A multi–modal unsupervised fault detection system based on power signals and thermal imaging via deep AutoEncoder neural network

In this paper a multi-modal unsupervised Deep Learning based algorithm for fault detection is proposed. Such method is applied to real data from a testing procedure implemented on an industrial production line. Both thermal images and current and power measurements coming from industrial refrigerato...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 110; s. 104729
Hlavní autori: Cordoni, Francesco, Bacchiega, Gianluca, Bondani, Giulio, Radu, Robert, Muradore, Riccardo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2022
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper a multi-modal unsupervised Deep Learning based algorithm for fault detection is proposed. Such method is applied to real data from a testing procedure implemented on an industrial production line. Both thermal images and current and power measurements coming from industrial refrigerators are collected. The considered dataset is highly unbalanced with the vast majority of samples being healthy. Thermal images are processed via a Deep Convolutional neural network. The features extracted from the thermal images are thus merged to structured data of power, current and temperature. Therefore, a Deep Auto-Encoder is trained on the dataset to signal anomalies corresponding to faults in the refrigerators. Three different methods are trained and compared: (1) an automatic method in which an expert extracts relevant features from thermal images without using the image recognition module; (2) a semi-automatic method where the convolutional neural network is applied to regions of interest within the thermal images selected by an expert operator; (3) a fully automatic method in which the Deep convolutional network processes the whole thermal image without any human intervention. The three methods show comparable results with nevertheless slight differences.
AbstractList In this paper a multi-modal unsupervised Deep Learning based algorithm for fault detection is proposed. Such method is applied to real data from a testing procedure implemented on an industrial production line. Both thermal images and current and power measurements coming from industrial refrigerators are collected. The considered dataset is highly unbalanced with the vast majority of samples being healthy. Thermal images are processed via a Deep Convolutional neural network. The features extracted from the thermal images are thus merged to structured data of power, current and temperature. Therefore, a Deep Auto-Encoder is trained on the dataset to signal anomalies corresponding to faults in the refrigerators. Three different methods are trained and compared: (1) an automatic method in which an expert extracts relevant features from thermal images without using the image recognition module; (2) a semi-automatic method where the convolutional neural network is applied to regions of interest within the thermal images selected by an expert operator; (3) a fully automatic method in which the Deep convolutional network processes the whole thermal image without any human intervention. The three methods show comparable results with nevertheless slight differences.
ArticleNumber 104729
Author Bacchiega, Gianluca
Bondani, Giulio
Muradore, Riccardo
Cordoni, Francesco
Radu, Robert
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0002-1295-7884
  surname: Cordoni
  fullname: Cordoni, Francesco
  email: francesco.cordoni@unitn.it
  organization: University of Trento - Department of Civil, Environmental and Mechanical Engineering, Via Mesiano, 77, Trento, 38123, Italy
– sequence: 2
  givenname: Gianluca
  orcidid: 0000-0003-3923-4632
  surname: Bacchiega
  fullname: Bacchiega, Gianluca
  email: bacchiega@irsweb.it
  organization: R&D, I.R.S. srl, Padova, Italy
– sequence: 3
  givenname: Giulio
  surname: Bondani
  fullname: Bondani, Giulio
  email: bondani@irsweb.it
  organization: R&D, I.R.S. srl, Padova, Italy
– sequence: 4
  givenname: Robert
  surname: Radu
  fullname: Radu, Robert
  email: radu@firstech.it
  organization: R&D, FirsT srl, Pordenone, Italy
– sequence: 5
  givenname: Riccardo
  orcidid: 0000-0002-0287-6896
  surname: Muradore
  fullname: Muradore, Riccardo
  email: riccardo.muradore@univr.it
  organization: University of Verona - Department of Computer Science, Strada le Grazie, 15 Verona, 37134, Italy
BookMark eNqFkM1OAyEURonRxFp9BcMLTAVmOgyJCxvjX2LiRteEgTuV2oEJMDXujK_gG_ok0lQ3blwRuJwv9ztHaN95BwidUjKjhNZnqxm4pRoGZWeMMJYfK87EHprQhpdFzWuxjyZEzFlBBa8P0VGMK0JI2VT1BH0scD-uk_16_-y9UWs8ujgOEDY2gsGdyjNsIIFO1jsc32KCHrdqO8z3wb9CwNEunVpHrJzB6RlCn2Nsr5bWLfHGqszDgBdj8ldOe5MBB2PIfxykVx9ejtFBl3E4-Tmn6On66vHytrh_uLm7XNwXuqQsFVC1dd6aQDWnZatbLoyeM6KVqgQrSSOapjN1KxpiOKcdFwK4Voa1Xdlwqkw5Ree7XB18jAE6qW1S214pKLuWlMitT7mSvz7l1qfc-cx4_QcfQm4Z3v4HL3Yg5HIbC0FGbcFpMDZkr9J4-1_ENwkFmnI
CitedBy_id crossref_primary_10_1016_j_jtice_2023_105236
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_engappai_2023_106325
crossref_primary_10_3390_rs15010194
crossref_primary_10_1109_ACCESS_2025_3602914
crossref_primary_10_1016_j_measurement_2025_118325
crossref_primary_10_1016_j_engappai_2023_107389
crossref_primary_10_3390_s23115010
crossref_primary_10_1016_j_engappai_2024_109529
crossref_primary_10_1016_j_engappai_2023_105825
crossref_primary_10_1007_s10489_024_05332_1
crossref_primary_10_1016_j_engappai_2024_109374
crossref_primary_10_1016_j_engappai_2025_110332
crossref_primary_10_1088_1361_6501_acde97
crossref_primary_10_3390_en16124773
crossref_primary_10_3390_signals5010008
crossref_primary_10_1177_00368504251330003
crossref_primary_10_1016_j_csi_2024_103856
crossref_primary_10_1016_j_engappai_2025_111218
Cites_doi 10.3390/pr5030035
10.1016/j.engappai.2018.11.007
10.1016/j.promfg.2020.01.031
10.1016/j.cie.2019.106024
10.1016/j.ifacol.2020.12.2856
10.1561/2200000006
10.1016/j.promfg.2018.01.007
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.104729
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_104729
S0952197622000392
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-e4b60030e4513bcb79dc520caa492308988fd6b980d771f799e7cad2bf3871ad3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795645300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:07:19 EST 2025
Tue Nov 18 22:43:12 EST 2025
Fri Feb 23 02:39:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural networks
Fault detection and isolation
Auto-encoder neural network
Deep convolutional neural network
Deep Learning
Unsupervised learning
Thermal camera
Predictive maintenance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-e4b60030e4513bcb79dc520caa492308988fd6b980d771f799e7cad2bf3871ad3
ORCID 0000-0003-3923-4632
0000-0002-0287-6896
0000-0002-1295-7884
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2022_104729
crossref_primary_10_1016_j_engappai_2022_104729
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_104729
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bengio (b2) 2009; 2
Biasielli, Bolchini, Cassano, Miele (b3) 2019
Carvalho, Soares, Vita, Francisco, Basto, Alcalá (b5) 2019; 137
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b13) 2010; 11
Tagawa, T., Tadokoro, Y., Yairi, T., Structured denoising autoencoder for fault detection and analysis. In: Asian Conference on Machine Learning, 2015, 96–111.
Carletti, Masiero, Beghi, Susto (b4) 2019; 38
Maggipinto, Beghi, Susto (b8) 2019; 1
Zhang, Wang, Gao, Yan (b14) 2018; 19
Reis, Gins (b10) 2017; 5
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b1) 2015
Chollet (b6) 2015
Muhuri, Shukla, Abraham (b9) 2019; 78
Zhao, Mukhopadhyay (b15) 2018
Cordoni, F.G., Bacchiega, G., Bondani, G., Radu, R., Muradore, R., A deep learning unsupervised approach for fault diagnosis of household appliances. In: IFAC Online, 21st IFAC World Conference, 2020.
Simonyan, Zisserman (b11) 2014
Biasielli (10.1016/j.engappai.2022.104729_b3) 2019
10.1016/j.engappai.2022.104729_b7
Muhuri (10.1016/j.engappai.2022.104729_b9) 2019; 78
Reis (10.1016/j.engappai.2022.104729_b10) 2017; 5
Vincent (10.1016/j.engappai.2022.104729_b13) 2010; 11
Simonyan (10.1016/j.engappai.2022.104729_b11) 2014
Carvalho (10.1016/j.engappai.2022.104729_b5) 2019; 137
Zhang (10.1016/j.engappai.2022.104729_b14) 2018; 19
Carletti (10.1016/j.engappai.2022.104729_b4) 2019; 38
Abadi (10.1016/j.engappai.2022.104729_b1) 2015
Chollet (10.1016/j.engappai.2022.104729_b6) 2015
Zhao (10.1016/j.engappai.2022.104729_b15) 2018
10.1016/j.engappai.2022.104729_b12
Maggipinto (10.1016/j.engappai.2022.104729_b8) 2019; 1
Bengio (10.1016/j.engappai.2022.104729_b2) 2009; 2
References_xml – volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b2
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– start-page: 704
  year: 2019
  end-page: 709
  ident: b3
  article-title: A smart fault detection scheme for reliable image processing applications
  publication-title: 2019 Design, Automation & Test In Europe Conference & Exhibition (DATE)
– year: 2014
  ident: b11
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2015
  ident: b6
  article-title: Keras. gitHub
– volume: 137
  year: 2019
  ident: b5
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Comput. Ind. Eng.
– reference: Cordoni, F.G., Bacchiega, G., Bondani, G., Radu, R., Muradore, R., A deep learning unsupervised approach for fault diagnosis of household appliances. In: IFAC Online, 21st IFAC World Conference, 2020.
– volume: 78
  start-page: 218
  year: 2019
  end-page: 235
  ident: b9
  article-title: Industry 4.0: A bibliometric analysis and detailed overview
  publication-title: Eng. Appl. Artif. Intell.
– reference: Tagawa, T., Tadokoro, Y., Yairi, T., Structured denoising autoencoder for fault detection and analysis. In: Asian Conference on Machine Learning, 2015, 96–111.
– year: 2015
  ident: b1
  article-title: TensorFlow: LArge-scale machine learning on heterogeneous systems
– volume: 38
  start-page: 233
  year: 2019
  end-page: 240
  ident: b4
  article-title: A deep learning approach for anomaly detection with industrial time series data: a refrigerators manufacturing case study
  publication-title: Procedia Manuf.
– volume: 19
  start-page: 42
  year: 2018
  end-page: 49
  ident: b14
  article-title: An image processing approach to machine fault diagnosis based on visual words representation
  publication-title: Procedia Manuf.
– volume: 1
  start-page: 187
  year: 2019
  end-page: 192
  ident: b8
  article-title: A deep learning-based approach to anomaly detection with 2-dimensional data in manufacturing
  publication-title: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN)
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 35
  year: 2017
  ident: b10
  article-title: Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis
  publication-title: Processes
– start-page: 1966
  year: 2018
  end-page: 1970
  ident: b15
  article-title: A fault detection workflow using deep learning and image processing
  publication-title: SEG Technical Program Expanded Abstracts 2018
– year: 2014
  ident: 10.1016/j.engappai.2022.104729_b11
– volume: 1
  start-page: 187
  year: 2019
  ident: 10.1016/j.engappai.2022.104729_b8
  article-title: A deep learning-based approach to anomaly detection with 2-dimensional data in manufacturing
– year: 2015
  ident: 10.1016/j.engappai.2022.104729_b1
– ident: 10.1016/j.engappai.2022.104729_b12
– volume: 5
  start-page: 35
  issue: 3
  year: 2017
  ident: 10.1016/j.engappai.2022.104729_b10
  article-title: Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis
  publication-title: Processes
  doi: 10.3390/pr5030035
– start-page: 1966
  year: 2018
  ident: 10.1016/j.engappai.2022.104729_b15
  article-title: A fault detection workflow using deep learning and image processing
– volume: 78
  start-page: 218
  year: 2019
  ident: 10.1016/j.engappai.2022.104729_b9
  article-title: Industry 4.0: A bibliometric analysis and detailed overview
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.11.007
– volume: 38
  start-page: 233
  year: 2019
  ident: 10.1016/j.engappai.2022.104729_b4
  article-title: A deep learning approach for anomaly detection with industrial time series data: a refrigerators manufacturing case study
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.031
– volume: 137
  year: 2019
  ident: 10.1016/j.engappai.2022.104729_b5
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106024
– ident: 10.1016/j.engappai.2022.104729_b7
  doi: 10.1016/j.ifacol.2020.12.2856
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2022.104729_b2
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 19
  start-page: 42
  year: 2018
  ident: 10.1016/j.engappai.2022.104729_b14
  article-title: An image processing approach to machine fault diagnosis based on visual words representation
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.01.007
– start-page: 704
  year: 2019
  ident: 10.1016/j.engappai.2022.104729_b3
  article-title: A smart fault detection scheme for reliable image processing applications
– year: 2015
  ident: 10.1016/j.engappai.2022.104729_b6
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 10.1016/j.engappai.2022.104729_b13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
SSID ssj0003846
Score 2.4406645
Snippet In this paper a multi-modal unsupervised Deep Learning based algorithm for fault detection is proposed. Such method is applied to real data from a testing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104729
SubjectTerms Auto-encoder neural network
Deep convolutional neural network
Deep Learning
Fault detection and isolation
Neural networks
Predictive maintenance
Thermal camera
Unsupervised learning
Title A multi–modal unsupervised fault detection system based on power signals and thermal imaging via deep AutoEncoder neural network
URI https://dx.doi.org/10.1016/j.engappai.2022.104729
Volume 110
WOSCitedRecordID wos000795645300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvNEuL_nALUppXrV9jFB5Ca0QWlBvkWM7kFU3iZqk2iPiL_DT-Af8Esax81hYseyBS9Q6GafpfPGMx-P5EHrGJRFwInTJggg3FCTQJW89l0QZvF5KCb8rpfTpHTk6ous1ez-b_ej3wuw2pCjo2Rmr_quqoQ2UrbfOXkHdQ6fQAJ9B6XAEtcPxnxQfmyTBPoshOC0lqKEt6rbS40INHmbG4QpHqkYZonBTztnRFk3q1YNKU6c5OrVDF1e2OZYwgm-c_NSwGu1yDvKqcuK2KVeF3hi_dXRtTLimMJnl52L-Y9VDZ7pk3mUhbLt0pY48ZFIfdFgcgdlx2fFOGRIQVYtyDL8K8SVXJjb8CoCuKdyGk2UhDWEVnGo3-SD1gct2TCqfhj1gxjxmy_TxS9_1mCGPGYZymyJrBmNdhcKEU_6wEyZkcTJXxWd4ap7P9S3mo8D5wty_GcwhjbHPkDtJ-n4S3U9i-rmG9n0SMbAW-_Gb1frt4CAE1Owf659gsnH94l90sc808YOOb6ObdgKDYwO8O2imirvolp3MYGsqamjq-UL6tnvoW4w7aP78-r0DJZ6CEnegxAMosQEl7kCJ4XsHSmxBiQGU2IISW1BiACXWoMQTUGIDSmxBeR99fLk6fvHatRwgrgg8v3FVmC61IVJh5AWpSAmTIvIXgnNdWXBBGaWZXKaMLiQhXkYYU0Rw6adZQInHZfAA7RVloQ4QJtmSEs6ZJxgHN5xyFjICHiyPVBr4Hj9EUf8vJ8IWyNc8LZvk73o-RM8HucqUiLlUgvVKTKyjaxzYBPB5iezDK9_tEboxvkCP0V6zbdUTdF3smrzePrXg_AW5sNXD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi%E2%80%93modal+unsupervised+fault+detection+system+based+on+power+signals+and+thermal+imaging+via+deep+AutoEncoder+neural+network&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Cordoni%2C+Francesco&rft.au=Bacchiega%2C+Gianluca&rft.au=Bondani%2C+Giulio&rft.au=Radu%2C+Robert&rft.date=2022-04-01&rft.issn=0952-1976&rft.volume=110&rft.spage=104729&rft_id=info:doi/10.1016%2Fj.engappai.2022.104729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_104729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon