Choice of approximator and design of penalty function for an approximate dynamic programming based control approach

This paper investigates the choice of function approximator for an approximate dynamic programming (ADP) based control strategy. The ADP strategy allows the user to derive an improved control policy given a simulation model and some starting control policy (or alternatively, closed-loop identificati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of process control Vol. 16; no. 2; pp. 135 - 156
Main Authors: Lee, Jong Min, Kaisare, Niket S., Lee, Jay H.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2006
Subjects:
ISSN:0959-1524, 1873-2771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the choice of function approximator for an approximate dynamic programming (ADP) based control strategy. The ADP strategy allows the user to derive an improved control policy given a simulation model and some starting control policy (or alternatively, closed-loop identification data), while circumventing the ‘curse-of-dimensionality’ of the traditional dynamic programming approach. In ADP, one fits a function approximator to state vs. ‘cost-to-go’ data and solves the Bellman equation with the approximator in an iterative manner. A proper choice and design of function approximator is critical for convergence of the iteration and the quality of final learned control policy, because an approximation error can grow quickly in the loop of optimization and function approximation. Typical classes of approximators used in related approaches are parameterized global approximators (e.g. artificial neural networks) and nonparametric local averagers (e.g. k-nearest neighbor). In this paper, we assert on the basis of some case studies and a theoretical result that a certain type of local averagers should be preferred over global approximators as the former ensures monotonic convergence of the iteration. However, a converged cost-to-go function does not necessarily lead to a stable control policy on-line due to the problem of over-extrapolation. To cope with this difficulty, we propose that a penalty term be included in the objective function in each minimization to discourage the optimizer from finding a solution in the regions of state space where the local data density is inadequately low. A nonparametric density estimator, which can be naturally combined with a local averager, is employed for this purpose.
ISSN:0959-1524
1873-2771
DOI:10.1016/j.jprocont.2005.04.010