A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance
In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robus...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 103; p. 104305 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2021
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robustness sought in detecting these groups cannot be achieved when there are illumination variation and occlusion among subjects by solely relying on video data from distributed cameras. In this paper, we propose a deep learning framework for integrating data from multiple sensor modalities taking into account the spatial properties necessary to manage illumination variation and occlusion of video data. From the fused data, social distance compliance violations are notified by the presence of social groups as graphs detected using a pre-trained deep framework and connected components in graph theory. A cost function is devised for social group graph clustering to identify FCGs by using the socio-psychological theory of Friends-formation. Experiment analysis on four benchmark datasets shows that the proposed approach excels at detecting social distance violations and FCGs, and succeeds in analyzing the potential risk of pandemic spread in an area by the calculation of violation scores and rate of violation.
•Proposed convolutional variational autoencoder based multimodal fusion to detect social distancing violations.•Detected violations from the fusion of multimodal data by identifying social groups.•Addressed the problem of occlusion and illumination variation through multimodal fusion.•Defined a cost function for social group graph clustering to detect F-formations. |
|---|---|
| AbstractList | In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need for automated social distance monitoring to avoid the formation of social gatherings and free-standing conversation groups (FCGs). The robustness sought in detecting these groups cannot be achieved when there are illumination variation and occlusion among subjects by solely relying on video data from distributed cameras. In this paper, we propose a deep learning framework for integrating data from multiple sensor modalities taking into account the spatial properties necessary to manage illumination variation and occlusion of video data. From the fused data, social distance compliance violations are notified by the presence of social groups as graphs detected using a pre-trained deep framework and connected components in graph theory. A cost function is devised for social group graph clustering to identify FCGs by using the socio-psychological theory of Friends-formation. Experiment analysis on four benchmark datasets shows that the proposed approach excels at detecting social distance violations and FCGs, and succeeds in analyzing the potential risk of pandemic spread in an area by the calculation of violation scores and rate of violation.
•Proposed convolutional variational autoencoder based multimodal fusion to detect social distancing violations.•Detected violations from the fusion of multimodal data by identifying social groups.•Addressed the problem of occlusion and illumination variation through multimodal fusion.•Defined a cost function for social group graph clustering to detect F-formations. |
| ArticleNumber | 104305 |
| Author | Varghese, Elizabeth B. Thampi, Sabu M. |
| Author_xml | – sequence: 1 givenname: Elizabeth B. orcidid: 0000-0003-4274-7092 surname: Varghese fullname: Varghese, Elizabeth B. email: elizabeth.varghese@iiitmk.ac.in organization: Center for Research and Innovation in Cyber Threat Resilience (CRICTR), Indian Institute of Information Technology and Management-Kerala (IIITM-K), Trivandrum, 695581, Kerala, India – sequence: 2 givenname: Sabu M. orcidid: 0000-0001-6453-5520 surname: Thampi fullname: Thampi, Sabu M. email: sabu.thampi@iiitmk.ac.in organization: Center for Research and Innovation in Cyber Threat Resilience (CRICTR), Indian Institute of Information Technology and Management-Kerala (IIITM-K), Trivandrum, 695581, Kerala, India |
| BookMark | eNqFkMlu2zAQQIkiAeosv1DwB-SSWigRyCGBkaVAgFzaMzEmR864kqiQtIP-feg4veSS02CWN5h5Z-xk8hMy9kOKpRRS_dwucdrAPAMtS1HKXKwr0XxjC9m1VaFapU_YQuimLKRu1Xd2FuNWCFF1tVqwlxs-7oZEo3cwcIc4834XyU98E2B-5n2AEV99-MuTz-2ENvHoLR2GKSaYLE0bvic_QMpU5DA5fre6j5wmPucER7I87sIeaRjyOF6w0x6GiJcf8Zz9ubv9vXooHp_uf61uHgtbyTIVqMvaNoAAopJ1p9dOd1A60E5YkG7d9qChKqFXILEWjbKgZaUbsFK10K2rc3Z13GuDjzFgbyyl9yNTABqMFOagz2zNf33moM8c9WVcfcLnQCOEf1-D10cQ83N7wmCiJcyPOwrZnnGevlrxBh-Ak1c |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106238 crossref_primary_10_1016_j_engappai_2023_106586 crossref_primary_10_1016_j_engappai_2022_105211 crossref_primary_10_1038_s41591_022_01981_2 crossref_primary_10_1016_j_scs_2022_104064 |
| Cites_doi | 10.1186/s12889-018-5446-1 10.1016/j.inffus.2019.02.010 10.1371/journal.pone.0123783 10.1145/2733373.2806238 10.1109/TPAMI.2015.2470658 10.1109/TPAMI.2016.2560807 10.5244/C.27.121 10.1145/2663204.2663228 10.1109/ICCV.2015.529 10.1109/CVPR.2018.00528 10.1109/JPROC.2015.2460697 10.1109/TPAMI.2015.2496269 10.1145/3287041 10.1007/s11263-017-1026-6 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2021.104305 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2021_104305 S0952197621001536 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-e924c5aeaa031489bd98a2da9d0ca1db7fa9a32af6a1e4056ca91395ac167a8b3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659848800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:06:27 EST 2025 Tue Nov 18 22:36:14 EST 2025 Fri Feb 23 02:44:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pandemic surveillance Free-standing conversation group (FCG) Convolutional Variational Autoencoder (CVAE) Social distancing Multimodal data fusion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-e924c5aeaa031489bd98a2da9d0ca1db7fa9a32af6a1e4056ca91395ac167a8b3 |
| ORCID | 0000-0001-6453-5520 0000-0003-4274-7092 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2021_104305 crossref_primary_10_1016_j_engappai_2021_104305 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104305 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | LandingAI (b22) 2020 Khandelwal, Khandelwal, Agarwal (b20) 2020 Organisation (b24) 2020 Ahmed, Zviedrite, Uzicanin (b1) 2018; 18 Alameda-Pineda, Subramanian, Ricci, Lanz, Sebe (b3) 2017 StereoLabs (b35) 2020 Ge, Collins, Ruback (b14) 2009 COCO (b10) 2017 Hung, H., Englebienne, G., Cabrera Quiros, L., 2014. Detecting conversing groups with a single worn accelerometer. In: Proceedings of the 16th International Conference on Multimodal Interaction. pp. 84–91. Hedayati, Szafir, Andrist (b16) 2019 Alameda-Pineda, Staiano, Subramanian, Batrinca, Ricci, Lepri, Lanz, Sebe (b2) 2015; 38 Kendon (b19) 1976; 6 Solera, Calderara, Cucchiara (b32) 2015; 38 Lahat, Adali, Jutten (b21) 2015; 103 LevelFiveSupplies (b23) 2020 Setti, Russell, Bassetti, Cristani (b31) 2015; 10 Chamveha, I., Sugano, Y., Sato, Y., Sugimoto, A., 2013. Social group discovery from surveillance videos: A data-driven approach with attention-based cues. In: British Machine Vision Conference. pp. 1–11. Farnebäck (b12) 2003 Ferguson, Laydon, Nedjati-Gilani, Imai, Ainslie, Baguelin, Bhatia, Boonyasiri, Cucunubá, Cuomo-Dannenburg (b13) 2020 PETS (b25) 2009 Chang, Krahnstoever, Lim, Yu (b7) 2010 Alameda-Pineda, X., Yan, Y., Ricci, E., Lanz, O., Sebe, N., 2015b. Analyzing free-standing conversational groups: A multimodal approach. In: Proceedings of the 23rd ACM International Conference on Multimedia. pp. 5–14. Swofford, Peruzzi, Vázquez (b36) 2018 Wu, Kirillov, Massa, Lo, Girshick (b38) 2019 Joze, Shaban, Iuzzolino, Koishida (b18) 2019 Ricci, E., Varadarajan, J., Subramanian, R., Rota Bulo, S., Ahuja, N., Lanz, O., 2015. Uncovering interactions and interactors: Joint estimation of head, body orientation and F-formations from surveillance videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4660–4668. Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L., Fleuret, F., 2018. WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039. Yang, Yurtsever, Renganathan, Redmill, Ozgüner (b39) 2020 Zhang, Hung (b41) 2018 Gedik, Hung (b15) 2018; 2 Rezaei, Klette (b28) 2017 Varadarajan, Subramanian, Bulò, Ahuja, Lanz, Ricci (b37) 2018; 126 Cristani, Del Bue, Murino, Setti, Vinciarelli (b11) 2020 Rosatelli, Gedik, Hung (b30) 2019 Soures, Chambers, Carmichael, Daram, Shah, Clark, Potter, Kudithipudi (b33) 2020 Choi, Lee (b9) 2019; 51 Punn, Sonbhadra, Agarwal (b26) 2020 Cabrera-Quiros, Demetriou, Gedik, van der Meij, Hung (b5) 2018 Yi, Wang, Lu, Jia, Li (b40) 2016; 39 SpanishFlu1918 (b34) 2020 Ren, He, Girshick, Sun (b27) 2015 LandingAI (10.1016/j.engappai.2021.104305_b22) 2020 Ahmed (10.1016/j.engappai.2021.104305_b1) 2018; 18 10.1016/j.engappai.2021.104305_b8 10.1016/j.engappai.2021.104305_b4 10.1016/j.engappai.2021.104305_b6 Solera (10.1016/j.engappai.2021.104305_b32) 2015; 38 SpanishFlu1918 (10.1016/j.engappai.2021.104305_b34) 2020 Kendon (10.1016/j.engappai.2021.104305_b19) 1976; 6 LevelFiveSupplies (10.1016/j.engappai.2021.104305_b23) 2020 Ferguson (10.1016/j.engappai.2021.104305_b13) 2020 Rosatelli (10.1016/j.engappai.2021.104305_b30) 2019 Setti (10.1016/j.engappai.2021.104305_b31) 2015; 10 Cristani (10.1016/j.engappai.2021.104305_b11) 2020 Joze (10.1016/j.engappai.2021.104305_b18) 2019 Swofford (10.1016/j.engappai.2021.104305_b36) 2018 StereoLabs (10.1016/j.engappai.2021.104305_b35) 2020 Varadarajan (10.1016/j.engappai.2021.104305_b37) 2018; 126 Gedik (10.1016/j.engappai.2021.104305_b15) 2018; 2 10.1016/j.engappai.2021.104305_b29 Wu (10.1016/j.engappai.2021.104305_b38) 2019 Yang (10.1016/j.engappai.2021.104305_b39) 2020 Farnebäck (10.1016/j.engappai.2021.104305_b12) 2003 Choi (10.1016/j.engappai.2021.104305_b9) 2019; 51 Rezaei (10.1016/j.engappai.2021.104305_b28) 2017 Alameda-Pineda (10.1016/j.engappai.2021.104305_b2) 2015; 38 Punn (10.1016/j.engappai.2021.104305_b26) 2020 Soures (10.1016/j.engappai.2021.104305_b33) 2020 Cabrera-Quiros (10.1016/j.engappai.2021.104305_b5) 2018 Organisation (10.1016/j.engappai.2021.104305_b24) 2020 Chang (10.1016/j.engappai.2021.104305_b7) 2010 Ren (10.1016/j.engappai.2021.104305_b27) 2015 COCO (10.1016/j.engappai.2021.104305_b10) 2017 Zhang (10.1016/j.engappai.2021.104305_b41) 2018 Khandelwal (10.1016/j.engappai.2021.104305_b20) 2020 Hedayati (10.1016/j.engappai.2021.104305_b16) 2019 Alameda-Pineda (10.1016/j.engappai.2021.104305_b3) 2017 Ge (10.1016/j.engappai.2021.104305_b14) 2009 Yi (10.1016/j.engappai.2021.104305_b40) 2016; 39 PETS (10.1016/j.engappai.2021.104305_b25) 2009 10.1016/j.engappai.2021.104305_b17 Lahat (10.1016/j.engappai.2021.104305_b21) 2015; 103 |
| References_xml | – year: 2020 ident: b23 article-title: Social distance monitoring – reference: Chamveha, I., Sugano, Y., Sato, Y., Sugimoto, A., 2013. Social group discovery from surveillance videos: A data-driven approach with attention-based cues. In: British Machine Vision Conference. pp. 1–11. – start-page: 1 year: 2009 end-page: 8 ident: b14 article-title: Automatically detecting the small group structure of a crowd publication-title: 2009 Workshop on Applications of Computer Vision (WACV) – year: 2020 ident: b24 article-title: Coronavirus disease (COVID-19) advice for the public – year: 2019 ident: b18 article-title: MMTM: Multimodal transfer module for CNN fusion – year: 2020 ident: b35 article-title: Using 3D cameras to monitor social distancing – year: 2018 ident: b36 article-title: Conversational group detection with deep convolutional networks – year: 2020 ident: b34 article-title: How some cities ‘flattened the curve’ during the 1918 flu pandemic – reference: Alameda-Pineda, X., Yan, Y., Ricci, E., Lanz, O., Sebe, N., 2015b. Analyzing free-standing conversational groups: A multimodal approach. In: Proceedings of the 23rd ACM International Conference on Multimedia. pp. 5–14. – start-page: 91 year: 2015 end-page: 99 ident: b27 article-title: Faster r-CNN: Towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: b39 article-title: A vision-based social distancing and critical density detection system for COVID-19 – reference: Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L., Fleuret, F., 2018. WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039. – year: 2020 ident: b26 article-title: Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLOv3 and deepsort techniques – volume: 18 start-page: 518 year: 2018 ident: b1 article-title: Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review publication-title: BMC Public Health – volume: 38 start-page: 995 year: 2015 end-page: 1008 ident: b32 article-title: Socially constrained structural learning for groups detection in crowd publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 year: 1976 ident: b19 article-title: The F-formation system: The spatial organization of social encounters publication-title: Man-Environment Syst. – start-page: 37 year: 2017 end-page: 49 ident: b28 article-title: Computer vision basics publication-title: Computer Vision for Driver Assistance – year: 2017 ident: b10 article-title: Common objects in context – year: 2020 ident: b20 article-title: Using computer vision to enhance safety of workforce in manufacturing in a post COVID world – start-page: 56 year: 2010 end-page: 63 ident: b7 article-title: Group level activity recognition in crowded environments across multiple cameras publication-title: 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance – start-page: 558 year: 2019 end-page: 559 ident: b16 article-title: Recognizing f-formations in the open world publication-title: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) – volume: 126 start-page: 410 year: 2018 end-page: 429 ident: b37 article-title: Joint estimation of human pose and conversational groups from social scenes publication-title: Int. J. Comput. Vis. – year: 2020 ident: b11 article-title: The visual social distancing problem – volume: 2 start-page: 1 year: 2018 end-page: 24 ident: b15 article-title: Detecting conversing groups using social dynamics from wearable acceleration: Group size awareness publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – year: 2020 ident: b22 article-title: Social distancing detector – year: 2019 ident: b38 article-title: Detectron2 – reference: Ricci, E., Varadarajan, J., Subramanian, R., Rota Bulo, S., Ahuja, N., Lanz, O., 2015. Uncovering interactions and interactors: Joint estimation of head, body orientation and F-formations from surveillance videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4660–4668. – start-page: 77482 year: 2020 ident: b13 article-title: Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand – volume: 38 start-page: 1707 year: 2015 end-page: 1720 ident: b2 article-title: Salsa: A novel dataset for multimodal group behavior analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: b5 article-title: The matchnmingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates publication-title: IEEE Trans. Affect. Comput. – start-page: 147 year: 2019 end-page: 153 ident: b30 article-title: Detecting F-formations & roles in crowded social scenes with wearables: Combining proxemics & dynamics using LSTMs publication-title: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) – reference: Hung, H., Englebienne, G., Cabrera Quiros, L., 2014. Detecting conversing groups with a single worn accelerometer. In: Proceedings of the 16th International Conference on Multimodal Interaction. pp. 84–91. – volume: 39 start-page: 981 year: 2016 end-page: 994 ident: b40 article-title: Regularized stationary-time estimation for crowd analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: b33 article-title: SIRNet: Understanding social distancing measures with hybrid neural network model for COVID-19 infectious spread – start-page: 321 year: 2017 end-page: 340 ident: b3 article-title: SALSA: A multimodal dataset for the automated analysis of free-standing social interactions publication-title: Group and Crowd Behavior for Computer Vision – volume: 103 start-page: 1449 year: 2015 end-page: 1477 ident: b21 article-title: Multimodal data fusion: an overview of methods, challenges, and prospects publication-title: Proc. IEEE J. – year: 2009 ident: b25 article-title: Benchmark data – volume: 10 year: 2015 ident: b31 article-title: F-formation detection: Individuating free-standing conversational groups in images publication-title: PLoS One – start-page: 363 year: 2003 end-page: 370 ident: b12 article-title: Two-frame motion estimation based on polynomial expansion publication-title: Scandinavian Conference on Image Analysis – year: 2018 ident: b41 article-title: On social involvement in mingling scenarios: Detecting associates of F-formations in still images publication-title: IEEE Trans. Affect. Comput. – volume: 51 start-page: 259 year: 2019 end-page: 270 ident: b9 article-title: Embracenet: A robust deep learning architecture for multimodal classification publication-title: Inf. Fusion – volume: 6 issue: 01 year: 1976 ident: 10.1016/j.engappai.2021.104305_b19 article-title: The F-formation system: The spatial organization of social encounters publication-title: Man-Environment Syst. – year: 2018 ident: 10.1016/j.engappai.2021.104305_b36 – volume: 18 start-page: 518 issue: 1 year: 2018 ident: 10.1016/j.engappai.2021.104305_b1 article-title: Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review publication-title: BMC Public Health doi: 10.1186/s12889-018-5446-1 – volume: 51 start-page: 259 year: 2019 ident: 10.1016/j.engappai.2021.104305_b9 article-title: Embracenet: A robust deep learning architecture for multimodal classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.02.010 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.engappai.2021.104305_b31 article-title: F-formation detection: Individuating free-standing conversational groups in images publication-title: PLoS One doi: 10.1371/journal.pone.0123783 – ident: 10.1016/j.engappai.2021.104305_b4 doi: 10.1145/2733373.2806238 – start-page: 1 year: 2009 ident: 10.1016/j.engappai.2021.104305_b14 article-title: Automatically detecting the small group structure of a crowd – start-page: 147 year: 2019 ident: 10.1016/j.engappai.2021.104305_b30 article-title: Detecting F-formations & roles in crowded social scenes with wearables: Combining proxemics & dynamics using LSTMs – start-page: 363 year: 2003 ident: 10.1016/j.engappai.2021.104305_b12 article-title: Two-frame motion estimation based on polynomial expansion – start-page: 91 year: 2015 ident: 10.1016/j.engappai.2021.104305_b27 article-title: Faster r-CNN: Towards real-time object detection with region proposal networks – volume: 38 start-page: 995 issue: 5 year: 2015 ident: 10.1016/j.engappai.2021.104305_b32 article-title: Socially constrained structural learning for groups detection in crowd publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2470658 – year: 2017 ident: 10.1016/j.engappai.2021.104305_b10 – volume: 39 start-page: 981 issue: 5 year: 2016 ident: 10.1016/j.engappai.2021.104305_b40 article-title: L_0 Regularized stationary-time estimation for crowd analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2560807 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b11 – ident: 10.1016/j.engappai.2021.104305_b6 doi: 10.5244/C.27.121 – start-page: 56 year: 2010 ident: 10.1016/j.engappai.2021.104305_b7 article-title: Group level activity recognition in crowded environments across multiple cameras – year: 2020 ident: 10.1016/j.engappai.2021.104305_b34 – ident: 10.1016/j.engappai.2021.104305_b17 doi: 10.1145/2663204.2663228 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b23 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b20 – ident: 10.1016/j.engappai.2021.104305_b29 doi: 10.1109/ICCV.2015.529 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b26 – ident: 10.1016/j.engappai.2021.104305_b8 doi: 10.1109/CVPR.2018.00528 – year: 2018 ident: 10.1016/j.engappai.2021.104305_b41 article-title: On social involvement in mingling scenarios: Detecting associates of F-formations in still images publication-title: IEEE Trans. Affect. Comput. – year: 2020 ident: 10.1016/j.engappai.2021.104305_b24 – start-page: 321 year: 2017 ident: 10.1016/j.engappai.2021.104305_b3 article-title: SALSA: A multimodal dataset for the automated analysis of free-standing social interactions – volume: 103 start-page: 1449 issue: 9 year: 2015 ident: 10.1016/j.engappai.2021.104305_b21 article-title: Multimodal data fusion: an overview of methods, challenges, and prospects publication-title: Proc. IEEE J. doi: 10.1109/JPROC.2015.2460697 – year: 2019 ident: 10.1016/j.engappai.2021.104305_b18 – year: 2009 ident: 10.1016/j.engappai.2021.104305_b25 – year: 2019 ident: 10.1016/j.engappai.2021.104305_b38 – start-page: 37 year: 2017 ident: 10.1016/j.engappai.2021.104305_b28 article-title: Computer vision basics – volume: 38 start-page: 1707 issue: 8 year: 2015 ident: 10.1016/j.engappai.2021.104305_b2 article-title: Salsa: A novel dataset for multimodal group behavior analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2496269 – volume: 2 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.engappai.2021.104305_b15 article-title: Detecting conversing groups using social dynamics from wearable acceleration: Group size awareness publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3287041 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b39 – year: 2018 ident: 10.1016/j.engappai.2021.104305_b5 article-title: The matchnmingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates publication-title: IEEE Trans. Affect. Comput. – volume: 126 start-page: 410 issue: 2–4 year: 2018 ident: 10.1016/j.engappai.2021.104305_b37 article-title: Joint estimation of human pose and conversational groups from social scenes publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1026-6 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b33 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b22 – start-page: 77482 year: 2020 ident: 10.1016/j.engappai.2021.104305_b13 – year: 2020 ident: 10.1016/j.engappai.2021.104305_b35 – start-page: 558 year: 2019 ident: 10.1016/j.engappai.2021.104305_b16 article-title: Recognizing f-formations in the open world |
| SSID | ssj0003846 |
| Score | 2.358423 |
| Snippet | In pandemic surveillance, ensuring social distance has emerged as a challenging issue due to the lack of proper therapeutic agents, and this envisages the need... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104305 |
| SubjectTerms | Convolutional Variational Autoencoder (CVAE) Free-standing conversation group (FCG) Multimodal data fusion Pandemic surveillance Social distancing |
| Title | A multimodal deep fusion graph framework to detect social distancing violations and FCGs in pandemic surveillance |
| URI | https://dx.doi.org/10.1016/j.engappai.2021.104305 |
| Volume | 103 |
| WOSCitedRecordID | wos000659848800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvFFLH_KBW5SwTjZxfFyqloJExaGgvUXj2Clbtdkl-1D_BP-5njhOAlpReuASrSzZSXa-2DOfP88Q8i7hxi0fF4kPECX-OCpiX3LgvmLA01Fhlkwp62IT_Pw8nU7F18HglzsLs7nmZZne3orFfzW1aTPGxqOzDzB3O6hpML-N0c3VmN1c_8nwEysSvJkr3H_ReuEVa6TEvDo3tVc4NRZ6nUrjHoIjzhX6kmWO5AHu1zciOWTWT48_Wr05Us6opl-uq43GgkUOM47c79Ibev298VpuUNW6pLpKSC8RqDP5d6guf2hb57EVm3kfgk66AjeLmWWx5dr7EvQJi5C1crmOeQx9JmzZl3YSHkW9aZTVmci2zvCWbLgKdHlpXgNmAd4i6Dr8nlL7j6WuFSA6bdtV5sbJcJzMjvOI7IQ8FumQ7Ew-nUw_t0t7lNqTX-4NekfOtz_Rdm-n58FcPCdPm9CDTixkXpCBLl-SZ00YQptJfmmaXKUP1_aK_JzQDlQUQUUtqGgNKtqCiq7m1IKKWlDRDlS0AxU1OKIIKjorqQMV7YPqNfl2enJxfOY3xTr8PGLhytcmkM9j0ABYECEVUokUQgVCjXJgSvICBEQhFAkwbaKEJAfMSBtDzhIOqYzekGE5L_UuoarIw1iOEwUmWNcFE4rxRGow3jrXiss9Ers_NcubTPZYUOU6-7tZ98j7tt_C5nK5t4dwNssaj9R6mpmB4z193z74bvvkSfe9HJDhqlrrQ_I436xmy-qoweIdvAq2Yg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+deep+fusion+graph+framework+to+detect+social+distancing+violations+and+FCGs+in+pandemic+surveillance&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Varghese%2C+Elizabeth+B.&rft.au=Thampi%2C+Sabu+M.&rft.date=2021-08-01&rft.issn=0952-1976&rft.volume=103&rft.spage=104305&rft_id=info:doi/10.1016%2Fj.engappai.2021.104305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2021_104305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |