An adaptive spatial–temporal prediction model for landslide displacement based on decomposition architecture

Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 137; s. 109215
Hlavní autori: Xu, Man, Zhang, Dongmei, Li, Jiang, Wu, Yiping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2024
Predmet:
ISSN:0952-1976
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlation characteristics of each deformation point on the surface of a landslide. On the other hand, they have difficulty in learning the changes caused by rainfall and reservoir water level. To tackle these obstacles, we introduce an adaptive spatial–temporal landslide displacement prediction model based on a decomposition architecture, named Self-Adaptive Unet with Decomposed Temporal Attention Encoder(SAU-DTAE). To effectively separate the features of different scales in time series changes and model them separately, we employ a progressive decomposition architecture based on a Lightweight Temporal Attention Encoder(LTAE). Furthermore, we design a gating mechanism with Sample Entropy (SampEn) to adaptively extract global and local spatial features at multiple scales. By quantifying the spatial complexity, we can achieve adaptive extraction of spatial correlation features. Relevant experiments were conducted with the 2016-2023 Interferometry Synthetic Aperture Radar (InSAR) landslide displacement dataset of the Three Gorges area. The new proposed algorithm was compared and validated against several classical time-series prediction models: Back Propagation(BP) neural network, Long Short Term Memory(LSTM) neural network, Gated Recurrent Unit(GRU), Convolutional LSTM(ConvLSTM), Informer, and Autoformer. The findings from the experiment indicated that our model surpassed the benchmark models, achieving superior prediction results on the test set. The Mean Absolute Error (MAE) was 5.516 millimeters(mm), the Root Mean Square Error (RMSE) was 3.856 mm, and the R-Square(R2) was 0.896.
AbstractList Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex geological patterns. Traditional landslide displacement prediction methods use single-point modeling and often fail to consider the spatial correlation characteristics of each deformation point on the surface of a landslide. On the other hand, they have difficulty in learning the changes caused by rainfall and reservoir water level. To tackle these obstacles, we introduce an adaptive spatial–temporal landslide displacement prediction model based on a decomposition architecture, named Self-Adaptive Unet with Decomposed Temporal Attention Encoder(SAU-DTAE). To effectively separate the features of different scales in time series changes and model them separately, we employ a progressive decomposition architecture based on a Lightweight Temporal Attention Encoder(LTAE). Furthermore, we design a gating mechanism with Sample Entropy (SampEn) to adaptively extract global and local spatial features at multiple scales. By quantifying the spatial complexity, we can achieve adaptive extraction of spatial correlation features. Relevant experiments were conducted with the 2016-2023 Interferometry Synthetic Aperture Radar (InSAR) landslide displacement dataset of the Three Gorges area. The new proposed algorithm was compared and validated against several classical time-series prediction models: Back Propagation(BP) neural network, Long Short Term Memory(LSTM) neural network, Gated Recurrent Unit(GRU), Convolutional LSTM(ConvLSTM), Informer, and Autoformer. The findings from the experiment indicated that our model surpassed the benchmark models, achieving superior prediction results on the test set. The Mean Absolute Error (MAE) was 5.516 millimeters(mm), the Root Mean Square Error (RMSE) was 3.856 mm, and the R-Square(R2) was 0.896.
ArticleNumber 109215
Author Zhang, Dongmei
Wu, Yiping
Xu, Man
Li, Jiang
Author_xml – sequence: 1
  givenname: Man
  surname: Xu
  fullname: Xu, Man
  organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China
– sequence: 2
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
  email: zhangdongmei@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China
– sequence: 3
  givenname: Jiang
  surname: Li
  fullname: Li, Jiang
  organization: The Department of Natural Resources of Hubei Province, Information Center, Wuhan, 430074, Hubei, China
– sequence: 4
  givenname: Yiping
  surname: Wu
  fullname: Wu, Yiping
  organization: School of Engineering, China University of Geosciences, Wuhan, 430074, Hubei, China
BookMark eNqFkM1KAzEUhbOoYFt9BckLTE3mtwMuLMU_KLjRdbhJ7mjKTBKSWHDnO_iGPolTqxs3XV043O_A-WZkYp1FQi44W3DG68vtAu0LeA9mkbO8HMM259WETFlb5Rlvm_qUzGLcMsaKZVlPiV1ZChp8Mjuk0UMy0H99fCYcvAvQUx9QG5WMs3RwGnvauUB7sDr2RiPVJvoeFA5oE5UQUdPxU6NyIx_NDwdBvZqEKr0FPCMnHfQRz3_vnDzf3jyt77PN493DerXJVMHzlGnFUeWlKjssEZql5EwjlA3TnZQFslphVXWQ47JALlneNlK3qmgUtlLKkhdzUh96VXAxBuyED2aA8C44E3tTYiv-TIm9KXEwNYJX_0BlEux3pACmP45fH3Acx-0MBhGVQatGiWE0ILQzxyq-AeV0kzg
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111346
crossref_primary_10_1007_s10064_025_04345_5
crossref_primary_10_1038_s41598_025_97147_4
Cites_doi 10.1016/j.asoc.2022.109312
10.1142/S0129065704001899
10.1080/19648189.2020.1754298
10.1145/3505244
10.1016/j.cageo.2012.08.023
10.1093/comjnl/bxac171
10.1029/JB094iB07p09183
10.12677/MOS.2023.124336
10.1016/S0013-7952(99)00127-1
10.1016/j.neucom.2005.12.126
10.1609/aaai.v35i12.17325
10.1007/s11440-022-01495-8
10.1109/TGRS.2002.803792
10.1016/S1464-1909(00)00100-3
10.1016/j.enggeo.2016.02.009
10.1016/j.cageo.2017.10.013
10.1007/s10346-018-01127-x
10.1109/TITS.2022.3167019
10.1109/36.868878
10.1109/36.898661
10.1061/(ASCE)0733-9410(1996)122:7(577)
10.1016/j.engappai.2024.108078
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.109215
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_109215
S0952197624013733
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-dc1ec24c4fe4ea78b10dea470dfbb3e06ce55fa2e83e1b0297bd9c37ce9bbb413
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:21 EST 2025
Tue Nov 18 22:43:12 EST 2025
Sat Nov 09 16:01:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gating mechanism
Landslide displacement
Multi-scale
Spatial–temporal prediction
Decomposition architecture
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-dc1ec24c4fe4ea78b10dea470dfbb3e06ce55fa2e83e1b0297bd9c37ce9bbb413
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_109215
crossref_citationtrail_10_1016_j_engappai_2024_109215
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109215
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khan, Naseer, Hayat, Zamir, Khan, Shah (b15) 2022; 54
Xu, Wang, Du, Ye (b34) 2011; 30
Huang, Zhu, Siew (b14) 2006; 70
Meng, Shi, Peng, Li, Zheng, Liu, Zhang (b18) 2024; 133
Wheelwright, Makridakis, Hyndman (b29) 1998
Achache, Fruneau, Delacourt (b1) 1996; Vol. 383
Seeger (b23) 2004; 14
Shao, Wang, Hu, Zhao, Zhou, Long, Liao, He, Gan (b25) 2024
Fan, Qiao, Chen (b5) 2004; 13
Gao, Wu, Wang, Kim, Xu (b9) 2024
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b27) 2017; 30
Dai (b3) 2023; 12
Oreshkin, Carpov, Chapados, Bengio (b19) 2019
Wu, Hong (b30) 2000; 18
Wu, Teng, Li (b31) 2007; 26
Shi, Chen, Wang, Yeung, Wong, Woo (b26) 2015; 28
Zamri, Azhar, Mansor, Alway, Kasihmuddin (b37) 2022; 126
Gili, Corominas, Rius (b12) 2000; 55
Guo, Hu, Zheng, Gui, Du, Z, He (b13) 2022; 51
Sasal, Chakraborty, Hadid (b22) 2022
Wu, Xu, Wang, Long (b32) 2021; 34
Pradhan (b20) 2013; 51
Berardino, Fornaro, Lanari, Sansosti (b2) 2002; 40
Yang, Yin, Lacasse, Liu (b35) 2019; 16
Garnot, V.S.F., Landrieu, L., 2021. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4872–4881.
Wang, Zhang, Wang, Meng, Yang, Huang (b28) 2023; 27
Xu, Niu (b33) 2018; 111
Zhang, Yin, Wang, Huang (b40) 2015; 34
Zhao, Feng (b42) 2003; 25
Rizo, Tesauro (b21) 2000; 25
Gabriel, Goldstein, Zebker (b8) 1989; 94
Liu, Zheng (b16) 2006; 25
Shabani, Abdi, Meng, Sylvain (b24) 2022
Garnot, Landrieu (b10) 2020
Ferretti, Prati, Rocca (b6) 2000; 38
Ferretti, Prati, Rocca (b7) 2001; 39
Zhou, Ma, Wen, Wang, Sun, Jin (b43) 2022
Duncan (b4) 1996; 122
Yin, Yan (b36) 1996; 15
Luo, Zhang, Yuan, Li, Wang (b17) 2022; 23
Zhang, Li, Tang, Gu, Wang, Wang (b38) 2022; 17
Zhang, Wen, Yan, Feng, Xia (b39) 2024; 67
Zhang, Zhang, Jiang, Wu (b41) 2022; 43
Zhou, Yin, Cao, Ahmed (b44) 2016; 204
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W., 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 11106–11115.
10.1016/j.engappai.2024.109215_b11
Zhang (10.1016/j.engappai.2024.109215_b39) 2024; 67
Yin (10.1016/j.engappai.2024.109215_b36) 1996; 15
Zhou (10.1016/j.engappai.2024.109215_b44) 2016; 204
Dai (10.1016/j.engappai.2024.109215_b3) 2023; 12
Zhou (10.1016/j.engappai.2024.109215_b43) 2022
Achache (10.1016/j.engappai.2024.109215_b1) 1996; Vol. 383
Berardino (10.1016/j.engappai.2024.109215_b2) 2002; 40
Wang (10.1016/j.engappai.2024.109215_b28) 2023; 27
Liu (10.1016/j.engappai.2024.109215_b16) 2006; 25
Gabriel (10.1016/j.engappai.2024.109215_b8) 1989; 94
Wu (10.1016/j.engappai.2024.109215_b32) 2021; 34
Gao (10.1016/j.engappai.2024.109215_b9) 2024
Zamri (10.1016/j.engappai.2024.109215_b37) 2022; 126
Gili (10.1016/j.engappai.2024.109215_b12) 2000; 55
Sasal (10.1016/j.engappai.2024.109215_b22) 2022
Duncan (10.1016/j.engappai.2024.109215_b4) 1996; 122
Guo (10.1016/j.engappai.2024.109215_b13) 2022; 51
Zhang (10.1016/j.engappai.2024.109215_b40) 2015; 34
Zhao (10.1016/j.engappai.2024.109215_b42) 2003; 25
Wu (10.1016/j.engappai.2024.109215_b30) 2000; 18
Xu (10.1016/j.engappai.2024.109215_b33) 2018; 111
Shi (10.1016/j.engappai.2024.109215_b26) 2015; 28
Ferretti (10.1016/j.engappai.2024.109215_b7) 2001; 39
Fan (10.1016/j.engappai.2024.109215_b5) 2004; 13
Vaswani (10.1016/j.engappai.2024.109215_b27) 2017; 30
10.1016/j.engappai.2024.109215_b45
Shao (10.1016/j.engappai.2024.109215_b25) 2024
Zhang (10.1016/j.engappai.2024.109215_b38) 2022; 17
Garnot (10.1016/j.engappai.2024.109215_b10) 2020
Zhang (10.1016/j.engappai.2024.109215_b41) 2022; 43
Khan (10.1016/j.engappai.2024.109215_b15) 2022; 54
Meng (10.1016/j.engappai.2024.109215_b18) 2024; 133
Ferretti (10.1016/j.engappai.2024.109215_b6) 2000; 38
Wu (10.1016/j.engappai.2024.109215_b31) 2007; 26
Luo (10.1016/j.engappai.2024.109215_b17) 2022; 23
Seeger (10.1016/j.engappai.2024.109215_b23) 2004; 14
Xu (10.1016/j.engappai.2024.109215_b34) 2011; 30
Rizo (10.1016/j.engappai.2024.109215_b21) 2000; 25
Huang (10.1016/j.engappai.2024.109215_b14) 2006; 70
Oreshkin (10.1016/j.engappai.2024.109215_b19) 2019
Wheelwright (10.1016/j.engappai.2024.109215_b29) 1998
Yang (10.1016/j.engappai.2024.109215_b35) 2019; 16
Pradhan (10.1016/j.engappai.2024.109215_b20) 2013; 51
Shabani (10.1016/j.engappai.2024.109215_b24) 2022
References_xml – volume: 28
  year: 2015
  ident: b26
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 111
  start-page: 87
  year: 2018
  end-page: 96
  ident: b33
  article-title: Displacement prediction of baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China
  publication-title: Comput. Geosci.
– volume: 25
  start-page: 1544
  year: 2006
  end-page: 1549
  ident: b16
  article-title: Determination methods of multi-slip surfaces landslide based on strength reduction FEM
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 204
  start-page: 108
  year: 2016
  end-page: 120
  ident: b44
  article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the three Gorges Reservoir, China
  publication-title: Eng. Geol.
– reference: Garnot, V.S.F., Landrieu, L., 2021. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4872–4881.
– year: 2024
  ident: b9
  article-title: FSOD4RSI: Few-shot object detection for remote sensing images via features aggregation and scale attention
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 30
  year: 2017
  ident: b27
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 1367
  year: 2022
  end-page: 1382
  ident: b38
  article-title: Displacement prediction of jiuxianping landslide using gated recurrent unit (GRU) networks
  publication-title: Acta Geotech.
– volume: 12
  start-page: 3657
  year: 2023
  end-page: 3672
  ident: b3
  article-title: Review of CNN-transformer hybrid model in computer vision
  publication-title: Model. Simul.
– volume: 16
  start-page: 677
  year: 2019
  end-page: 694
  ident: b35
  article-title: Time series analysis and long short-term memory neural network to predict landslide displacement
  publication-title: Landslides
– year: 2022
  ident: b24
  article-title: Scaleformer: iterative multi-scale refining transformers for time series forecasting
– year: 2019
  ident: b19
  article-title: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
– volume: 18
  start-page: 360
  year: 2000
  end-page: 365
  ident: b30
  article-title: BP-GA mixed algorithms for landslide prediction
  publication-title: J. Mountain Sci.
– volume: 55
  start-page: 167
  year: 2000
  end-page: 192
  ident: b12
  article-title: Using global positioning system techniques in landslide monitoring
  publication-title: Eng. Geol.
– volume: 13
  start-page: 72
  year: 2004
  end-page: 76
  ident: b5
  article-title: Application of analytic hierarchy process in assessment of typical landslide danger degree
  publication-title: J. Natural Disasters
– start-page: 171
  year: 2020
  end-page: 181
  ident: b10
  article-title: Lightweight temporal self-attention for classifying satellite images time series
  publication-title: Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers 6
– volume: 51
  start-page: 2171
  year: 2022
  ident: b13
  article-title: N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of xinpu landslide
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 40
  start-page: 2375
  year: 2002
  end-page: 2383
  ident: b2
  article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 133
  year: 2024
  ident: b18
  article-title: Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism
  publication-title: Eng. Appl. Artif. Intell.
– volume: 26
  start-page: 632
  year: 2007
  end-page: 636
  ident: b31
  article-title: Application of grey-neural network model to landslide deformation prediction
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.
– volume: 122
  start-page: 577
  year: 1996
  end-page: 596
  ident: b4
  article-title: State of the art: limit equilibrium and finite-element analysis of slopes
  publication-title: J. Geotech. Eng.
– volume: 39
  start-page: 8
  year: 2001
  end-page: 20
  ident: b7
  article-title: Permanent scatterers in SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 1
  year: 2022
  end-page: 41
  ident: b15
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv. (CSUR)
– year: 1998
  ident: b29
  article-title: Forecasting: Methods and Applications
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b14
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: b23
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 25
  start-page: 771
  year: 2000
  end-page: 780
  ident: b21
  article-title: SAR interferometry and field data of randazzo landslide (eastern Sicily, Italy)
  publication-title: Phys. Chem. Earth B: Hydrol. Oceans Atmos.
– volume: 27
  start-page: 2345
  year: 2023
  end-page: 2357
  ident: b28
  article-title: Hydrodynamic landslide displacement prediction using combined extreme learning machine and random search support vector regression model
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 30
  start-page: 746
  year: 2011
  end-page: 751
  ident: b34
  article-title: Study of displacement prediction model of landslide based on time series analysis
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 94
  start-page: 9183
  year: 1989
  end-page: 9191
  ident: b8
  article-title: Mapping small elevation changes over large areas: Differential radar interferometry
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 38
  start-page: 2202
  year: 2000
  end-page: 2212
  ident: b6
  article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: b20
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– volume: 67
  start-page: 236
  year: 2024
  end-page: 252
  ident: b39
  article-title: A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction
  publication-title: Comput. J.
– volume: Vol. 383
  start-page: 165
  year: 1996
  ident: b1
  article-title: Applicability of SAR interferometry for monitoring of landslides
  publication-title: Ers Applications
– volume: 43
  start-page: 477
  year: 2022
  ident: b41
  article-title: LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism
  publication-title: Rock Soil Mech.
– volume: 15
  start-page: 1
  year: 1996
  end-page: 8
  ident: b36
  article-title: Landslide prediction and relevant models
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 25
  start-page: 468
  year: 2003
  end-page: 471
  ident: b42
  article-title: Study and application of genetic-support vector machine for nonlinear displacement time series forecasting
  publication-title: Chin. J. Geotech. Eng.
– volume: 126
  year: 2022
  ident: b37
  article-title: Weighted random k satisfiability for k=1, 2 (r2SAT) in discrete hopfield neural network
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 22419
  year: 2021
  end-page: 22430
  ident: b32
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 19201
  year: 2022
  end-page: 19212
  ident: b17
  article-title: ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 671
  year: 2022
  end-page: 676
  ident: b22
  article-title: W-transformers: A wavelet-based transformer framework for univariate time series forecasting
  publication-title: 2022 21st IEEE International Conference on Machine Learning and Applications
– start-page: 27268
  year: 2022
  end-page: 27286
  ident: b43
  article-title: Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting
  publication-title: International Conference on Machine Learning
– start-page: 1
  year: 2024
  end-page: 21
  ident: b25
  article-title: A new interpretable prediction framework for step-like landslide displacement
  publication-title: Stoch. Environ. Res. Risk Assess.
– reference: Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W., 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 11106–11115.
– volume: 34
  start-page: 382
  year: 2015
  end-page: 391
  ident: b40
  article-title: Displacement prediction of baishuihe landslide based on time series and PSO-SVR model
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 126
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b37
  article-title: Weighted random k satisfiability for k=1, 2 (r2SAT) in discrete hopfield neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109312
– start-page: 671
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b22
  article-title: W-transformers: A wavelet-based transformer framework for univariate time series forecasting
– volume: 14
  start-page: 69
  issue: 02
  year: 2004
  ident: 10.1016/j.engappai.2024.109215_b23
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 34
  start-page: 382
  issue: 2
  year: 2015
  ident: 10.1016/j.engappai.2024.109215_b40
  article-title: Displacement prediction of baishuihe landslide based on time series and PSO-SVR model
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 27
  start-page: 2345
  issue: 6
  year: 2023
  ident: 10.1016/j.engappai.2024.109215_b28
  article-title: Hydrodynamic landslide displacement prediction using combined extreme learning machine and random search support vector regression model
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2020.1754298
– ident: 10.1016/j.engappai.2024.109215_b11
– volume: 25
  start-page: 1544
  issue: 8
  year: 2006
  ident: 10.1016/j.engappai.2024.109215_b16
  article-title: Determination methods of multi-slip surfaces landslide based on strength reduction FEM
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 54
  start-page: 1
  issue: 10s
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b15
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3505244
– volume: 51
  start-page: 350
  year: 2013
  ident: 10.1016/j.engappai.2024.109215_b20
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 67
  start-page: 236
  issue: 1
  year: 2024
  ident: 10.1016/j.engappai.2024.109215_b39
  article-title: A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxac171
– volume: 94
  start-page: 9183
  issue: B7
  year: 1989
  ident: 10.1016/j.engappai.2024.109215_b8
  article-title: Mapping small elevation changes over large areas: Differential radar interferometry
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/JB094iB07p09183
– volume: 28
  year: 2015
  ident: 10.1016/j.engappai.2024.109215_b26
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 477
  issue: S2
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b41
  article-title: LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism
  publication-title: Rock Soil Mech.
– year: 1998
  ident: 10.1016/j.engappai.2024.109215_b29
– volume: 12
  start-page: 3657
  year: 2023
  ident: 10.1016/j.engappai.2024.109215_b3
  article-title: Review of CNN-transformer hybrid model in computer vision
  publication-title: Model. Simul.
  doi: 10.12677/MOS.2023.124336
– year: 2024
  ident: 10.1016/j.engappai.2024.109215_b9
  article-title: FSOD4RSI: Few-shot object detection for remote sensing images via features aggregation and scale attention
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 55
  start-page: 167
  issue: 3
  year: 2000
  ident: 10.1016/j.engappai.2024.109215_b12
  article-title: Using global positioning system techniques in landslide monitoring
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(99)00127-1
– volume: Vol. 383
  start-page: 165
  year: 1996
  ident: 10.1016/j.engappai.2024.109215_b1
  article-title: Applicability of SAR interferometry for monitoring of landslides
– volume: 25
  start-page: 468
  issue: 4
  year: 2003
  ident: 10.1016/j.engappai.2024.109215_b42
  article-title: Study and application of genetic-support vector machine for nonlinear displacement time series forecasting
  publication-title: Chin. J. Geotech. Eng.
– start-page: 27268
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b43
  article-title: Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting
– volume: 18
  start-page: 360
  issue: 4
  year: 2000
  ident: 10.1016/j.engappai.2024.109215_b30
  article-title: BP-GA mixed algorithms for landslide prediction
  publication-title: J. Mountain Sci.
– volume: 15
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.engappai.2024.109215_b36
  article-title: Landslide prediction and relevant models
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 51
  start-page: 2171
  issue: 10
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b13
  article-title: N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of xinpu landslide
  publication-title: Acta Geod. Cartogr. Sin.
– year: 2022
  ident: 10.1016/j.engappai.2024.109215_b24
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.engappai.2024.109215_b14
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1016/j.engappai.2024.109215_b45
  doi: 10.1609/aaai.v35i12.17325
– start-page: 171
  year: 2020
  ident: 10.1016/j.engappai.2024.109215_b10
  article-title: Lightweight temporal self-attention for classifying satellite images time series
– volume: 34
  start-page: 22419
  year: 2021
  ident: 10.1016/j.engappai.2024.109215_b32
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 746
  issue: 4
  year: 2011
  ident: 10.1016/j.engappai.2024.109215_b34
  article-title: Study of displacement prediction model of landslide based on time series analysis
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 17
  start-page: 1367
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b38
  article-title: Displacement prediction of jiuxianping landslide using gated recurrent unit (GRU) networks
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-022-01495-8
– year: 2019
  ident: 10.1016/j.engappai.2024.109215_b19
– volume: 40
  start-page: 2375
  issue: 11
  year: 2002
  ident: 10.1016/j.engappai.2024.109215_b2
  article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803792
– volume: 25
  start-page: 771
  issue: 9
  year: 2000
  ident: 10.1016/j.engappai.2024.109215_b21
  article-title: SAR interferometry and field data of randazzo landslide (eastern Sicily, Italy)
  publication-title: Phys. Chem. Earth B: Hydrol. Oceans Atmos.
  doi: 10.1016/S1464-1909(00)00100-3
– volume: 26
  start-page: 632
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2024.109215_b31
  article-title: Application of grey-neural network model to landslide deformation prediction
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng.
– volume: 204
  start-page: 108
  year: 2016
  ident: 10.1016/j.engappai.2024.109215_b44
  article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the three Gorges Reservoir, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.02.009
– volume: 13
  start-page: 72
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2024.109215_b5
  article-title: Application of analytic hierarchy process in assessment of typical landslide danger degree
  publication-title: J. Natural Disasters
– start-page: 1
  year: 2024
  ident: 10.1016/j.engappai.2024.109215_b25
  article-title: A new interpretable prediction framework for step-like landslide displacement
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 111
  start-page: 87
  year: 2018
  ident: 10.1016/j.engappai.2024.109215_b33
  article-title: Displacement prediction of baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.10.013
– volume: 16
  start-page: 677
  year: 2019
  ident: 10.1016/j.engappai.2024.109215_b35
  article-title: Time series analysis and long short-term memory neural network to predict landslide displacement
  publication-title: Landslides
  doi: 10.1007/s10346-018-01127-x
– volume: 23
  start-page: 19201
  issue: 10
  year: 2022
  ident: 10.1016/j.engappai.2024.109215_b17
  article-title: ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3167019
– volume: 30
  year: 2017
  ident: 10.1016/j.engappai.2024.109215_b27
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 2202
  issue: 5
  year: 2000
  ident: 10.1016/j.engappai.2024.109215_b6
  article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868878
– volume: 39
  start-page: 8
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2024.109215_b7
  article-title: Permanent scatterers in SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.898661
– volume: 122
  start-page: 577
  issue: 7
  year: 1996
  ident: 10.1016/j.engappai.2024.109215_b4
  article-title: State of the art: limit equilibrium and finite-element analysis of slopes
  publication-title: J. Geotech. Eng.
  doi: 10.1061/(ASCE)0733-9410(1996)122:7(577)
– volume: 133
  year: 2024
  ident: 10.1016/j.engappai.2024.109215_b18
  article-title: Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108078
SSID ssj0003846
Score 2.4327831
Snippet Landslide displacement forecasting is a core issue in geohazard research, it is particularly challenging for accumulation-type landslides with complex...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109215
SubjectTerms Decomposition architecture
Gating mechanism
Landslide displacement
Multi-scale
Spatial–temporal prediction
Title An adaptive spatial–temporal prediction model for landslide displacement based on decomposition architecture
URI https://dx.doi.org/10.1016/j.engappai.2024.109215
Volume 137
WOSCitedRecordID wos001310868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUb3ojykhfsRimJ7cTxcgRF0EWFRJGGVRQ_MkoV3NHMtOqSHR_AH_Il-D0pVCoIsYkia-zMzDmxr6_PvReAl8isalKyPKOcsIxUgmUcl3nWUo6YYJh0XLhiE_ToqJ7P2YfJ5FuMhTkfqNb1xQVb_leoTZsB24bO_gXcaVDTYO4N6OZqYDfXPwJ-pqetbJdOErS2eul2iIoGHBJRDTY1gOx9lXBXC8epDV3Y79BLZY9tnFjLKQXsQiftoYJUVoAeVF7T8RHEJf_-NsPhdHw87hQHKydNcoVCRrlAI-rzMx8-lAib3NlvTvXii-qTfMhpEA4NtRdpVXF9P9tS3IuxKwORENOX_GsxxmYraPKOSpQVzFeJSXO2zxTz2_zvXREn-0ovzC9s-337GJsyC_mg0V9ya3-0g9uxkd1mUoxvgF1ES2Zm-N3Z-4P5YVrUce1jvuKXGQWbX_20q-2cke1yfBfcDpsOOPNkuQcmSt8Hd8IGBIbpfW2aYo2P2PYA6JmGkU4w0OnH1--RSHBLJOiIBA2RYCISHBMJOiJB88lLRIJjIj0En94eHL9-l4UaHZnABdpkUhRKICJIp4hqac2LXKqW0Fx2nGOVV0KVZdciVWNVcFspjUsmMBWKcc6NBfUI7OhTrR4DWHVYdGZ_YZa9jhDccdnKouyYqKjCLK_2QBn_0UaEBPa2jsrQRKXiSRORaCwSjUdiD7xK_ZY-hcu1PVgErAmGqDcwG8Oza_o--Ye-T8Gt7WvxDOxsVmfqObgpzjf9evUiUPInh8G5eg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+spatial%E2%80%93temporal+prediction+model+for+landslide+displacement+based+on+decomposition+architecture&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Xu%2C+Man&rft.au=Zhang%2C+Dongmei&rft.au=Li%2C+Jiang&rft.au=Wu%2C+Yiping&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=137&rft_id=info:doi/10.1016%2Fj.engappai.2024.109215&rft.externalDocID=S0952197624013733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon