiros (10.1016/j.engappai.2021.104305_b5) 2018
Organisation (10.1016/j.engappai.2021.104305_b24) 2020
Chang (10.1016/j.engappai.2021.104305_b7) 2010
Ren (10.1016/j.engappai.2021.104305_b27) 2015
COCO (10.1016/j.engappai.2021.104305_b10) 2017
Zhang (10.1016/j.engappai.2021.104305_b41) 2018
Khandelwal (10.1016/j.engappai.2021.104305_b20) 2020
Hedayati (10.1016/j.engappai.2021.104305_b16) 2019
Alameda-Pineda (10.1016/j.engappai.2021.104305_b3) 2017
Ge (10.1016/j.engappai.2021.104305_b14) 2009
Yi (10.1016/j.engappai.2021.104305_b40) 2016; 39
PETS (10.1016/j.engappai.2021.104305_b25) 2009
10.1016/j.engappai.2021.104305_b17
Lahat (10.1016/j.engappai.2021.104305_b21) 2015; 103
References_xml – year: 2020
  ident: b23
  article-title: Social distance monitoring
– reference: Chamveha, I., Sugano, Y., Sato, Y., Sugimoto, A., 2013. Social group discovery from surveillance videos: A data-driven approach with attention-based cues. In: British Machine Vision Conference. pp. 1–11.
– start-page: 1
  year: 2009
  end-page: 8
  ident: b14
  article-title: Automatically detecting the small group structure of a crowd
  publication-title: 2009 Workshop on Applications of Computer Vision (WACV)
– year: 2020
  ident: b24
  article-title: Coronavirus disease (COVID-19) advice for the public
– year: 2019
  ident: b18
  article-title: MMTM: Multimodal transfer module for CNN fusion
– year: 2020
  ident: b35
  article-title: Using 3D cameras to monitor social distancing
– year: 2018
  ident: b36
  article-title: Conversational group detection with deep convolutional networks
– year: 2020
  ident: b34
  article-title: How some cities ‘flattened the curve’ during the 1918 flu pandemic
– reference: Alameda-Pineda, X., Yan, Y., Ricci, E., Lanz, O., Sebe, N., 2015b. Analyzing free-standing conversational groups: A multimodal approach. In: Proceedings of the 23rd ACM International Conference on Multimedia. pp. 5–14.
– start-page: 91
  year: 2015
  end-page: 99
  ident: b27
  article-title: Faster r-CNN: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: b39
  article-title: A vision-based social distancing and critical density detection system for COVID-19
– reference: Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L., Fleuret, F., 2018. WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039.
– year: 2020
  ident: b26
  article-title: Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLOv3 and deepsort techniques
– volume: 18
  start-page: 518
  year: 2018
  ident: b1
  article-title: Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review
  publication-title: BMC Public Health
– volume: 38
  start-page: 995
  year: 2015
  end-page: 1008
  ident: b32
  article-title: Socially constrained structural learning for groups detection in crowd
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  year: 1976
  ident: b19
  article-title: The F-formation system: The spatial organization of social encounters
  publication-title: Man-Environment Syst.
– start-page: 37
  year: 2017
  end-page: 49
  ident: b28
  article-title: Computer vision basics
  publication-title: Computer Vision for Driver Assistance
– year: 2017
  ident: b10
  article-title: Common objects in context
– year: 2020
  ident: b20
  article-title: Using computer vision to enhance safety of workforce in manufacturing in a post COVID world
– start-page: 56
  year: 2010
  end-page: 63
  ident: b7
  article-title: Group level activity recognition in crowded environments across multiple cameras
  publication-title: 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance
– start-page: 558
  year: 2019
  end-page: 559
  ident: b16
  article-title: Recognizing f-formations in the open world
  publication-title: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
– volume: 126
  start-page: 410
  year: 2018
  end-page: 429
  ident: b37
  article-title: Joint estimation of human pose and conversational groups from social scenes
  publication-title: Int. J. Comput. Vis.
– year: 2020
  ident: b11
  article-title: The visual social distancing problem
– volume: 2
  start-page: 1
  year: 2018
  end-page: 24
  ident: b15
  article-title: Detecting conversing groups using social dynamics from wearable acceleration: Group size awareness
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– year: 2020
  ident: b22
  article-title: Social distancing detector
– year: 2019
  ident: b38
  article-title: Detectron2
– reference: Ricci, E., Varadarajan, J., Subramanian, R., Rota Bulo, S., Ahuja, N., Lanz, O., 2015. Uncovering interactions and interactors: Joint estimation of head, body orientation and F-formations from surveillance videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4660–4668.
– start-page: 77482
  year: 2020
  ident: b13
  article-title: Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand
– volume: 38
  start-page: 1707
  year: 2015
  end-page: 1720
  ident: b2
  article-title: Salsa: A novel dataset for multimodal group behavior analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: b5
  article-title: The matchnmingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 147
  year: 2019
  end-page: 153
  ident: b30
  article-title: Detecting F-formations & roles in crowded social scenes with wearables: Combining proxemics & dynamics using LSTMs
  publication-title: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)
– reference: Hung, H., Englebienne, G., Cabrera Quiros, L., 2014. Detecting conversing groups with a single worn accelerometer. In: Proceedings of the 16th International Conference on Multimodal Interaction. pp. 84–91.
– volume: 39
  start-page: 981
  year: 2016
  end-page: 994
  ident: b40
  article-title: Regularized stationary-time estimation for crowd analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: b33
  article-title: SIRNet: Understanding social distancing measures with hybrid neural network model for COVID-19 infectious spread
– start-page: 321
  year: 2017
  end-page: 340
  ident: b3
  article-title: SALSA: A multimodal dataset for the automated analysis of free-standing social interactions
  publication-title: Group and Crowd Behavior for Computer Vision
– volume: 103
  start-page: 1449
  year: 2015
  end-page: 1477
  ident: b21
  article-title: Multimodal data fusion: an overview of methods, challenges, and prospects
  publication-title: Proc. IEEE J.
– year: 2009
  ident: b25
  article-title: Benchmark data
– volume: 10
  year: 2015
  ident: b31
  article-title: F-formation detection: Individuating free-standing conversational groups in images
  publication-title: PLoS One
– start-page: 363
  year: 2003
  end-page: 370
  ident: b12
  article-title: Two-frame motion estimation based on polynomial expansion
  publication-title: Scandinavian Conference on Image Analysis
– year: 2018
  ident: b41
  article-title: On social involvement in mingling scenarios: Detecting associates of F-formations in still images
  publication-title: IEEE Trans. Affect. Comput.
– volume: 51
  start-page: 259
  year: 2019
  end-page: 270
  ident: b9
  article-title: Embracenet: A robust deep learning architecture for multimodal classification
  publication-title: Inf. Fusion
– volume: 6
  issue: 01
  year: 1976
  ident: 10.1016/j.engappai.2021.104305_b19
  article-title: The F-formation system: The spatial organization of social encounters
  publication-title: Man-Environment Syst.
– year: 2018
  ident: 10.1016/j.engappai.2021.104305_b36
– volume: 18
  start-page: 518
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2021.104305_b1
  article-title: Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review
  publication-title: BMC Public Health
  doi: 10.1186/s12889-018-5446-1
– volume: 51
  start-page: 259
  year: 2019
  ident: 10.1016/j.engappai.2021.104305_b9
  article-title: Embracenet: A robust deep learning architecture for multimodal classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.02.010
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2021.104305_b31
  article-title: F-formation detection: Individuating free-standing conversational groups in images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123783
– ident: 10.1016/j.engappai.2021.104305_b4
  doi: 10.1145/2733373.2806238
– start-page: 1
  year: 2009
  ident: 10.1016/j.engappai.2021.104305_b14
  article-title: Automatically detecting the small group structure of a crowd
– start-page: 147
  year: 2019
  ident: 10.1016/j.engappai.2021.104305_b30
  article-title: Detecting F-formations & roles in crowded social scenes with wearables: Combining proxemics & dynamics using LSTMs
– start-page: 363
  year: 2003
  ident: 10.1016/j.engappai.2021.104305_b12
  article-title: Two-frame motion estimation based on polynomial expansion
– start-page: 91
  year: 2015
  ident: 10.1016/j.engappai.2021.104305_b27
  article-title: Faster r-CNN: Towards real-time object detection with region proposal networks
– volume: 38
  start-page: 995
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2021.104305_b32
  article-title: Socially constrained structural learning for groups detection in crowd
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2470658
– year: 2017
  ident: 10.1016/j.engappai.2021.104305_b10
– volume: 39
  start-page: 981
  issue: 5
  year: 2016
  ident: 10.1016/j.engappai.2021.104305_b40
  article-title: L_0 Regularized stationary-time estimation for crowd analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2560807
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b11
– ident: 10.1016/j.engappai.2021.104305_b6
  doi: 10.5244/C.27.121
– start-page: 56
  year: 2010
  ident: 10.1016/j.engappai.2021.104305_b7
  article-title: Group level activity recognition in crowded environments across multiple cameras
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b34
– ident: 10.1016/j.engappai.2021.104305_b17
  doi: 10.1145/2663204.2663228
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b23
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b20
– ident: 10.1016/j.engappai.2021.104305_b29
  doi: 10.1109/ICCV.2015.529
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b26
– ident: 10.1016/j.engappai.2021.104305_b8
  doi: 10.1109/CVPR.2018.00528
– year: 2018
  ident: 10.1016/j.engappai.2021.104305_b41
  article-title: On social involvement in mingling scenarios: Detecting associates of F-formations in still images
  publication-title: IEEE Trans. Affect. Comput.
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b24
– start-page: 321
  year: 2017
  ident: 10.1016/j.engappai.2021.104305_b3
  article-title: SALSA: A multimodal dataset for the automated analysis of free-standing social interactions
– volume: 103
  start-page: 1449
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2021.104305_b21
  article-title: Multimodal data fusion: an overview of methods, challenges, and prospects
  publication-title: Proc. IEEE J.
  doi: 10.1109/JPROC.2015.2460697
– year: 2019
  ident: 10.1016/j.engappai.2021.104305_b18
– year: 2009
  ident: 10.1016/j.engappai.2021.104305_b25
– year: 2019
  ident: 10.1016/j.engappai.2021.104305_b38
– start-page: 37
  year: 2017
  ident: 10.1016/j.engappai.2021.104305_b28
  article-title: Computer vision basics
– volume: 38
  start-page: 1707
  issue: 8
  year: 2015
  ident: 10.1016/j.engappai.2021.104305_b2
  article-title: Salsa: A novel dataset for multimodal group behavior analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2496269
– volume: 2
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2021.104305_b15
  article-title: Detecting conversing groups using social dynamics from wearable acceleration: Group size awareness
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3287041
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b39
– year: 2018
  ident: 10.1016/j.engappai.2021.104305_b5
  article-title: The matchnmingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates
  publication-title: IEEE Trans. Affect. Comput.
– volume: 126
  start-page: 410
  issue: 2–4
  year: 2018
  ident: 10.1016/j.engappai.2021.104305_b37
  article-title: Joint estimation of human pose and conversational groups from social scenes
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1026-6
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b33
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b22
– start-page: 77482
  year: 2020
  ident: 10.1016/j.engappai.2021.104305_b13
– year: 2020
  ident: 10.1016/j.engappai.2021.104305_b35
– start-page: 558
  year: 2019
  ident: 10.1016/j.engappai.2021.104305_b16
  article-title: Recognizing f-formations in the open world
SSID ssj0003846
Score 2.358423
Snippet In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104305
SubjectTerms Convolutional Variational Autoencoder (CVAE)
Free-standing conversation group (FCG)
Multimodal data fusion
Pandemic surveillance
Social distancing
Title A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance
URI https://dx.doi.org/10.1016/j.engappai.2021.104305
Volume 103
WOSCitedRecordID wos000659848800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvFFLH_KBW5SwTjZxfFyqloJExaGgvUXj2Clbtdkl-1D_BP-5njhOAlpReuASrSzZSXa-2DOfP88Q8i7hxi0fF4kPECX-OCpiX3LgvmLA01Fhlkwp62IT_Pw8nU7F18HglzsLs7nmZZne3orFfzW1aTPGxqOzDzB3O6hpML-N0c3VmN1c_8nwEysSvJkr3H_ReuEVa6TEvDo3tVc4NRZ6nUrjHoIjzhX6kmWO5AHu1zciOWTWT48_Wr05Us6opl-uq43GgkUOM47c79Ibev298VpuUNW6pLpKSC8RqDP5d6guf2hb57EVm3kfgk66AjeLmWWx5dr7EvQJi5C1crmOeQx9JmzZl3YSHkW9aZTVmci2zvCWbLgKdHlpXgNmAd4i6Dr8nlL7j6WuFSA6bdtV5sbJcJzMjvOI7IQ8FumQ7Ew-nUw_t0t7lNqTX-4NekfOtz_Rdm-n58FcPCdPm9CDTixkXpCBLl-SZ00YQptJfmmaXKUP1_aK_JzQDlQUQUUtqGgNKtqCiq7m1IKKWlDRDlS0AxU1OKIIKjorqQMV7YPqNfl2enJxfOY3xTr8PGLhytcmkM9j0ABYECEVUokUQgVCjXJgSvICBEQhFAkwbaKEJAfMSBtDzhIOqYzekGE5L_UuoarIw1iOEwUmWNcFE4rxRGow3jrXiss9Ers_NcubTPZYUOU6-7tZ98j7tt_C5nK5t4dwNssaj9R6mpmB4z193z74bvvkSfe9HJDhqlrrQ_I436xmy-qoweIdvAq2Yg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+deep+fusion+graph+framework+to+detect+social+distancing+violations+and+FCGs+in+pandemic+surveillance&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Varghese%2C+Elizabeth+B.&rft.au=Thampi%2C+Sabu+M.&rft.date=2021-08-01&rft.issn=0952-1976&rft.volume=103&rft.spage=104305&rft_id=info:doi/10.1016%2Fj.engappai.2021.104305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2021_104305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon