Hydrogen Economy Assessment & Resource Tool (HEART): A python-based tool for ASEAN H2 roadmap study
In the past decades, H2 has attracted significant attention as a potentially low, zero, or negative-emissions fuel depending on how it is produced. However, how H2 will evolve in terms of its production, demand, and transport is not very clear. To help fill this gap, we developed a Python-based tool...
Saved in:
| Published in: | International journal of hydrogen energy Vol. 47; no. 52; pp. 21897 - 21907 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
22.06.2022
|
| Subjects: | |
| ISSN: | 0360-3199, 1879-3487 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the past decades, H2 has attracted significant attention as a potentially low, zero, or negative-emissions fuel depending on how it is produced. However, how H2 will evolve in terms of its production, demand, and transport is not very clear. To help fill this gap, we developed a Python-based tool called the Hydrogen Economy Assessment & Resource Tool (HEART), specifically focused on the Association of Southeast Asian Nations (ASEAN) region. The tool consists of three parts: a user-friendly GUI, a default database consisting of costs and emissions for various supply/demand pathways, and an analysis and optimization engine. Users can use the default data and/or user inputs to run case studies for insightful results. The analysis and optimization engine can carry out techno-enviro-economic analysis for H2 production and H2 transport, project H2 demand, and carry out the optimization and planning of H2 supply chain over a long-term period. In this paper, we introduce the framework of HEART, the workflow of various projects, and show the capabilities and strengths of HEART through a case study. The case study indicates the tool can provides many useful results, like the landed cost and carbon footprint of H2. Most importantly, by using HEART, H2 supply chain pathways to meet projected demand can be obtained and optimized for total cost or total emissions.
[Display omitted]
•A Python-based tool is developed for hydrogen economy planning and optimization.•The framework, workflow, and capabilities of HEART is introduced.•Hydrogen supply chains for multiple sectors are planned for an ASEAN case study. |
|---|---|
| AbstractList | In the past decades, H2 has attracted significant attention as a potentially low, zero, or negative-emissions fuel depending on how it is produced. However, how H2 will evolve in terms of its production, demand, and transport is not very clear. To help fill this gap, we developed a Python-based tool called the Hydrogen Economy Assessment & Resource Tool (HEART), specifically focused on the Association of Southeast Asian Nations (ASEAN) region. The tool consists of three parts: a user-friendly GUI, a default database consisting of costs and emissions for various supply/demand pathways, and an analysis and optimization engine. Users can use the default data and/or user inputs to run case studies for insightful results. The analysis and optimization engine can carry out techno-enviro-economic analysis for H2 production and H2 transport, project H2 demand, and carry out the optimization and planning of H2 supply chain over a long-term period. In this paper, we introduce the framework of HEART, the workflow of various projects, and show the capabilities and strengths of HEART through a case study. The case study indicates the tool can provides many useful results, like the landed cost and carbon footprint of H2. Most importantly, by using HEART, H2 supply chain pathways to meet projected demand can be obtained and optimized for total cost or total emissions.
[Display omitted]
•A Python-based tool is developed for hydrogen economy planning and optimization.•The framework, workflow, and capabilities of HEART is introduced.•Hydrogen supply chains for multiple sectors are planned for an ASEAN case study. |
| Author | Thaore, Vaishali B. Johnson, Robert A. Garud, Sushant S. Chapman, Bryan R. Farooq, Shamsuzzaman Wang, Xiaonan Usadi, Adam K. Hong, Xiaodong Karimi, Iftekhar A. |
| Author_xml | – sequence: 1 givenname: Xiaodong surname: Hong fullname: Hong, Xiaodong organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 2 givenname: Sushant S. surname: Garud fullname: Garud, Sushant S. organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 3 givenname: Vaishali B. surname: Thaore fullname: Thaore, Vaishali B. organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 4 givenname: Iftekhar A. orcidid: 0000-0001-7122-0578 surname: Karimi fullname: Karimi, Iftekhar A. email: cheiak@nus.edu.sg organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 5 givenname: Shamsuzzaman orcidid: 0000-0002-6501-5540 surname: Farooq fullname: Farooq, Shamsuzzaman organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 6 givenname: Xiaonan surname: Wang fullname: Wang, Xiaonan organization: Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore – sequence: 7 givenname: Adam K. orcidid: 0000-0002-4377-3025 surname: Usadi fullname: Usadi, Adam K. organization: ExxonMobil Asia Pacific Pte. Ltd, 098633, Singapore – sequence: 8 givenname: Bryan R. orcidid: 0000-0002-2355-6496 surname: Chapman fullname: Chapman, Bryan R. organization: Exxon Mobil Research & Engineering, 1545 Route 22 East, Annandale, NJ 08801, USA – sequence: 9 givenname: Robert A. surname: Johnson fullname: Johnson, Robert A. organization: Exxon Mobil Research & Engineering, 1545 Route 22 East, Annandale, NJ 08801, USA |
| BookMark | eNqFkE1LAzEURYNUsK3-BclKdDFjMplPceFQqhWKQq3rMJO82JQ2KUkqzL93SnXjpqsH93Eu3DNCA2MNIHRNSUwJze_XsV6vOgkG4oQkSUyymLD8DA1pWVQRS8tigIZ9QiJGq-oCjbxfE0ILklZDJGaddPYLDJ4Ka-y2w7X34P0WTMA3eAHe7p0AvLR2g29n03qxvHvANd51YWVN1DYeJA6Hp7IO1x_T-g3PEuxsI7fNDvuwl90lOlfNxsPV7x2jz-fpcjKL5u8vr5N6HglGkxBJVYDIBLSQCigFZawtBFVJUUiWVayFNk9VP6NUhDQSaJFn0I-QTKVJmQnFxig_9gpnvXeg-M7pbeM6Tgk_qOJr_qeKH1RxkvFeTA8-_gOFDk3Q1gTX6M1p_OmIQz_uW4PjXmgwAqR2IAKXVp-q-AFThovB |
| CitedBy_id | crossref_primary_10_3390_su17010113 crossref_primary_10_1016_j_compchemeng_2024_108821 crossref_primary_10_1002_aic_18265 crossref_primary_10_1002_aenm_202503259 crossref_primary_10_1016_j_enconman_2023_117059 crossref_primary_10_1016_j_ijhydene_2023_03_160 crossref_primary_10_1007_s41660_023_00324_z crossref_primary_10_1016_j_ijhydene_2024_03_116 crossref_primary_10_1016_j_ijhydene_2022_12_069 |
| Cites_doi | 10.1016/j.ijhydene.2020.11.079 10.3390/su13074026 10.1039/C8EE02079E 10.1016/j.ijhydene.2019.04.112 10.1016/j.compchemeng.2019.106683 10.1016/j.ijhydene.2008.08.054 10.1016/j.rser.2015.12.112 10.1016/j.rser.2020.110253 10.1016/j.fuproc.2005.11.003 10.1016/j.rser.2017.09.003 10.1016/j.rser.2018.11.010 10.1039/C8EE01157E 10.1039/D0EE02448A 10.1016/j.apenergy.2017.12.033 10.1016/j.ijhydene.2020.03.092 10.1016/j.biortech.2020.124175 10.1039/C8EE02700E 10.1016/j.ijhydene.2021.07.138 10.1016/j.ijhydene.2019.12.059 10.1016/j.ijhydene.2021.03.114 10.1016/j.ijhydene.2012.08.066 10.1016/j.ijhydene.2013.02.042 10.1016/j.cej.2020.127310 10.1016/j.ijhydene.2008.01.039 10.1016/j.ijhydene.2019.02.174 10.1016/j.ijhydene.2018.12.156 10.1016/j.rser.2021.111628 10.1016/j.ijhydene.2010.04.137 10.1016/j.rser.2016.09.044 |
| ContentType | Journal Article |
| Copyright | 2022 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2022.05.036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 21907 |
| ExternalDocumentID | 10_1016_j_ijhydene_2022_05_036 S0360319922020286 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-df7ec5cebe4ce8c133b7c1f277d3593beb64f3608f00ade1765e704d3f4285cf3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828033300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Tue Nov 18 22:00:45 EST 2025 Sat Nov 29 07:23:42 EST 2025 Fri Feb 23 02:40:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 52 |
| Keywords | Python tool GUI Hydrogen economy MILP Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-df7ec5cebe4ce8c133b7c1f277d3593beb64f3608f00ade1765e704d3f4285cf3 |
| ORCID | 0000-0002-2355-6496 0000-0002-4377-3025 0000-0002-6501-5540 0000-0001-7122-0578 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2022_05_036 crossref_citationtrail_10_1016_j_ijhydene_2022_05_036 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_05_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-22 |
| PublicationDateYYYYMMDD | 2022-06-22 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guo, Chen (bib27) 2017; 3 Sinnott, Gavin (bib35) 2020 Parkinson, Balcombe, Speirs, Hawkes, Hellgardt (bib7) 2019; 12 Agnolucci, McDowall (bib38) 2013; 38 Hosseini, Wahid (bib14) 2016; 57 Brigljević, Byun, Lim (bib26) 2020 Anastasopoulou, Furukawa, Barnett, Jiang, Long, Breunig (bib29) 2021; 14 Navas-Anguita, García-Gusano, Dufour, Iribarren (bib10) 2021 Nazir, Louis, Jose, Prakash, Muthuswamy, Buan (bib8) 2020; 45 Wijayanta, Oda, Purnomo, Kashiwagi, Aziz (bib32) 2019; 44 Balat, Kırtay (bib15) 2010; 35 Buttler, Spliethoff (bib20) 2018; 82 Nikolaidis, Poullikkas (bib6) 2017; 67 Li, Manier, Manier (bib5) 2020; 134 Teichmann, Arlt, Wasserscheid (bib25) 2012; 37 Dawood, Anda, Shafiullah (bib9) 2020; 45 Leal Pérez, Medrano Jiménez, Bhardwaj, Goetheer, van Sint Annaland, Gallucci (bib11) 2021; 46 Staffell, Scamman, Velazquez Abad, Balcombe, Dodds, Ekins (bib2) 2019; 12 Yukesh Kannah, Kavitha, Preethi, Parthiba Karthikeyan, Kumar, Dai-Viet (bib4) 2020; 319 Mallapragada, Gençer, Insinger, Keith, O'Sullivan (bib18) 2020; 1 Morlanés, Katikaneni, Paglieri, Harale, Solami, Sarathy (bib28) 2020; 408 Parra, Valverde, Pino, Patel (bib33) 2019; 101 Salvia, Reckien, Pietrapertosa, Eckersley, Spyridaki, Krook-Riekkola (bib1) 2021; 135 (bib36) 2019 Kucharavy, Guio (bib37) 2008 Heuser, Ryberg, Grube, Robinius, Stolten (bib31) 2019; 44 Yates, Daiyan, Patterson, Egan, Amal, Ho-Baille (bib17) 2020; 1 Maestre, Ortiz, Ortiz (bib34) 2021; 152 Kerscher, Stary, Gleis, Ulrich, Klein, Spliethoff (bib12) 2021; 46 Ni, Leung, Leung, Sumathy (bib16) 2006; 87 Lin, Chen, Ogden, Fan (bib39) 2008; 33 Nižetić, Barbir, Djilali (bib3) 2019; 44 Full, Merseburg, Miehe, Sauer (bib19) 2021; 13 Niermann, Drünert, Kaltschmitt, Bonhoff (bib24) 2019; 12 (bib30) 2020 Holm, Borsboom-Hanson, Herrera, Mérida (bib21) 2021 Hong, Thaore, Karimi, Farooq, Wang, Usadi (bib22) 2021; 46 Muradov, Veziroglu (bib13) 2008; 33 Aasadnia, Mehrpooya (bib23) 2018; 212 Navas-Anguita (10.1016/j.ijhydene.2022.05.036_bib10) 2021 Parra (10.1016/j.ijhydene.2022.05.036_bib33) 2019; 101 Li (10.1016/j.ijhydene.2022.05.036_bib5) 2020; 134 Full (10.1016/j.ijhydene.2022.05.036_bib19) 2021; 13 Kucharavy (10.1016/j.ijhydene.2022.05.036_bib37) 2008 Sinnott (10.1016/j.ijhydene.2022.05.036_bib35) 2020 Leal Pérez (10.1016/j.ijhydene.2022.05.036_bib11) 2021; 46 Agnolucci (10.1016/j.ijhydene.2022.05.036_bib38) 2013; 38 Morlanés (10.1016/j.ijhydene.2022.05.036_bib28) 2020; 408 Aasadnia (10.1016/j.ijhydene.2022.05.036_bib23) 2018; 212 Nižetić (10.1016/j.ijhydene.2022.05.036_bib3) 2019; 44 Salvia (10.1016/j.ijhydene.2022.05.036_bib1) 2021; 135 Balat (10.1016/j.ijhydene.2022.05.036_bib15) 2010; 35 Parkinson (10.1016/j.ijhydene.2022.05.036_bib7) 2019; 12 Holm (10.1016/j.ijhydene.2022.05.036_bib21) 2021 Teichmann (10.1016/j.ijhydene.2022.05.036_bib25) 2012; 37 Dawood (10.1016/j.ijhydene.2022.05.036_bib9) 2020; 45 (10.1016/j.ijhydene.2022.05.036_bib36) 2019 Buttler (10.1016/j.ijhydene.2022.05.036_bib20) 2018; 82 Nazir (10.1016/j.ijhydene.2022.05.036_bib8) 2020; 45 Niermann (10.1016/j.ijhydene.2022.05.036_bib24) 2019; 12 Brigljević (10.1016/j.ijhydene.2022.05.036_bib26) 2020 Kerscher (10.1016/j.ijhydene.2022.05.036_bib12) 2021; 46 Guo (10.1016/j.ijhydene.2022.05.036_bib27) 2017; 3 Wijayanta (10.1016/j.ijhydene.2022.05.036_bib32) 2019; 44 Anastasopoulou (10.1016/j.ijhydene.2022.05.036_bib29) 2021; 14 Heuser (10.1016/j.ijhydene.2022.05.036_bib31) 2019; 44 Lin (10.1016/j.ijhydene.2022.05.036_bib39) 2008; 33 Yukesh Kannah (10.1016/j.ijhydene.2022.05.036_bib4) 2020; 319 Maestre (10.1016/j.ijhydene.2022.05.036_bib34) 2021; 152 (10.1016/j.ijhydene.2022.05.036_bib30) 2020 Ni (10.1016/j.ijhydene.2022.05.036_bib16) 2006; 87 Nikolaidis (10.1016/j.ijhydene.2022.05.036_bib6) 2017; 67 Mallapragada (10.1016/j.ijhydene.2022.05.036_bib18) 2020; 1 Hosseini (10.1016/j.ijhydene.2022.05.036_bib14) 2016; 57 Yates (10.1016/j.ijhydene.2022.05.036_bib17) 2020; 1 Staffell (10.1016/j.ijhydene.2022.05.036_bib2) 2019; 12 Muradov (10.1016/j.ijhydene.2022.05.036_bib13) 2008; 33 Hong (10.1016/j.ijhydene.2022.05.036_bib22) 2021; 46 |
| References_xml | – volume: 135 year: 2021 ident: bib1 article-title: Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU publication-title: Renew Sustain Energy Rev – volume: 44 start-page: 9673 year: 2019 end-page: 9674 ident: bib3 article-title: The role of hydrogen in energy transition publication-title: Int J Hydrogen Energy – volume: 44 start-page: 12733 year: 2019 end-page: 12747 ident: bib31 article-title: Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen publication-title: Int J Hydrogen Energy – volume: 1 year: 2020 ident: bib18 article-title: Can industrial-scale solar hydrogen supplied from commodity technologies Be cost competitive by 2030? publication-title: Cell Rep Phys Sci – volume: 14 start-page: 1083 year: 2021 end-page: 1094 ident: bib29 article-title: Technoeconomic analysis of metal–organic frameworks for bulk hydrogen transportation publication-title: Energy Environ Sci – volume: 12 year: 2019 ident: bib7 article-title: Levelized cost of CO2 mitigation from hydrogen production routes publication-title: Energy Environ Sci – year: 2019 ident: bib36 article-title: APEC energy database – volume: 46 start-page: 32914 year: 2021 end-page: 32928 ident: bib22 article-title: Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study publication-title: Int J Hydrogen Energy – volume: 38 start-page: 5181 year: 2013 end-page: 5191 ident: bib38 article-title: Designing future hydrogen infrastructure: insights from analysis at different spatial scales publication-title: Int J Hydrogen Energy – volume: 33 start-page: 6804 year: 2008 end-page: 6839 ident: bib13 article-title: Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies publication-title: Int J Hydrogen Energy – volume: 134 year: 2020 ident: bib5 article-title: Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning publication-title: Comput Chem Eng – year: 2020 ident: bib35 article-title: Chemical engineering design – volume: 12 start-page: 290 year: 2019 end-page: 307 ident: bib24 article-title: Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain publication-title: Energy Environ Sci – volume: 67 start-page: 597 year: 2017 end-page: 611 ident: bib6 article-title: A comparative overview of hydrogen production processes publication-title: Renew Sustain Energy Rev – start-page: 274 year: 2020 ident: bib26 article-title: Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems – volume: 82 start-page: 2440 year: 2018 end-page: 2454 ident: bib20 article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review publication-title: Renew Sustain Energy Rev – volume: 408 start-page: 127310 year: 2020 ident: bib28 article-title: A technological roadmap to the ammonia energy economy: current state and missing technologies publication-title: Chem Eng J – year: 2008 ident: bib37 article-title: Logistic substitution model and technological forecasting – volume: 101 start-page: 279 year: 2019 end-page: 294 ident: bib33 article-title: A review on the role, cost and value of hydrogen energy systems for deep decarbonisation publication-title: Renew Sustain Energy Rev – year: 2021 ident: bib10 article-title: Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production – volume: 87 start-page: 461 year: 2006 end-page: 472 ident: bib16 article-title: An overview of hydrogen production from biomass publication-title: Fuel Process Technol – volume: 35 start-page: 7416 year: 2010 end-page: 7426 ident: bib15 article-title: Hydrogen from biomass – present scenario and future prospects publication-title: Int J Hydrogen Energy – volume: 3 start-page: 709 year: 2017 end-page: 712 ident: bib27 article-title: Catalyst: NH3 as an energy carrier publication-title: Inside Chem – volume: 1 year: 2020 ident: bib17 article-title: Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis publication-title: Cell Rep Phys Sci – volume: 44 start-page: 15026 year: 2019 end-page: 15044 ident: bib32 article-title: Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review publication-title: Int J Hydrogen Energy – volume: 319 start-page: 124175 year: 2020 ident: bib4 article-title: Techno-economic assessment of various hydrogen production methods - a review publication-title: Bioresour Technol – volume: 152 year: 2021 ident: bib34 article-title: Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications publication-title: Renew Sustain Energy Rev – volume: 33 start-page: 3009 year: 2008 end-page: 3014 ident: bib39 article-title: The least-cost hydrogen for Southern California publication-title: Int J Hydrogen Energy – volume: 45 start-page: 3847 year: 2020 end-page: 3869 ident: bib9 article-title: Hydrogen production for energy: an overview publication-title: Int J Hydrogen Energy – volume: 57 start-page: 850 year: 2016 end-page: 866 ident: bib14 article-title: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development publication-title: Renew Sustain Energy Rev – volume: 212 start-page: 57 year: 2018 end-page: 83 ident: bib23 article-title: Large-scale liquid hydrogen production methods and approaches: a review publication-title: Appl Energy – year: 2021 ident: bib21 article-title: Hydrogen costs from water electrolysis at high temperature and pressure – volume: 46 start-page: 4917 year: 2021 end-page: 4935 ident: bib11 article-title: Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept & techno-economic assessment publication-title: Int J Hydrogen Energy – volume: 37 start-page: 18118 year: 2012 end-page: 18132 ident: bib25 article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy publication-title: Int J Hydrogen Energy – volume: 46 start-page: 19897 year: 2021 end-page: 19912 ident: bib12 article-title: Low-carbon hydrogen production via electron beam plasma methane pyrolysis: techno-economic analysis and carbon footprint assessment publication-title: Int J Hydrogen Energy – volume: 13 year: 2021 ident: bib19 article-title: A new perspective for climate change mitigation-introducing carbon-negative hydrogen production from biomass with carbon capture and storage (HyBECCS) publication-title: Sustainability – year: 2020 ident: bib30 article-title: ‘World's first international hydrogen supply chain’ realised between Brunei and Japan – volume: 12 start-page: 463 year: 2019 end-page: 491 ident: bib2 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ Sci – volume: 45 start-page: 13777 year: 2020 end-page: 13788 ident: bib8 article-title: Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods publication-title: Int J Hydrogen Energy – volume: 46 start-page: 4917 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib11 article-title: Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept & techno-economic assessment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.11.079 – volume: 13 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib19 article-title: A new perspective for climate change mitigation-introducing carbon-negative hydrogen production from biomass with carbon capture and storage (HyBECCS) publication-title: Sustainability doi: 10.3390/su13074026 – volume: 12 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib7 article-title: Levelized cost of CO2 mitigation from hydrogen production routes publication-title: Energy Environ Sci doi: 10.1039/C8EE02079E – year: 2008 ident: 10.1016/j.ijhydene.2022.05.036_bib37 – year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib30 – volume: 44 start-page: 15026 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib32 article-title: Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.112 – volume: 134 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib5 article-title: Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106683 – year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib21 – volume: 33 start-page: 6804 year: 2008 ident: 10.1016/j.ijhydene.2022.05.036_bib13 article-title: Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.08.054 – year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib35 – volume: 57 start-page: 850 year: 2016 ident: 10.1016/j.ijhydene.2022.05.036_bib14 article-title: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.112 – volume: 135 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib1 article-title: Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110253 – volume: 87 start-page: 461 year: 2006 ident: 10.1016/j.ijhydene.2022.05.036_bib16 article-title: An overview of hydrogen production from biomass publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2005.11.003 – volume: 82 start-page: 2440 year: 2018 ident: 10.1016/j.ijhydene.2022.05.036_bib20 article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.09.003 – start-page: 274 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib26 – volume: 101 start-page: 279 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib33 article-title: A review on the role, cost and value of hydrogen energy systems for deep decarbonisation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.11.010 – volume: 12 start-page: 463 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib2 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ Sci doi: 10.1039/C8EE01157E – volume: 14 start-page: 1083 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib29 article-title: Technoeconomic analysis of metal–organic frameworks for bulk hydrogen transportation publication-title: Energy Environ Sci doi: 10.1039/D0EE02448A – volume: 212 start-page: 57 year: 2018 ident: 10.1016/j.ijhydene.2022.05.036_bib23 article-title: Large-scale liquid hydrogen production methods and approaches: a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.033 – volume: 45 start-page: 13777 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib8 article-title: Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.092 – volume: 319 start-page: 124175 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib4 article-title: Techno-economic assessment of various hydrogen production methods - a review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124175 – volume: 12 start-page: 290 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib24 article-title: Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain publication-title: Energy Environ Sci doi: 10.1039/C8EE02700E – volume: 1 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib17 article-title: Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis publication-title: Cell Rep Phys Sci – volume: 46 start-page: 32914 issue: 65 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib22 article-title: Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.138 – volume: 45 start-page: 3847 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib9 article-title: Hydrogen production for energy: an overview publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.059 – volume: 1 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib18 article-title: Can industrial-scale solar hydrogen supplied from commodity technologies Be cost competitive by 2030? publication-title: Cell Rep Phys Sci – volume: 46 start-page: 19897 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib12 article-title: Low-carbon hydrogen production via electron beam plasma methane pyrolysis: techno-economic analysis and carbon footprint assessment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.114 – volume: 37 start-page: 18118 year: 2012 ident: 10.1016/j.ijhydene.2022.05.036_bib25 article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.08.066 – year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib10 – volume: 38 start-page: 5181 year: 2013 ident: 10.1016/j.ijhydene.2022.05.036_bib38 article-title: Designing future hydrogen infrastructure: insights from analysis at different spatial scales publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.042 – volume: 408 start-page: 127310 year: 2020 ident: 10.1016/j.ijhydene.2022.05.036_bib28 article-title: A technological roadmap to the ammonia energy economy: current state and missing technologies publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127310 – volume: 3 start-page: 709 year: 2017 ident: 10.1016/j.ijhydene.2022.05.036_bib27 article-title: Catalyst: NH3 as an energy carrier publication-title: Inside Chem – volume: 33 start-page: 3009 year: 2008 ident: 10.1016/j.ijhydene.2022.05.036_bib39 article-title: The least-cost hydrogen for Southern California publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.039 – volume: 44 start-page: 9673 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib3 article-title: The role of hydrogen in energy transition publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.174 – year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib36 – volume: 44 start-page: 12733 year: 2019 ident: 10.1016/j.ijhydene.2022.05.036_bib31 article-title: Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.156 – volume: 152 year: 2021 ident: 10.1016/j.ijhydene.2022.05.036_bib34 article-title: Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111628 – volume: 35 start-page: 7416 year: 2010 ident: 10.1016/j.ijhydene.2022.05.036_bib15 article-title: Hydrogen from biomass – present scenario and future prospects publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.137 – volume: 67 start-page: 597 year: 2017 ident: 10.1016/j.ijhydene.2022.05.036_bib6 article-title: A comparative overview of hydrogen production processes publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.09.044 |
| SSID | ssj0017049 |
| Score | 2.4462621 |
| Snippet | In the past decades, H2 has attracted significant attention as a potentially low, zero, or negative-emissions fuel depending on how it is produced. However,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 21897 |
| SubjectTerms | GUI Hydrogen economy MILP Optimization Python tool |
| Title | Hydrogen Economy Assessment & Resource Tool (HEART): A python-based tool for ASEAN H2 roadmap study |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2022.05.036 |
| Volume | 47 |
| WOSCitedRecordID | wos000828033300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDIFCUbl6OY24FFZWHVkhbVr1FjmOrLSWtSne1_Y38KcaOnURQseyBS1TFimN7vs6MnZlvEHpe8DQUYMj8mKXETwRRfsEU80lSkJKG0GzKvZ1-psfH2XTKvvR6P10uzPmSVlV2ccHW_1XUcA-ErVNnryDuplO4Ab9B6HAFscP1nwQ_3pWbFbTanOOdN2zIN42c3YG9N9H0m-Bgjkfg1L6IWJ2kvt5pNgFfW7cSHNOVyW_0hic62m8ceZsVL7_zdYeWdtHGwrdHix1CipkbjzRphg2ObCzwdM5hZ2ztpw4E4puz0sYLzUDs3smgDV7hNir41BSNXs69t03jJ64LlBmVp7by24zDoAfdMw3YDgepH3WPOeNUW4e6dJLT0zUzp8VjTXvbaN2sDvK1Jhy0cF1K9w_7UB9VLAbzBUwepj3QbzfUrfEeQu7fDGUTvugi4xa56yfX_eQByaGfa-ggooRlfXQw_DCafmw-alG7G3OT6ySs7x_Rfl-p4_9MbqNbduOChzXg7qCerO6imx06y3tIOOhhCz3cQg-_xA54WAMPvzKwe_0GD3EXclhDDgPksIEcHkfYQg4byN1HX9-PJu_Gvi3i4Ys4jLZ-qagURICuSITMRBjHBRWhiigtY8LiQhZpomBFMhUEvJQhTYmEhSpjBRtjIlT8APWrVSUfIqyUCFMORig1PJcJS5JAlpyBWskoE9EhIm65cmEZ7nWhlWX-d4EdoqPmuXXN8XLpE8xJI7eeau2B5gC0S559dOW3PUY32j_JE9Tfbs7kU3RdnG_nPzbPLMp-AQCmtkY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Economy+Assessment+%26+Resource+Tool+%28HEART%29%3A+A+python-based+tool+for+ASEAN+H2+roadmap+study&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Hong%2C+Xiaodong&rft.au=Garud%2C+Sushant+S.&rft.au=Thaore%2C+Vaishali+B.&rft.au=Karimi%2C+Iftekhar+A.&rft.date=2022-06-22&rft.issn=0360-3199&rft.volume=47&rft.issue=52&rft.spage=21897&rft.epage=21907&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.05.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_05_036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |