An adaptive spatial–temporal prediction model for landslide displacement based on decomposition architecture
Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlati...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 137; s. 109215 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2024
|
| Predmet: | |
| ISSN: | 0952-1976 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlation characteristics of each deformation point on the surface of a landslide. On the other hand, they have difficulty in learning the changes caused by rainfall and reservoir water level. To tackle these obstacles, we introduce an adaptive spatial–temporal landslide displacement prediction model based on a decomposition architecture, named Self-Adaptive Unet with Decomposed Temporal Attention Encoder(SAU-DTAE). To effectively separate the features of different scales in time series changes and model them separately, we employ a progressive decomposition architecture based on a Lightweight Temporal Attention Encoder(LTAE). Furthermore, we design a gating mechanism with Sample Entropy (SampEn) to adaptively extract global and local spatial features at multiple scales. By quantifying the spatial complexity, we can achieve adaptive extraction of spatial correlation features. Relevant experiments were conducted with the 2016-2023 Interferometry Synthetic Aperture Radar (InSAR) landslide displacement dataset of the Three Gorges area. The new proposed algorithm was compared and validated against several classical time-series prediction models: Back Propagation(BP) neural network, Long Short Term Memory(LSTM) neural network, Gated Recurrent Unit(GRU), Convolutional LSTM(ConvLSTM), Informer, and Autoformer. The findings from the experiment indicated that our model surpassed the benchmark models, achieving superior prediction results on the test set. The Mean Absolute Error (MAE) was 5.516 millimeters(mm), the Root Mean Square Error (RMSE) was 3.856 mm, and the R-Square(R2) was 0.896. |
|---|---|
| AbstractList | Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlation characteristics of each deformation point on the surface of a landslide. On the other hand, they have difficulty in learning the changes caused by rainfall and reservoir water level. To tackle these obstacles, we introduce an adaptive spatial–temporal landslide displacement prediction model based on a decomposition architecture, named Self-Adaptive Unet with Decomposed Temporal Attention Encoder(SAU-DTAE). To effectively separate the features of different scales in time series changes and model them separately, we employ a progressive decomposition architecture based on a Lightweight Temporal Attention Encoder(LTAE). Furthermore, we design a gating mechanism with Sample Entropy (SampEn) to adaptively extract global and local spatial features at multiple scales. By quantifying the spatial complexity, we can achieve adaptive extraction of spatial correlation features. Relevant experiments were conducted with the 2016-2023 Interferometry Synthetic Aperture Radar (InSAR) landslide displacement dataset of the Three Gorges area. The new proposed algorithm was compared and validated against several classical time-series prediction models: Back Propagation(BP) neural network, Long Short Term Memory(LSTM) neural network, Gated Recurrent Unit(GRU), Convolutional LSTM(ConvLSTM), Informer, and Autoformer. The findings from the experiment indicated that our model surpassed the benchmark models, achieving superior prediction results on the test set. The Mean Absolute Error (MAE) was 5.516 millimeters(mm), the Root Mean Square Error (RMSE) was 3.856 mm, and the R-Square(R2) was 0.896. |
| ArticleNumber | 109215 |
| Author | Zhang, Dongmei Wu, Yiping Xu, Man Li, Jiang |
| Author_xml | – sequence: 1 givenname: Man surname: Xu fullname: Xu, Man organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China – sequence: 2 givenname: Dongmei surname: Zhang fullname: Zhang, Dongmei email: zhangdongmei@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China – sequence: 3 givenname: Jiang surname: Li fullname: Li, Jiang organization: The Department of Natural Resources of Hubei Province, Information Center, Wuhan, 430074, Hubei, China – sequence: 4 givenname: Yiping surname: Wu fullname: Wu, Yiping organization: School of Engineering, China University of Geosciences, Wuhan, 430074, Hubei, China |
| BookMark | eNqFkM1KAzEUhbOoYFt9BckLTE3mtwMuLMU_KLjRdbhJ7mjKTBKSWHDnO_iGPolTqxs3XV043O_A-WZkYp1FQi44W3DG68vtAu0LeA9mkbO8HMM259WETFlb5Rlvm_qUzGLcMsaKZVlPiV1ZChp8Mjuk0UMy0H99fCYcvAvQUx9QG5WMs3RwGnvauUB7sDr2RiPVJvoeFA5oE5UQUdPxU6NyIx_NDwdBvZqEKr0FPCMnHfQRz3_vnDzf3jyt77PN493DerXJVMHzlGnFUeWlKjssEZql5EwjlA3TnZQFslphVXWQ47JALlneNlK3qmgUtlLKkhdzUh96VXAxBuyED2aA8C44E3tTYiv-TIm9KXEwNYJX_0BlEux3pACmP45fH3Acx-0MBhGVQatGiWE0ILQzxyq-AeV0kzg |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_111346 crossref_primary_10_1007_s10064_025_04345_5 crossref_primary_10_1038_s41598_025_97147_4 |
| Cites_doi | 10.1016/j.asoc.2022.109312 10.1142/S0129065704001899 10.1080/19648189.2020.1754298 10.1145/3505244 10.1016/j.cageo.2012.08.023 10.1093/comjnl/bxac171 10.1029/JB094iB07p09183 10.12677/MOS.2023.124336 10.1016/S0013-7952(99)00127-1 10.1016/j.neucom.2005.12.126 10.1609/aaai.v35i12.17325 10.1007/s11440-022-01495-8 10.1109/TGRS.2002.803792 10.1016/S1464-1909(00)00100-3 10.1016/j.enggeo.2016.02.009 10.1016/j.cageo.2017.10.013 10.1007/s10346-018-01127-x 10.1109/TITS.2022.3167019 10.1109/36.868878 10.1109/36.898661 10.1061/(ASCE)0733-9410(1996)122:7(577) 10.1016/j.engappai.2024.108078 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.109215 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2024_109215 S0952197624013733 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-dc1ec24c4fe4ea78b10dea470dfbb3e06ce55fa2e83e1b0297bd9c37ce9bbb413 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 03:41:21 EST 2025 Tue Nov 18 22:43:12 EST 2025 Sat Nov 09 16:01:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gating mechanism Landslide displacement Multi-scale Spatial–temporal prediction Decomposition architecture |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-dc1ec24c4fe4ea78b10dea470dfbb3e06ce55fa2e83e1b0297bd9c37ce9bbb413 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_109215 crossref_citationtrail_10_1016_j_engappai_2024_109215 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109215 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Khan, Naseer, Hayat, Zamir, Khan, Shah (b15) 2022; 54 Xu, Wang, Du, Ye (b34) 2011; 30 Huang, Zhu, Siew (b14) 2006; 70 Meng, Shi, Peng, Li, Zheng, Liu, Zhang (b18) 2024; 133 Wheelwright, Makridakis, Hyndman (b29) 1998 Achache, Fruneau, Delacourt (b1) 1996; Vol. 383 Seeger (b23) 2004; 14 Shao, Wang, Hu, Zhao, Zhou, Long, Liao, He, Gan (b25) 2024 Fan, Qiao, Chen (b5) 2004; 13 Gao, Wu, Wang, Kim, Xu (b9) 2024 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b27) 2017; 30 Dai (b3) 2023; 12 Oreshkin, Carpov, Chapados, Bengio (b19) 2019 Wu, Hong (b30) 2000; 18 Wu, Teng, Li (b31) 2007; 26 Shi, Chen, Wang, Yeung, Wong, Woo (b26) 2015; 28 Zamri, Azhar, Mansor, Alway, Kasihmuddin (b37) 2022; 126 Gili, Corominas, Rius (b12) 2000; 55 Guo, Hu, Zheng, Gui, Du, Z, He (b13) 2022; 51 Sasal, Chakraborty, Hadid (b22) 2022 Wu, Xu, Wang, Long (b32) 2021; 34 Pradhan (b20) 2013; 51 Berardino, Fornaro, Lanari, Sansosti (b2) 2002; 40 Yang, Yin, Lacasse, Liu (b35) 2019; 16 Garnot, V.S.F., Landrieu, L., 2021. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4872–4881. Wang, Zhang, Wang, Meng, Yang, Huang (b28) 2023; 27 Xu, Niu (b33) 2018; 111 Zhang, Yin, Wang, Huang (b40) 2015; 34 Zhao, Feng (b42) 2003; 25 Rizo, Tesauro (b21) 2000; 25 Gabriel, Goldstein, Zebker (b8) 1989; 94 Liu, Zheng (b16) 2006; 25 Shabani, Abdi, Meng, Sylvain (b24) 2022 Garnot, Landrieu (b10) 2020 Ferretti, Prati, Rocca (b6) 2000; 38 Ferretti, Prati, Rocca (b7) 2001; 39 Zhou, Ma, Wen, Wang, Sun, Jin (b43) 2022 Duncan (b4) 1996; 122 Yin, Yan (b36) 1996; 15 Luo, Zhang, Yuan, Li, Wang (b17) 2022; 23 Zhang, Li, Tang, Gu, Wang, Wang (b38) 2022; 17 Zhang, Wen, Yan, Feng, Xia (b39) 2024; 67 Zhang, Zhang, Jiang, Wu (b41) 2022; 43 Zhou, Yin, Cao, Ahmed (b44) 2016; 204 Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W., 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 11106–11115. 10.1016/j.engappai.2024.109215_b11 Zhang (10.1016/j.engappai.2024.109215_b39) 2024; 67 Yin (10.1016/j.engappai.2024.109215_b36) 1996; 15 Zhou (10.1016/j.engappai.2024.109215_b44) 2016; 204 Dai (10.1016/j.engappai.2024.109215_b3) 2023; 12 Zhou (10.1016/j.engappai.2024.109215_b43) 2022 Achache (10.1016/j.engappai.2024.109215_b1) 1996; Vol. 383 Berardino (10.1016/j.engappai.2024.109215_b2) 2002; 40 Wang (10.1016/j.engappai.2024.109215_b28) 2023; 27 Liu (10.1016/j.engappai.2024.109215_b16) 2006; 25 Gabriel (10.1016/j.engappai.2024.109215_b8) 1989; 94 Wu (10.1016/j.engappai.2024.109215_b32) 2021; 34 Gao (10.1016/j.engappai.2024.109215_b9) 2024 Zamri (10.1016/j.engappai.2024.109215_b37) 2022; 126 Gili (10.1016/j.engappai.2024.109215_b12) 2000; 55 Sasal (10.1016/j.engappai.2024.109215_b22) 2022 Duncan (10.1016/j.engappai.2024.109215_b4) 1996; 122 Guo (10.1016/j.engappai.2024.109215_b13) 2022; 51 Zhang (10.1016/j.engappai.2024.109215_b40) 2015; 34 Zhao (10.1016/j.engappai.2024.109215_b42) 2003; 25 Wu (10.1016/j.engappai.2024.109215_b30) 2000; 18 Xu (10.1016/j.engappai.2024.109215_b33) 2018; 111 Shi (10.1016/j.engappai.2024.109215_b26) 2015; 28 Ferretti (10.1016/j.engappai.2024.109215_b7) 2001; 39 Fan (10.1016/j.engappai.2024.109215_b5) 2004; 13 Vaswani (10.1016/j.engappai.2024.109215_b27) 2017; 30 10.1016/j.engappai.2024.109215_b45 Shao (10.1016/j.engappai.2024.109215_b25) 2024 Zhang (10.1016/j.engappai.2024.109215_b38) 2022; 17 Garnot (10.1016/j.engappai.2024.109215_b10) 2020 Zhang (10.1016/j.engappai.2024.109215_b41) 2022; 43 Khan (10.1016/j.engappai.2024.109215_b15) 2022; 54 Meng (10.1016/j.engappai.2024.109215_b18) 2024; 133 Ferretti (10.1016/j.engappai.2024.109215_b6) 2000; 38 Wu (10.1016/j.engappai.2024.109215_b31) 2007; 26 Luo (10.1016/j.engappai.2024.109215_b17) 2022; 23 Seeger (10.1016/j.engappai.2024.109215_b23) 2004; 14 Xu (10.1016/j.engappai.2024.109215_b34) 2011; 30 Rizo (10.1016/j.engappai.2024.109215_b21) 2000; 25 Huang (10.1016/j.engappai.2024.109215_b14) 2006; 70 Oreshkin (10.1016/j.engappai.2024.109215_b19) 2019 Wheelwright (10.1016/j.engappai.2024.109215_b29) 1998 Yang (10.1016/j.engappai.2024.109215_b35) 2019; 16 Pradhan (10.1016/j.engappai.2024.109215_b20) 2013; 51 Shabani (10.1016/j.engappai.2024.109215_b24) 2022 |
| References_xml | – volume: 28 year: 2015 ident: b26 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 111 start-page: 87 year: 2018 end-page: 96 ident: b33 article-title: Displacement prediction of baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China publication-title: Comput. Geosci. – volume: 25 start-page: 1544 year: 2006 end-page: 1549 ident: b16 article-title: Determination methods of multi-slip surfaces landslide based on strength reduction FEM publication-title: Chin. J. Rock Mech. Eng. – volume: 204 start-page: 108 year: 2016 end-page: 120 ident: b44 article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the three Gorges Reservoir, China publication-title: Eng. Geol. – reference: Garnot, V.S.F., Landrieu, L., 2021. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4872–4881. – year: 2024 ident: b9 article-title: FSOD4RSI: Few-shot object detection for remote sensing images via features aggregation and scale attention publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 30 year: 2017 ident: b27 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: 1367 year: 2022 end-page: 1382 ident: b38 article-title: Displacement prediction of jiuxianping landslide using gated recurrent unit (GRU) networks publication-title: Acta Geotech. – volume: 12 start-page: 3657 year: 2023 end-page: 3672 ident: b3 article-title: Review of CNN-transformer hybrid model in computer vision publication-title: Model. Simul. – volume: 16 start-page: 677 year: 2019 end-page: 694 ident: b35 article-title: Time series analysis and long short-term memory neural network to predict landslide displacement publication-title: Landslides – year: 2022 ident: b24 article-title: Scaleformer: iterative multi-scale refining transformers for time series forecasting – year: 2019 ident: b19 article-title: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting – volume: 18 start-page: 360 year: 2000 end-page: 365 ident: b30 article-title: BP-GA mixed algorithms for landslide prediction publication-title: J. Mountain Sci. – volume: 55 start-page: 167 year: 2000 end-page: 192 ident: b12 article-title: Using global positioning system techniques in landslide monitoring publication-title: Eng. Geol. – volume: 13 start-page: 72 year: 2004 end-page: 76 ident: b5 article-title: Application of analytic hierarchy process in assessment of typical landslide danger degree publication-title: J. Natural Disasters – start-page: 171 year: 2020 end-page: 181 ident: b10 article-title: Lightweight temporal self-attention for classifying satellite images time series publication-title: Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers 6 – volume: 51 start-page: 2171 year: 2022 ident: b13 article-title: N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of xinpu landslide publication-title: Acta Geod. Cartogr. Sin. – volume: 40 start-page: 2375 year: 2002 end-page: 2383 ident: b2 article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 133 year: 2024 ident: b18 article-title: Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 632 year: 2007 end-page: 636 ident: b31 article-title: Application of grey-neural network model to landslide deformation prediction publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. – volume: 122 start-page: 577 year: 1996 end-page: 596 ident: b4 article-title: State of the art: limit equilibrium and finite-element analysis of slopes publication-title: J. Geotech. Eng. – volume: 39 start-page: 8 year: 2001 end-page: 20 ident: b7 article-title: Permanent scatterers in SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 1 year: 2022 end-page: 41 ident: b15 article-title: Transformers in vision: A survey publication-title: ACM Comput. Surv. (CSUR) – year: 1998 ident: b29 article-title: Forecasting: Methods and Applications – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b14 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: b23 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 25 start-page: 771 year: 2000 end-page: 780 ident: b21 article-title: SAR interferometry and field data of randazzo landslide (eastern Sicily, Italy) publication-title: Phys. Chem. Earth B: Hydrol. Oceans Atmos. – volume: 27 start-page: 2345 year: 2023 end-page: 2357 ident: b28 article-title: Hydrodynamic landslide displacement prediction using combined extreme learning machine and random search support vector regression model publication-title: Eur. J. Environ. Civ. Eng. – volume: 30 start-page: 746 year: 2011 end-page: 751 ident: b34 article-title: Study of displacement prediction model of landslide based on time series analysis publication-title: Chin. J. Rock Mech. Eng. – volume: 94 start-page: 9183 year: 1989 end-page: 9191 ident: b8 article-title: Mapping small elevation changes over large areas: Differential radar interferometry publication-title: J. Geophys. Res.: Solid Earth – volume: 38 start-page: 2202 year: 2000 end-page: 2212 ident: b6 article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 350 year: 2013 end-page: 365 ident: b20 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – volume: 67 start-page: 236 year: 2024 end-page: 252 ident: b39 article-title: A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction publication-title: Comput. J. – volume: Vol. 383 start-page: 165 year: 1996 ident: b1 article-title: Applicability of SAR interferometry for monitoring of landslides publication-title: Ers Applications – volume: 43 start-page: 477 year: 2022 ident: b41 article-title: LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism publication-title: Rock Soil Mech. – volume: 15 start-page: 1 year: 1996 end-page: 8 ident: b36 article-title: Landslide prediction and relevant models publication-title: Chin. J. Rock Mech. Eng. – volume: 25 start-page: 468 year: 2003 end-page: 471 ident: b42 article-title: Study and application of genetic-support vector machine for nonlinear displacement time series forecasting publication-title: Chin. J. Geotech. Eng. – volume: 126 year: 2022 ident: b37 article-title: Weighted random k satisfiability for k=1, 2 (r2SAT) in discrete hopfield neural network publication-title: Appl. Soft Comput. – volume: 34 start-page: 22419 year: 2021 end-page: 22430 ident: b32 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 23 start-page: 19201 year: 2022 end-page: 19212 ident: b17 article-title: ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 671 year: 2022 end-page: 676 ident: b22 article-title: W-transformers: A wavelet-based transformer framework for univariate time series forecasting publication-title: 2022 21st IEEE International Conference on Machine Learning and Applications – start-page: 27268 year: 2022 end-page: 27286 ident: b43 article-title: Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting publication-title: International Conference on Machine Learning – start-page: 1 year: 2024 end-page: 21 ident: b25 article-title: A new interpretable prediction framework for step-like landslide displacement publication-title: Stoch. Environ. Res. Risk Assess. – reference: Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W., 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 11106–11115. – volume: 34 start-page: 382 year: 2015 end-page: 391 ident: b40 article-title: Displacement prediction of baishuihe landslide based on time series and PSO-SVR model publication-title: Chin. J. Rock Mech. Eng. – volume: 126 year: 2022 ident: 10.1016/j.engappai.2024.109215_b37 article-title: Weighted random k satisfiability for k=1, 2 (r2SAT) in discrete hopfield neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109312 – start-page: 671 year: 2022 ident: 10.1016/j.engappai.2024.109215_b22 article-title: W-transformers: A wavelet-based transformer framework for univariate time series forecasting – volume: 14 start-page: 69 issue: 02 year: 2004 ident: 10.1016/j.engappai.2024.109215_b23 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 34 start-page: 382 issue: 2 year: 2015 ident: 10.1016/j.engappai.2024.109215_b40 article-title: Displacement prediction of baishuihe landslide based on time series and PSO-SVR model publication-title: Chin. J. Rock Mech. Eng. – volume: 27 start-page: 2345 issue: 6 year: 2023 ident: 10.1016/j.engappai.2024.109215_b28 article-title: Hydrodynamic landslide displacement prediction using combined extreme learning machine and random search support vector regression model publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2020.1754298 – ident: 10.1016/j.engappai.2024.109215_b11 – volume: 25 start-page: 1544 issue: 8 year: 2006 ident: 10.1016/j.engappai.2024.109215_b16 article-title: Determination methods of multi-slip surfaces landslide based on strength reduction FEM publication-title: Chin. J. Rock Mech. Eng. – volume: 54 start-page: 1 issue: 10s year: 2022 ident: 10.1016/j.engappai.2024.109215_b15 article-title: Transformers in vision: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3505244 – volume: 51 start-page: 350 year: 2013 ident: 10.1016/j.engappai.2024.109215_b20 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 67 start-page: 236 issue: 1 year: 2024 ident: 10.1016/j.engappai.2024.109215_b39 article-title: A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction publication-title: Comput. J. doi: 10.1093/comjnl/bxac171 – volume: 94 start-page: 9183 issue: B7 year: 1989 ident: 10.1016/j.engappai.2024.109215_b8 article-title: Mapping small elevation changes over large areas: Differential radar interferometry publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/JB094iB07p09183 – volume: 28 year: 2015 ident: 10.1016/j.engappai.2024.109215_b26 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 477 issue: S2 year: 2022 ident: 10.1016/j.engappai.2024.109215_b41 article-title: LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism publication-title: Rock Soil Mech. – year: 1998 ident: 10.1016/j.engappai.2024.109215_b29 – volume: 12 start-page: 3657 year: 2023 ident: 10.1016/j.engappai.2024.109215_b3 article-title: Review of CNN-transformer hybrid model in computer vision publication-title: Model. Simul. doi: 10.12677/MOS.2023.124336 – year: 2024 ident: 10.1016/j.engappai.2024.109215_b9 article-title: FSOD4RSI: Few-shot object detection for remote sensing images via features aggregation and scale attention publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 55 start-page: 167 issue: 3 year: 2000 ident: 10.1016/j.engappai.2024.109215_b12 article-title: Using global positioning system techniques in landslide monitoring publication-title: Eng. Geol. doi: 10.1016/S0013-7952(99)00127-1 – volume: Vol. 383 start-page: 165 year: 1996 ident: 10.1016/j.engappai.2024.109215_b1 article-title: Applicability of SAR interferometry for monitoring of landslides – volume: 25 start-page: 468 issue: 4 year: 2003 ident: 10.1016/j.engappai.2024.109215_b42 article-title: Study and application of genetic-support vector machine for nonlinear displacement time series forecasting publication-title: Chin. J. Geotech. Eng. – start-page: 27268 year: 2022 ident: 10.1016/j.engappai.2024.109215_b43 article-title: Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting – volume: 18 start-page: 360 issue: 4 year: 2000 ident: 10.1016/j.engappai.2024.109215_b30 article-title: BP-GA mixed algorithms for landslide prediction publication-title: J. Mountain Sci. – volume: 15 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.engappai.2024.109215_b36 article-title: Landslide prediction and relevant models publication-title: Chin. J. Rock Mech. Eng. – volume: 51 start-page: 2171 issue: 10 year: 2022 ident: 10.1016/j.engappai.2024.109215_b13 article-title: N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of xinpu landslide publication-title: Acta Geod. Cartogr. Sin. – year: 2022 ident: 10.1016/j.engappai.2024.109215_b24 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.engappai.2024.109215_b14 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1016/j.engappai.2024.109215_b45 doi: 10.1609/aaai.v35i12.17325 – start-page: 171 year: 2020 ident: 10.1016/j.engappai.2024.109215_b10 article-title: Lightweight temporal self-attention for classifying satellite images time series – volume: 34 start-page: 22419 year: 2021 ident: 10.1016/j.engappai.2024.109215_b32 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 746 issue: 4 year: 2011 ident: 10.1016/j.engappai.2024.109215_b34 article-title: Study of displacement prediction model of landslide based on time series analysis publication-title: Chin. J. Rock Mech. Eng. – volume: 17 start-page: 1367 issue: 4 year: 2022 ident: 10.1016/j.engappai.2024.109215_b38 article-title: Displacement prediction of jiuxianping landslide using gated recurrent unit (GRU) networks publication-title: Acta Geotech. doi: 10.1007/s11440-022-01495-8 – year: 2019 ident: 10.1016/j.engappai.2024.109215_b19 – volume: 40 start-page: 2375 issue: 11 year: 2002 ident: 10.1016/j.engappai.2024.109215_b2 article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803792 – volume: 25 start-page: 771 issue: 9 year: 2000 ident: 10.1016/j.engappai.2024.109215_b21 article-title: SAR interferometry and field data of randazzo landslide (eastern Sicily, Italy) publication-title: Phys. Chem. Earth B: Hydrol. Oceans Atmos. doi: 10.1016/S1464-1909(00)00100-3 – volume: 26 start-page: 632 issue: 3 year: 2007 ident: 10.1016/j.engappai.2024.109215_b31 article-title: Application of grey-neural network model to landslide deformation prediction publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. – volume: 204 start-page: 108 year: 2016 ident: 10.1016/j.engappai.2024.109215_b44 article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the three Gorges Reservoir, China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.02.009 – volume: 13 start-page: 72 issue: 1 year: 2004 ident: 10.1016/j.engappai.2024.109215_b5 article-title: Application of analytic hierarchy process in assessment of typical landslide danger degree publication-title: J. Natural Disasters – start-page: 1 year: 2024 ident: 10.1016/j.engappai.2024.109215_b25 article-title: A new interpretable prediction framework for step-like landslide displacement publication-title: Stoch. Environ. Res. Risk Assess. – volume: 111 start-page: 87 year: 2018 ident: 10.1016/j.engappai.2024.109215_b33 article-title: Displacement prediction of baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.10.013 – volume: 16 start-page: 677 year: 2019 ident: 10.1016/j.engappai.2024.109215_b35 article-title: Time series analysis and long short-term memory neural network to predict landslide displacement publication-title: Landslides doi: 10.1007/s10346-018-01127-x – volume: 23 start-page: 19201 issue: 10 year: 2022 ident: 10.1016/j.engappai.2024.109215_b17 article-title: ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3167019 – volume: 30 year: 2017 ident: 10.1016/j.engappai.2024.109215_b27 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 38 start-page: 2202 issue: 5 year: 2000 ident: 10.1016/j.engappai.2024.109215_b6 article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868878 – volume: 39 start-page: 8 issue: 1 year: 2001 ident: 10.1016/j.engappai.2024.109215_b7 article-title: Permanent scatterers in SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.898661 – volume: 122 start-page: 577 issue: 7 year: 1996 ident: 10.1016/j.engappai.2024.109215_b4 article-title: State of the art: limit equilibrium and finite-element analysis of slopes publication-title: J. Geotech. Eng. doi: 10.1061/(ASCE)0733-9410(1996)122:7(577) – volume: 133 year: 2024 ident: 10.1016/j.engappai.2024.109215_b18 article-title: Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108078 |
| SSID | ssj0003846 |
| Score | 2.4327831 |
| Snippet | Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109215 |
| SubjectTerms | Decomposition architecture Gating mechanism Landslide displacement Multi-scale Spatial–temporal prediction |
| Title | An adaptive spatial–temporal prediction model for landslide displacement based on decomposition architecture |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.109215 |
| Volume | 137 |
| WOSCitedRecordID | wos001310868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUb3ojykhfsRimJ7cTxcgRF0EWFRJGGVRQ_MkoV3NHMtOqSHR_AH_Il-D0pVCoIsYkia-zMzDmxr6_PvReAl8isalKyPKOcsIxUgmUcl3nWUo6YYJh0XLhiE_ToqJ7P2YfJ5FuMhTkfqNb1xQVb_leoTZsB24bO_gXcaVDTYO4N6OZqYDfXPwJ-pqetbJdOErS2eul2iIoGHBJRDTY1gOx9lXBXC8epDV3Y79BLZY9tnFjLKQXsQiftoYJUVoAeVF7T8RHEJf_-NsPhdHw87hQHKydNcoVCRrlAI-rzMx8-lAib3NlvTvXii-qTfMhpEA4NtRdpVXF9P9tS3IuxKwORENOX_GsxxmYraPKOSpQVzFeJSXO2zxTz2_zvXREn-0ovzC9s-337GJsyC_mg0V9ya3-0g9uxkd1mUoxvgF1ES2Zm-N3Z-4P5YVrUce1jvuKXGQWbX_20q-2cke1yfBfcDpsOOPNkuQcmSt8Hd8IGBIbpfW2aYo2P2PYA6JmGkU4w0OnH1--RSHBLJOiIBA2RYCISHBMJOiJB88lLRIJjIj0En94eHL9-l4UaHZnABdpkUhRKICJIp4hqac2LXKqW0Fx2nGOVV0KVZdciVWNVcFspjUsmMBWKcc6NBfUI7OhTrR4DWHVYdGZ_YZa9jhDccdnKouyYqKjCLK_2QBn_0UaEBPa2jsrQRKXiSRORaCwSjUdiD7xK_ZY-hcu1PVgErAmGqDcwG8Oza_o--Ye-T8Gt7WvxDOxsVmfqObgpzjf9evUiUPInh8G5eg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+spatial%E2%80%93temporal+prediction+model+for+landslide+displacement+based+on+decomposition+architecture&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Xu%2C+Man&rft.au=Zhang%2C+Dongmei&rft.au=Li%2C+Jiang&rft.au=Wu%2C+Yiping&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=137&rft_id=info:doi/10.1016%2Fj.engappai.2024.109215&rft.externalDocID=S0952197624013733 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |