Machine learning approach for predicting personal thermal comfort in air conditioning offices in Malaysia

The existing machine learning based models for personal thermal comfort have traditionally focused on physiological and psychological variations among occupants, and the spatial parameters have been largely overlooked. Field measurements are conducted to collect data and synthesise the collective fi...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment Vol. 266; p. 112083
Main Authors: Alam, Noor, Zaki, Sheikh Ahmad, Ahmad, Syafiq Asyraff, Singh, Manoj Kumar, Azizan, Azizul, Othman, Nor'azizi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2024
Subjects:
ISSN:0360-1323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The existing machine learning based models for personal thermal comfort have traditionally focused on physiological and psychological variations among occupants, and the spatial parameters have been largely overlooked. Field measurements are conducted to collect data and synthesise the collective findings for optimal spatial positioning based on a 24 °C setpoint. The objective of the present study is to investigate and compare the prediction performance made by the machine learning models for personal indoor thermal comfort in air-conditioned office environments using non-spatial parameters (NSP) and spatial parameters (SP). The data was collected from the respondents at four different occupants. A comprehensive data set of NSP and SP is comprised of machine learning models in predicting different thermal comfort situations are Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Naive Bayes (NB), and Neural Networks (NN). Results indicate a substantial improvement in the accuracy prediction with the Random Forest algorithm outperforming others, enhancing overall accuracy by 38.6 % with spatial parameters for thermal sensation vote (TSV). However, the SVM algorithm improves 50 % accuracy by considering SP input for thermal comfort (TC). Spatial parameters, including the distance between windows and air conditioning units, emerge as critical factors influencing thermal comfort. •Machine learning algorithm models are developed for personal thermal comfort.•The spatial parameters are the distance of the window and air-conditioning to the occupant.•Analysis utilising spatial and non-spatial parameters at 24 °C setpoint temperature.•Random Forest algorithm improved by 38.6 % accuracy compared to other algorithms.
AbstractList The existing machine learning based models for personal thermal comfort have traditionally focused on physiological and psychological variations among occupants, and the spatial parameters have been largely overlooked. Field measurements are conducted to collect data and synthesise the collective findings for optimal spatial positioning based on a 24 °C setpoint. The objective of the present study is to investigate and compare the prediction performance made by the machine learning models for personal indoor thermal comfort in air-conditioned office environments using non-spatial parameters (NSP) and spatial parameters (SP). The data was collected from the respondents at four different occupants. A comprehensive data set of NSP and SP is comprised of machine learning models in predicting different thermal comfort situations are Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Naive Bayes (NB), and Neural Networks (NN). Results indicate a substantial improvement in the accuracy prediction with the Random Forest algorithm outperforming others, enhancing overall accuracy by 38.6 % with spatial parameters for thermal sensation vote (TSV). However, the SVM algorithm improves 50 % accuracy by considering SP input for thermal comfort (TC). Spatial parameters, including the distance between windows and air conditioning units, emerge as critical factors influencing thermal comfort. •Machine learning algorithm models are developed for personal thermal comfort.•The spatial parameters are the distance of the window and air-conditioning to the occupant.•Analysis utilising spatial and non-spatial parameters at 24 °C setpoint temperature.•Random Forest algorithm improved by 38.6 % accuracy compared to other algorithms.
ArticleNumber 112083
Author Azizan, Azizul
Othman, Nor'azizi
Alam, Noor
Singh, Manoj Kumar
Zaki, Sheikh Ahmad
Ahmad, Syafiq Asyraff
Author_xml – sequence: 1
  givenname: Noor
  orcidid: 0000-0001-6956-8567
  surname: Alam
  fullname: Alam, Noor
  organization: Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
– sequence: 2
  givenname: Sheikh Ahmad
  orcidid: 0000-0001-6411-9965
  surname: Zaki
  fullname: Zaki, Sheikh Ahmad
  email: sheikh.kl@utm.my
  organization: Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
– sequence: 3
  givenname: Syafiq Asyraff
  surname: Ahmad
  fullname: Ahmad, Syafiq Asyraff
  organization: Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
– sequence: 4
  givenname: Manoj Kumar
  orcidid: 0000-0002-7696-846X
  surname: Singh
  fullname: Singh, Manoj Kumar
  organization: Energy and Sustainable Built-Environment Design (ESBD) Laboratory, Department of Civil Engineering, Shiv Nadar Institution of Eminence, Dadri, Uttar Pradesh, 201314, India
– sequence: 5
  givenname: Azizul
  orcidid: 0000-0002-5331-6071
  surname: Azizan
  fullname: Azizan, Azizul
  organization: Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
– sequence: 6
  givenname: Nor'azizi
  surname: Othman
  fullname: Othman, Nor'azizi
  organization: Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
BookMark eNqFkMtOwzAQRb0oEi3wCyg_kGLHaUgkFqCKl9SKDawtP8Z0qtSObFOpf49DYcOmq6t53KuZMyMT5x0Qcs3onFHW3Gzn6gt7A24_r2hVzxmraMsnZEp5Q0vGK35OZjFuaV7ueD0luJZ6gw6KHmRw6D4LOQzB52ZhfSiGAAZ1GvsDhOid7Iu0gbDLqv0ur6QCXSEx5NIZTOh_Qry1qCGOs7Xs5SGivCRnVvYRrn71gnw8Pb4vX8rV2_Pr8mFVas6qVBplKLBG102tuJGKtla1ICXr2lqrasGNaqhSsu4U51arhtnadvRWNwvNa-D8gtwdc3XwMQawQmOS42EpSOwFo2JEJbbiD5UYUYkjqmxv_tmHgDsZDqeN90cj5Of2CEFEjeB0BhhAJ2E8nor4Bh1dj0w
CitedBy_id crossref_primary_10_1016_j_buildenv_2024_112424
crossref_primary_10_1016_j_buildenv_2025_112729
crossref_primary_10_1016_j_buildenv_2025_113241
crossref_primary_10_1016_j_hybadv_2025_100493
crossref_primary_10_1080_17512549_2025_2539120
crossref_primary_10_1016_j_buildenv_2025_113036
crossref_primary_10_1016_j_buildenv_2025_113498
crossref_primary_10_1016_j_jobe_2025_113760
crossref_primary_10_1016_j_ijrefrig_2025_03_008
crossref_primary_10_3390_app15084236
crossref_primary_10_3390_s25030705
crossref_primary_10_3390_en18092332
Cites_doi 10.1016/j.buildenv.2021.108581
10.1016/j.enbuild.2022.112479
10.1016/j.buildenv.2011.10.009
10.1016/j.buildenv.2016.12.005
10.1016/j.enbuild.2018.05.056
10.1016/j.buildenv.2021.107875
10.1016/j.ifacol.2019.11.708
10.1088/0957-0233/23/3/035005
10.1016/j.buildenv.2016.09.024
10.1016/j.measurement.2019.106997
10.1016/j.scs.2020.102216
10.1016/j.enbuild.2020.109776
10.1016/j.enbuild.2020.110261
10.1016/j.buildenv.2019.106588
10.1016/j.buildenv.2017.06.016
10.1016/j.buildenv.2021.108026
10.1016/j.buildenv.2019.106281
10.1016/j.buildenv.2017.10.004
10.1016/j.enbuild.2020.110390
10.1016/j.buildenv.2021.108532
10.3390/fi12020030
10.1080/17512549.2024.2340449
10.1016/j.enbuild.2019.05.044
10.1016/j.buildenv.2017.05.022
10.3390/buildings13092215
10.1016/j.enbuild.2018.02.035
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2024.112083
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_buildenv_2024_112083
S0360132324009259
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c312t-dbd0e16c464b3dab08fb8eaa1984cb253db60bba49b33fcb61f4f907c65c34e33
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327986700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Tue Nov 18 22:15:56 EST 2025
Sat Nov 29 01:37:04 EST 2025
Sat Feb 08 15:51:27 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Air conditioning
Support vector machines
Thermal comfort
Machine learning models
Random forest algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-dbd0e16c464b3dab08fb8eaa1984cb253db60bba49b33fcb61f4f907c65c34e33
ORCID 0000-0002-7696-846X
0000-0002-5331-6071
0000-0001-6411-9965
0000-0001-6956-8567
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2024_112083
crossref_primary_10_1016_j_buildenv_2024_112083
elsevier_sciencedirect_doi_10_1016_j_buildenv_2024_112083
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gong, Cai, Zhou, Zhang, Chen, Sharples (bib33) 2022; 45
Damiati, Zaki, Rijal, Wonorahardjo (bib42) 2016; 109
Revel, Sabbatini, Arnesano (bib10) 2012; 23
Dear (bib21) 1998; 104
Xiong, Yao (bib18) 2021; 202
Taib, Ahmad Zaki, Rijal, Razak, Hagishima, Khalid, Ali (bib3) 2022; 54
Kim, de Dear (bib4) 2012
Sung, Hsiao (bib36) 2020; 149
Zaki, Damiati, Rijal, Hagishima, Abd Razak (bib43) 2017; 122
de Oliveira Júnior, Sousa, Pai, de Almeida, Neto, Simões, de Souza (bib35) 2021; 1
Guenther, Sawodny (bib31) 2019; 52
Seitablaiev, Umaroğulları (bib1) 2018; 5
(bib2) 2017
Fard, Zomorodian, Korsavi (bib12) 2021; 256
Hosamo, Tingstveit, Nielsen, Svennevig, Svidt (bib32) 2022; 277
Wargocki, Frontczak, Schiavon, Goins, Arens, Zhang (bib34) 2012
Dai, Zhang, Arens, Lian (bib28) 2017; 114
Nafiz, Zaki, Nadarajah, Singh (bib41) 2024; 18
Wei, Jili, Tianyi, Ruobing (bib26) 2018; 173
Wu, Liu, Li, Jokisalo, Kosonen, Cheng, Zhao, Yuan (bib27) 2020; 229
Chaudhuri, Zhai, Soh, Li, Xie (bib29) 2018; 166
Chan, Ahn (bib30) 2024; 32
Tao, Yang, Liu (bib8) 2019; 197
Li, Menassa, Kamat (bib22) 2017; 126
Choi, Loftness, Lee (bib11) 2012; 50
Konis, Blessenohl, Kedia, Rahane (bib38) 2020; 169
Wang, Wang, He, Liu, Lin, Hong (bib16) 2020; 29
Lala, Kala, Rastogi, Dahiya, Yamaguchi, Hagishima (bib20) 2022
Mousa, Ali (bib23) 2021; 12
Zhao, Genovese, Li (bib24) 2020; 12
Liu, Nie, Liu, Liu, Lai (bib7) 2020; 59
Yang, Li, Hou, Meier, Cheng, Choi, Wang, Wang, Wagner, Yan (bib9) 2020; 224
Ahmad, Zaki, Azizan, Taib (bib40) 2023; vol. 396
Amaripadath, Rahif, Velickovic, Attia (bib5) 2023; 68
Abdelrahman, Chong, Miller (bib39) 2022; 207
Yu, Li, Wu, Chen, Kosonen, Kilpelainen, Liu (bib19) 2022; 61
Luo, Xie, Yan, Ke, Yu, Wang, Zhang (bib14) 2020; 210
Xiang, Ling, Jingsi, Bing, Maohui, Guangya, Xu (bib13) 2020; 211
Liu, Schiavon, Das, Jin, Spanos (bib25) 2019; 162
Aparicio-Ruiz, Barbadilla-Martín, Guadix, Nevado (bib37) 2023; 13
Geng, Ji, Lin, Zhu (bib6) 2017; 121
Tian, Cheng, Lin (bib15) 2022; 208
Ma, Chen, Hu, Perdikaris, Braham (bib17) 2021; 198
Xiang (10.1016/j.buildenv.2024.112083_bib13) 2020; 211
Wargocki (10.1016/j.buildenv.2024.112083_bib34) 2012
Choi (10.1016/j.buildenv.2024.112083_bib11) 2012; 50
Li (10.1016/j.buildenv.2024.112083_bib22) 2017; 126
Tian (10.1016/j.buildenv.2024.112083_bib15) 2022; 208
Zhao (10.1016/j.buildenv.2024.112083_bib24) 2020; 12
Liu (10.1016/j.buildenv.2024.112083_bib7) 2020; 59
Luo (10.1016/j.buildenv.2024.112083_bib14) 2020; 210
Wu (10.1016/j.buildenv.2024.112083_bib27) 2020; 229
Aparicio-Ruiz (10.1016/j.buildenv.2024.112083_bib37) 2023; 13
Konis (10.1016/j.buildenv.2024.112083_bib38) 2020; 169
Ahmad (10.1016/j.buildenv.2024.112083_bib40) 2023; vol. 396
Taib (10.1016/j.buildenv.2024.112083_bib3) 2022; 54
Ma (10.1016/j.buildenv.2024.112083_bib17) 2021; 198
Geng (10.1016/j.buildenv.2024.112083_bib6) 2017; 121
Chan (10.1016/j.buildenv.2024.112083_bib30) 2024; 32
Gong (10.1016/j.buildenv.2024.112083_bib33) 2022; 45
Hosamo (10.1016/j.buildenv.2024.112083_bib32) 2022; 277
Sung (10.1016/j.buildenv.2024.112083_bib36) 2020; 149
Kim (10.1016/j.buildenv.2024.112083_bib4) 2012
Revel (10.1016/j.buildenv.2024.112083_bib10) 2012; 23
Abdelrahman (10.1016/j.buildenv.2024.112083_bib39) 2022; 207
Liu (10.1016/j.buildenv.2024.112083_bib25) 2019; 162
de Oliveira Júnior (10.1016/j.buildenv.2024.112083_bib35) 2021; 1
Wang (10.1016/j.buildenv.2024.112083_bib16) 2020; 29
Zaki (10.1016/j.buildenv.2024.112083_bib43) 2017; 122
Guenther (10.1016/j.buildenv.2024.112083_bib31) 2019; 52
Yu (10.1016/j.buildenv.2024.112083_bib19) 2022; 61
Lala (10.1016/j.buildenv.2024.112083_bib20) 2022
Seitablaiev (10.1016/j.buildenv.2024.112083_bib1) 2018; 5
Chaudhuri (10.1016/j.buildenv.2024.112083_bib29) 2018; 166
Wei (10.1016/j.buildenv.2024.112083_bib26) 2018; 173
Amaripadath (10.1016/j.buildenv.2024.112083_bib5) 2023; 68
Yang (10.1016/j.buildenv.2024.112083_bib9) 2020; 224
Dai (10.1016/j.buildenv.2024.112083_bib28) 2017; 114
Nafiz (10.1016/j.buildenv.2024.112083_bib41) 2024; 18
(10.1016/j.buildenv.2024.112083_bib2) 2017
Tao (10.1016/j.buildenv.2024.112083_bib8) 2019; 197
Damiati (10.1016/j.buildenv.2024.112083_bib42) 2016; 109
Xiong (10.1016/j.buildenv.2024.112083_bib18) 2021; 202
Dear (10.1016/j.buildenv.2024.112083_bib21) 1998; 104
Fard (10.1016/j.buildenv.2024.112083_bib12) 2021; 256
Mousa (10.1016/j.buildenv.2024.112083_bib23) 2021; 12
References_xml – volume: 198
  year: 2021
  ident: bib17
  article-title: Adaptive behavior and different thermal experiences of real people: a Bayesian neural network approach to thermal preference prediction and classification
  publication-title: Build. Environ.
– volume: 29
  year: 2020
  ident: bib16
  article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning
  publication-title: J. Build. Eng.
– volume: 32
  start-page: 1
  year: 2024
  end-page: 15
  ident: bib30
  article-title: Spatial distribution and transient responses of the thermal environment in an office space equipped with a standing-type air conditioner
  publication-title: Int. J. Air-Cond. Ref.
– volume: 1
  year: 2021
  ident: bib35
  article-title: System for assessing broilers' thermal comfort
  publication-title: Smart Agri. Tech.
– volume: 59
  year: 2020
  ident: bib7
  article-title: A machine learning approach to predict outdoor thermal comfort using local skin temperatures
  publication-title: Sustain. Cities Soc.
– volume: 122
  start-page: 294
  year: 2017
  end-page: 306
  ident: bib43
  article-title: Adaptive thermal comfort in university classrooms in Malaysia and Japan
  publication-title: Build. Environ.
– volume: 54
  year: 2022
  ident: bib3
  article-title: Associating thermal comfort and preference in Malaysian universities' air-conditioned office rooms under various setpoint temperatures
  publication-title: J. Build. Eng.
– volume: 208
  year: 2022
  ident: bib15
  article-title: Modelling indoor environment indicators using artificial neural network in the stratified environments
  publication-title: Build. Environ.
– volume: 114
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib28
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
– volume: 18
  start-page: 105
  year: 2024
  end-page: 125
  ident: bib41
  article-title: Influence of psychological and personal factors on predicting individual's thermal comfort in an office building using linear estimation and machine learning model
  publication-title: Adv. Build. Energy Res.
– volume: 12
  start-page: 30
  year: 2020
  ident: bib24
  article-title: Intelligent thermal comfort controlling system for buildings based on IoT and AI
  publication-title: Future Internet
– volume: 12
  year: 2021
  ident: bib23
  article-title: Real-time intelligent thermal comfort prediction model
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 68
  year: 2023
  ident: bib5
  article-title: A systematic review on role of humidity as an indoor thermal comfort parameter in humid climates
  publication-title: J. Build. Eng.
– volume: 5
  start-page: 90
  year: 2018
  end-page: 109
  ident: bib1
  article-title: Thermal comfort and indoor air quality
  publication-title: Int. J Sci. Res. and Inn. Tech.
– volume: 229
  year: 2020
  ident: bib27
  article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions
  publication-title: Energy Build.
– start-page: 342
  year: 2022
  end-page: 348
  ident: bib20
  article-title: Building matters: spatial variability in machine learning based thermal comfort prediction in winters
  publication-title: International Conference on Smart Computing (SMARTCOMP)
– volume: 126
  start-page: 304
  year: 2017
  end-page: 317
  ident: bib22
  article-title: Personalised human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
– volume: 197
  start-page: 87
  year: 2019
  end-page: 98
  ident: bib8
  article-title: Learning effect and its prediction for cognitive tests used in studies on indoor environmental quality
  publication-title: Energy Build.
– volume: 256
  year: 2021
  ident: bib12
  article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges
  publication-title: Energy Build.
– volume: vol. 396
  year: 2023
  ident: bib40
  article-title: Performance of machine learning algorithms considering spatial effects assessment for indoor personal thermal comfort in air-conditioned workplace
  publication-title: E3S Web of Conferences
– volume: 104
  start-page: 1141
  year: 1998
  end-page: 1152
  ident: bib21
  article-title: Global database of thermal comfort field experiments
  publication-title: Build. Eng.
– volume: 23
  year: 2012
  ident: bib10
  article-title: Development and experimental evaluation of a thermography measurement system for real-time monitoring of comfort and heat rate exchange in the built environment
  publication-title: Meas. Sci. Technol.
– volume: 173
  start-page: 613
  year: 2018
  end-page: 622
  ident: bib26
  article-title: Experimental research of online monitoring and evaluation method of human thermal sensation in different active states based on wristband device
  publication-title: Energy Build.
– volume: 13
  start-page: 2215
  year: 2023
  ident: bib37
  article-title: Analysis of variables affecting indoor thermal comfort in Mediterranean climates using machine learning
  publication-title: Buildings
– volume: 50
  start-page: 165
  year: 2012
  end-page: 175
  ident: bib11
  article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models
  publication-title: Build. Environ.
– volume: 45
  year: 2022
  ident: bib33
  article-title: Investigating spatial impact on indoor personal thermal comfort
  publication-title: J. Build. Eng.
– volume: 224
  year: 2020
  ident: bib9
  article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses-A review
  publication-title: Energy Build.
– year: 2012
  ident: bib4
  article-title: Identifying substantive IEQ factors for efficient building management
  publication-title: 46
– volume: 162
  start-page: 106
  year: 2019
  ident: bib25
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
– volume: 109
  start-page: 208
  year: 2016
  end-page: 223
  ident: bib42
  article-title: Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season
  publication-title: Build. Environ.
– volume: 169
  year: 2020
  ident: bib38
  article-title: TrojanSense, a participatory sensing framework for occupant-aware management of thermal comfort in campus buildings
  publication-title: Build. Environ.
– volume: 210
  year: 2020
  ident: bib14
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energy Build.
– volume: 149
  year: 2020
  ident: bib36
  article-title: The application of thermal comfort control based on Smart House System of IoT
  publication-title: Measurement
– volume: 52
  start-page: 400
  year: 2019
  end-page: 405
  ident: bib31
  article-title: Feature selection for thermal comfort modeling based on constrained LASSO regression
  publication-title: IFAC-PapersOnLine
– volume: 211
  year: 2020
  ident: bib13
  article-title: Data-driven thermal comfort model via support vector machine algorithms: insights from ASHRAE RP-884 database
  publication-title: Energy Build.
– year: 2017
  ident: bib2
  publication-title: ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy
– volume: 202
  year: 2021
  ident: bib18
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
– volume: 166
  start-page: 391
  year: 2018
  end-page: 406
  ident: bib29
  article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
  publication-title: Energy Build.
– year: 2012
  ident: bib34
  article-title: Satisfaction and self estimated performance in relation to indoor environmental parameters and building features
  publication-title: 10
– volume: 207
  year: 2022
  ident: bib39
  article-title: Personal thermal comfort models using digital twins: preference prediction with BIM-extracted spatial–temporal proximity data from Build2Vec
  publication-title: Build. Environ.
– volume: 277
  year: 2022
  ident: bib32
  article-title: Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II
  publication-title: Energy Build.
– volume: 61
  year: 2022
  ident: bib19
  article-title: Performances of machine learning algorithms for individual thermal comfort prediction based on data from professional and practical settings
  publication-title: J. Build. Eng.
– volume: 121
  start-page: 158
  year: 2017
  end-page: 167
  ident: bib6
  article-title: The impact of thermal environment on occupant IEQ perception and productivity
  publication-title: Built. Environ.
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.buildenv.2024.112083_bib23
  article-title: Real-time intelligent thermal comfort prediction model
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 208
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib15
  article-title: Modelling indoor environment indicators using artificial neural network in the stratified environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108581
– volume: 45
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib33
  article-title: Investigating spatial impact on indoor personal thermal comfort
  publication-title: J. Build. Eng.
– volume: 54
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib3
  article-title: Associating thermal comfort and preference in Malaysian universities' air-conditioned office rooms under various setpoint temperatures
  publication-title: J. Build. Eng.
– volume: vol. 396
  year: 2023
  ident: 10.1016/j.buildenv.2024.112083_bib40
  article-title: Performance of machine learning algorithms considering spatial effects assessment for indoor personal thermal comfort in air-conditioned workplace
– year: 2012
  ident: 10.1016/j.buildenv.2024.112083_bib4
  article-title: Identifying substantive IEQ factors for efficient building management
– volume: 1
  year: 2021
  ident: 10.1016/j.buildenv.2024.112083_bib35
  article-title: System for assessing broilers' thermal comfort
  publication-title: Smart Agri. Tech.
– volume: 61
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib19
  article-title: Performances of machine learning algorithms for individual thermal comfort prediction based on data from professional and practical settings
  publication-title: J. Build. Eng.
– volume: 277
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib32
  article-title: Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112479
– volume: 68
  year: 2023
  ident: 10.1016/j.buildenv.2024.112083_bib5
  article-title: A systematic review on role of humidity as an indoor thermal comfort parameter in humid climates
  publication-title: J. Build. Eng.
– volume: 32
  start-page: 1
  issue: 5
  year: 2024
  ident: 10.1016/j.buildenv.2024.112083_bib30
  article-title: Spatial distribution and transient responses of the thermal environment in an office space equipped with a standing-type air conditioner
  publication-title: Int. J. Air-Cond. Ref.
– volume: 50
  start-page: 165
  year: 2012
  ident: 10.1016/j.buildenv.2024.112083_bib11
  article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.10.009
– volume: 104
  start-page: 1141
  year: 1998
  ident: 10.1016/j.buildenv.2024.112083_bib21
  article-title: Global database of thermal comfort field experiments
  publication-title: Build. Eng.
– volume: 114
  start-page: 1
  year: 2017
  ident: 10.1016/j.buildenv.2024.112083_bib28
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.12.005
– volume: 173
  start-page: 613
  year: 2018
  ident: 10.1016/j.buildenv.2024.112083_bib26
  article-title: Experimental research of online monitoring and evaluation method of human thermal sensation in different active states based on wristband device
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.05.056
– volume: 198
  year: 2021
  ident: 10.1016/j.buildenv.2024.112083_bib17
  article-title: Adaptive behavior and different thermal experiences of real people: a Bayesian neural network approach to thermal preference prediction and classification
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107875
– volume: 52
  start-page: 400
  issue: 15
  year: 2019
  ident: 10.1016/j.buildenv.2024.112083_bib31
  article-title: Feature selection for thermal comfort modeling based on constrained LASSO regression
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.708
– volume: 23
  issue: 3
  year: 2012
  ident: 10.1016/j.buildenv.2024.112083_bib10
  article-title: Development and experimental evaluation of a thermography measurement system for real-time monitoring of comfort and heat rate exchange in the built environment
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/3/035005
– volume: 109
  start-page: 208
  year: 2016
  ident: 10.1016/j.buildenv.2024.112083_bib42
  article-title: Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.024
– volume: 149
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib36
  article-title: The application of thermal comfort control based on Smart House System of IoT
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106997
– volume: 59
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib7
  article-title: A machine learning approach to predict outdoor thermal comfort using local skin temperatures
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102216
– start-page: 342
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib20
  article-title: Building matters: spatial variability in machine learning based thermal comfort prediction in winters
– volume: 256
  year: 2021
  ident: 10.1016/j.buildenv.2024.112083_bib12
  article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges
  publication-title: Energy Build.
– volume: 210
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib14
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109776
– volume: 5
  start-page: 90
  year: 2018
  ident: 10.1016/j.buildenv.2024.112083_bib1
  article-title: Thermal comfort and indoor air quality
  publication-title: Int. J Sci. Res. and Inn. Tech.
– volume: 224
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib9
  article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses-A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110261
– volume: 169
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib38
  article-title: TrojanSense, a participatory sensing framework for occupant-aware management of thermal comfort in campus buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106588
– volume: 122
  start-page: 294
  year: 2017
  ident: 10.1016/j.buildenv.2024.112083_bib43
  article-title: Adaptive thermal comfort in university classrooms in Malaysia and Japan
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.06.016
– volume: 202
  year: 2021
  ident: 10.1016/j.buildenv.2024.112083_bib18
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108026
– volume: 162
  start-page: 106
  year: 2019
  ident: 10.1016/j.buildenv.2024.112083_bib25
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106281
– year: 2017
  ident: 10.1016/j.buildenv.2024.112083_bib2
– volume: 126
  start-page: 304
  year: 2017
  ident: 10.1016/j.buildenv.2024.112083_bib22
  article-title: Personalised human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.10.004
– year: 2012
  ident: 10.1016/j.buildenv.2024.112083_bib34
  article-title: Satisfaction and self estimated performance in relation to indoor environmental parameters and building features
– volume: 229
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib27
  article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110390
– volume: 207
  year: 2022
  ident: 10.1016/j.buildenv.2024.112083_bib39
  article-title: Personal thermal comfort models using digital twins: preference prediction with BIM-extracted spatial–temporal proximity data from Build2Vec
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108532
– volume: 29
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib16
  article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning
  publication-title: J. Build. Eng.
– volume: 12
  start-page: 30
  issue: 2
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib24
  article-title: Intelligent thermal comfort controlling system for buildings based on IoT and AI
  publication-title: Future Internet
  doi: 10.3390/fi12020030
– volume: 18
  start-page: 105
  issue: 2
  year: 2024
  ident: 10.1016/j.buildenv.2024.112083_bib41
  article-title: Influence of psychological and personal factors on predicting individual's thermal comfort in an office building using linear estimation and machine learning model
  publication-title: Adv. Build. Energy Res.
  doi: 10.1080/17512549.2024.2340449
– volume: 197
  start-page: 87
  year: 2019
  ident: 10.1016/j.buildenv.2024.112083_bib8
  article-title: Learning effect and its prediction for cognitive tests used in studies on indoor environmental quality
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.044
– volume: 121
  start-page: 158
  year: 2017
  ident: 10.1016/j.buildenv.2024.112083_bib6
  article-title: The impact of thermal environment on occupant IEQ perception and productivity
  publication-title: Built. Environ.
  doi: 10.1016/j.buildenv.2017.05.022
– volume: 13
  start-page: 2215
  issue: 9
  year: 2023
  ident: 10.1016/j.buildenv.2024.112083_bib37
  article-title: Analysis of variables affecting indoor thermal comfort in Mediterranean climates using machine learning
  publication-title: Buildings
  doi: 10.3390/buildings13092215
– volume: 211
  year: 2020
  ident: 10.1016/j.buildenv.2024.112083_bib13
  article-title: Data-driven thermal comfort model via support vector machine algorithms: insights from ASHRAE RP-884 database
  publication-title: Energy Build.
– volume: 166
  start-page: 391
  year: 2018
  ident: 10.1016/j.buildenv.2024.112083_bib29
  article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.035
SSID ssj0016934
Score 2.5083618
Snippet The existing machine learning based models for personal thermal comfort have traditionally focused on physiological and psychological variations among...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112083
SubjectTerms Air conditioning
Machine learning models
Random forest algorithm
Support vector machines
Thermal comfort
Title Machine learning approach for predicting personal thermal comfort in air conditioning offices in Malaysia
URI https://dx.doi.org/10.1016/j.buildenv.2024.112083
Volume 266
WOSCitedRecordID wos001327986700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016934
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEO0_gltjHkA7cqJYndND5WaAgQm5AYUsUlshObpuvSErpp-1_4Y3n-2Qwmxg5cotSJ7TrfV_fF_t57CL3KaUJTpXgkVMojWmVlxGglI0JVRRVXieAG6Y_j4-N8OmWfer2f3hfmYjFumvzykq3-K9RQBmBr19k7wB0ahQI4B9DhCLDD8Z-APzLySOnzQXwLYcONonDV6p0Zo3VeOTtc254wPes4IWdwi8kZwOtWC9Kr2q_XmlATRrw1OOILDuDya_vBLru22YvoOM8FPnniLZdBDfyV25TZn2eyPp0NJrMzXoX79Qdz8Yqr-juw6KrlSoX1IOhqZl2NmuV8YHTi3fWLlHa0IN5vK47gnZh05-Q0686qYBPGNt3NHxO-XXuYD4UeJgxvqLsYbipcj7D92z9f0CN6qdu88O0Uup3CtnMPbaXjEcv7aGvy_nD6IexSZYy48GR2BB0P9Ju_0c3GT8egOdlB2-5NBE8sgx6hnmweo4ed-JRPUO24hD2XsOcSBqLgDZew5xJ2XMKOS7huMHAJd7mEHZf0Nc-lp-jL28OTN-8il5sjKkmSrqNKVLFMspJmVJCKizhXIpecJyynpUhHpBJZLASnTBCiSpEliioWj8tsVBIqCXmG-s2ykc8R1qU6K4GAciq54jERlKSCySRRgopdNPIPrShd4HqdP2VR_B22XfQ61FvZ0C231mAek8IZoNawLIBut9Tdu3Nv--jB5vfwAvXX7bk8QPfLi3X9o33puPYLuwWxYA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+for+predicting+personal+thermal+comfort+in+air+conditioning+offices+in+Malaysia&rft.jtitle=Building+and+environment&rft.au=Alam%2C+Noor&rft.au=Zaki%2C+Sheikh+Ahmad&rft.au=Ahmad%2C+Syafiq+Asyraff&rft.au=Singh%2C+Manoj+Kumar&rft.date=2024-12-01&rft.issn=0360-1323&rft.volume=266&rft.spage=112083&rft_id=info:doi/10.1016%2Fj.buildenv.2024.112083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2024_112083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon