Optimization of reward shaping function based on genetic algorithm applied to a cross validated deep deterministic policy gradient in a powered landing guidance problem

One major capability of a Deep Reinforcement Learning (DRL) agent to control a specific vehicle in an environment without any prior knowledge is decision-making based on a well-designed reward shaping function. An important but little-studied major factor that can alter significantly the training re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 120; S. 105798
Hauptverfasser: Nugroho, Larasmoyo, Andiarti, Rika, Akmeliawati, Rini, Kutay, Ali Türker, Larasati, Diva Kartika, Wijaya, Sastra Kusuma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2023
Schlagworte:
ISSN:0952-1976, 1873-6769
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One major capability of a Deep Reinforcement Learning (DRL) agent to control a specific vehicle in an environment without any prior knowledge is decision-making based on a well-designed reward shaping function. An important but little-studied major factor that can alter significantly the training reward score and performance outcomes is the reward shaping function. To maximize the control efficacy of a DRL algorithm, an optimized reward shaping function and a solid hyperparameter combination are essential. In order to achieve optimal control during the powered descent guidance (PDG) landing phase of a reusable launch vehicle, the Deep Deterministic Policy Gradient (DDPG) algorithm is used in this paper to discover the best shape of the reward shaping function (RSF). Although DDPG is quite capable of managing complex environments and producing actions intended for continuous spaces, its state and action performance could still be improved. A reference DDPG agent with the original reward shaping function and a PID controller were placed side by side with the GA-DDPG agent using GA-optimized RSF. The best GA-DDPG individual can maximize overall rewards and minimize state errors with the help of the potential-based GA(PbGA) searched RSF, maintaining the highest fitness score among all individuals after has been cross-validated and retested extensively Monte-Carlo experimental results.
AbstractList One major capability of a Deep Reinforcement Learning (DRL) agent to control a specific vehicle in an environment without any prior knowledge is decision-making based on a well-designed reward shaping function. An important but little-studied major factor that can alter significantly the training reward score and performance outcomes is the reward shaping function. To maximize the control efficacy of a DRL algorithm, an optimized reward shaping function and a solid hyperparameter combination are essential. In order to achieve optimal control during the powered descent guidance (PDG) landing phase of a reusable launch vehicle, the Deep Deterministic Policy Gradient (DDPG) algorithm is used in this paper to discover the best shape of the reward shaping function (RSF). Although DDPG is quite capable of managing complex environments and producing actions intended for continuous spaces, its state and action performance could still be improved. A reference DDPG agent with the original reward shaping function and a PID controller were placed side by side with the GA-DDPG agent using GA-optimized RSF. The best GA-DDPG individual can maximize overall rewards and minimize state errors with the help of the potential-based GA(PbGA) searched RSF, maintaining the highest fitness score among all individuals after has been cross-validated and retested extensively Monte-Carlo experimental results.
ArticleNumber 105798
Author Andiarti, Rika
Larasati, Diva Kartika
Wijaya, Sastra Kusuma
Nugroho, Larasmoyo
Kutay, Ali Türker
Akmeliawati, Rini
Author_xml – sequence: 1
  givenname: Larasmoyo
  orcidid: 0000-0003-1139-0289
  surname: Nugroho
  fullname: Nugroho, Larasmoyo
  email: larasmoyo.nugroho@brin.go.id
  organization: Physics Dept., Universitas Indonesia, Depok, Indonesia
– sequence: 2
  givenname: Rika
  surname: Andiarti
  fullname: Andiarti, Rika
  organization: Rocket Technology Center, Indonesian National Air and Space Agency, Bogor, Indonesia
– sequence: 3
  givenname: Rini
  surname: Akmeliawati
  fullname: Akmeliawati, Rini
  organization: School of Mechanical Eng., University of Adelaide, Adelaide, Australia
– sequence: 4
  givenname: Ali Türker
  orcidid: 0000-0002-7243-1390
  surname: Kutay
  fullname: Kutay, Ali Türker
  organization: Aeronautical Eng. Dept., Middle East Technical University, Ankara, Turkiye
– sequence: 5
  givenname: Diva Kartika
  surname: Larasati
  fullname: Larasati, Diva Kartika
  organization: Physics Dept., Universitas Indonesia, Depok, Indonesia
– sequence: 6
  givenname: Sastra Kusuma
  orcidid: 0000-0003-0780-9585
  surname: Wijaya
  fullname: Wijaya, Sastra Kusuma
  email: skwijaya@sci.ui.ac.id
  organization: Physics Dept., Universitas Indonesia, Depok, Indonesia
BookMark eNqFkM9u1DAQhy1UJLaFV0B-gSxOvOs_EgdQBQWpUi-9WxN7ks4qsSPHbVWeiMfEuwsXLr3Y1oy_32i-S3YRU0TGPrZi24pWfTpsMY6wLEDbTnRdLe61NW_YpjVaNkore8E2wu67prVavWOX63oQQkizUxv2-24pNNMvKJQiTwPP-Aw58PUBFoojHx6jP7V6WDHw-hgxYiHPYRpTpvIw8zp7otosiQP3Oa0rf4KJApRaDIhLPQrmmSKtR3JJE_kXPmYIhLFwipVb0jPm-n-CGI6Dx8caED3yJad-wvk9ezvAtOKHv_cVu__-7f76R3N7d_Pz-utt42XblSb03ljfgRISle2sMrjbGTXIwWKvjbUmSKm16Xyrhd4Pth_aXWcBLEjhB3nFPp9jT3tkHJyncpJTMtDkWuGO0t3B_ZPujtLdWXrF1X_4kmmG_PI6-OUMYt3tiTC71Vc5HgNl9MWFRK9F_AH1yKdX
CitedBy_id crossref_primary_10_1371_journal_pone_0292539
crossref_primary_10_1016_j_engappai_2024_108511
crossref_primary_10_1109_ACCESS_2024_3359417
crossref_primary_10_1016_j_aei_2025_103720
crossref_primary_10_1016_j_engappai_2024_109485
crossref_primary_10_3390_robotics14040049
crossref_primary_10_1007_s40747_024_01385_4
crossref_primary_10_1080_0952813X_2024_2321152
crossref_primary_10_1007_s10499_025_01914_z
crossref_primary_10_1016_j_displa_2024_102796
crossref_primary_10_1016_j_ymssp_2025_112502
crossref_primary_10_1016_j_engappai_2025_110523
crossref_primary_10_1016_j_engappai_2025_111623
crossref_primary_10_1016_j_engappai_2025_110676
Cites_doi 10.1007/s40295-015-0045-1
10.1038/scientificamerican0792-66
10.1016/j.ast.2020.105746
10.1080/095281397147149
10.1103/PhysRev.36.823
10.1177/1059712308092835
10.3389/fbioe.2021.793782
10.1109/CAC48633.2019.8996970
10.1016/j.asr.2015.12.006
10.1016/j.neunet.2010.01.001
10.1038/nature14236
10.1007/s42064-018-0053-6
10.1016/j.ifacol.2018.05.020
10.1002/rnc.727
10.2514/3.26850
10.1109/70.143349
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.105798
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_105798
S0952197622007886
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-dbc89c2a603e692968e4486f3f9eb78998d337782c17075f9bf1429aa9a30cf3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000924435400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:09:21 EST 2025
Tue Nov 18 20:56:36 EST 2025
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reward shaping function
DDPG
Reusable launch vehicle
GA-search
Fitness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-dbc89c2a603e692968e4486f3f9eb78998d337782c17075f9bf1429aa9a30cf3
ORCID 0000-0002-7243-1390
0000-0003-0780-9585
0000-0003-1139-0289
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2022_105798
crossref_primary_10_1016_j_engappai_2022_105798
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105798
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mataric (b46) 1997
Wu, Li (b75) 2020; 2020
Ng, Parr, Koller (b51) 1999
Uhlenbeck, Ornstein (b70) 1930
Ashraf, Mostafa, Sakr, Rashad (b2) 2021; 16
Kapoor (b34) 2018
Urone, Hinrichs (b71) 2022
Fortune Business Insight, 2020. The U.S. Reusable Launch Vehicle Market Size. Market Research Report,.
Dutta (b11) 2018
Grzes, Kudenko (b22) 2010; 23
Furfaro, Wibben, Gaudet, Simo (b16) 2015
Gaudet, Furfaro (b18) 2014
Dong, Ding, Zhang (b10) 2020
Li, Jamieson, Desalvo (b41) 2018; 18
Parberry (b55) 2013
Jin, Liu, Shen, Zhu (b32) 2021
Sehgal, La, Louis, Nguyen (b63) 2019
Gunnell, Medina, Mansfield, Rodriguez (b23) 2019
Rauwolf, Coverstone-carroll (b59) 1996; 33
Kim (b38) 2021
Hagan, Demuth, De Jesus (b24) 2002; 12
Khadka, Majumdar, Miret, McAleer, Tumer (b36) 2020
Snoek, Larochelle, Adams (b69) 2012
Chakraborty, Murakami, Shiratori, Noguchi (b7) 1993
Rughani, Barnhart (b62) 2020
.
Nguyen, La (b52) 2019
Holland (b27) 1992
Chen, Ma (b9) 2019
Gage, Braun, Kroo (b17) 1994
Gaudet, Linares, Furfaro (b21) 2020
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b49) 2015; 518
Gaudet, Furfaro, Linares (b19) 2020; 99
Oestreich, Linares (b54) 2020
Izzo, Martens, Pan (b30) 2019; 3
Pawlyk (b56) 2020
Ferrante (b14) 2017
Gaudet, Linares (b20) 2018
Sewak (b65) 2019
Arulkumaran, Deisenroth, Brundage, Bharath (b1) 2017
Sehgal, Ward, La (b64) 2022
Skinner (b68) 1938
Mathur, Sinha (b47) 2021
Silver, Lever, Heess, Degris, Wierstra, Riedmiller (b67) 2014
Ng (b50) 2003
Jones (b33) 2017
Refaeilzadeh, Tang, Liu (b60) 2009
Haydari, Yilmaz (b26) 2020
Kersandt (b35) 2018
Liu, Liu, Chen (b44) 2019; 1
Hasselt, Guez, Silver (b25) 2016
Huang, X., Luo, W., Liu, J., 2019. Attitude control of fixed-wing UAV based on DDQN. 1, 47224726.
Mataric (b45) 1992; 8
Yu, Wang (b76) 2021
Chen, Huang, Wang, Antonoglou, Schrittwieser, Silver, Freitas (b8) 2018; 1
Khadka, Tumer (b37) 2018
Wang, Elgohary (b73) 2020; 2020
Lamba (b40) 2018
Balakrishnan (b3) 2019
Kumar, Penchalaiah, Sarkar, Talole (b39) 2018; 51
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (b42) 2016
Liu, X., Jiang, D., Tao, B., Jiang, G., Sun, Y., Kong, J., 2022. Genetic algorithm-based trajectory optimization for digital twin robots. 9 (January), 1–11.
Nugroho, Zani, Qomariyah, Wijaya (b53) 2021; 19
Shin, Kim (b66) 2023
Wan, Jing, Dai, Rea (b72) 2020
Izzo, Öztürk, Märtens (b31) 2019
Meriçli, Meriçli, Akın (b48) 2010
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, Zaremba (b5) 2016
Catto (b6) 2014
Iiyama (b29) 2021
Rubinsztejn, Bryan, Sood, Laipert, Frank (b61) 2020
Randløv, Alstrøm (b58) 1998
Ragab, Cheatwood, Hughes, Lowry, Agency, Inflatable, Decelerator, Missile, Reentry, Experiment, Station, Recovery, Modular, Return, Stage, Orbit, Engineer, Programs, Systems (b57) 2015
Bower, Hilgard (b4) 1981
Elfwing, Uchibe, Doya, Christensen (b12) 2008; 16
Eversden (b13) 2020
Wibben, Furfaro (b74) 2016; 57
Catto (10.1016/j.engappai.2022.105798_b6) 2014
Chakraborty (10.1016/j.engappai.2022.105798_b7) 1993
Rauwolf (10.1016/j.engappai.2022.105798_b59) 1996; 33
Snoek (10.1016/j.engappai.2022.105798_b69) 2012
Khadka (10.1016/j.engappai.2022.105798_b36) 2020
Sewak (10.1016/j.engappai.2022.105798_b65) 2019
Kumar (10.1016/j.engappai.2022.105798_b39) 2018; 51
Haydari (10.1016/j.engappai.2022.105798_b26) 2020
Eversden (10.1016/j.engappai.2022.105798_b13) 2020
Mnih (10.1016/j.engappai.2022.105798_b49) 2015; 518
Chen (10.1016/j.engappai.2022.105798_b8) 2018; 1
Kapoor (10.1016/j.engappai.2022.105798_b34) 2018
Wan (10.1016/j.engappai.2022.105798_b72) 2020
Balakrishnan (10.1016/j.engappai.2022.105798_b3) 2019
Urone (10.1016/j.engappai.2022.105798_b71) 2022
Rughani (10.1016/j.engappai.2022.105798_b62) 2020
Nugroho (10.1016/j.engappai.2022.105798_b53) 2021; 19
Ferrante (10.1016/j.engappai.2022.105798_b14) 2017
Hasselt (10.1016/j.engappai.2022.105798_b25) 2016
10.1016/j.engappai.2022.105798_b43
Mataric (10.1016/j.engappai.2022.105798_b45) 1992; 8
Gaudet (10.1016/j.engappai.2022.105798_b19) 2020; 99
Gaudet (10.1016/j.engappai.2022.105798_b20) 2018
Izzo (10.1016/j.engappai.2022.105798_b31) 2019
10.1016/j.engappai.2022.105798_b15
Jin (10.1016/j.engappai.2022.105798_b32) 2021
Lillicrap (10.1016/j.engappai.2022.105798_b42) 2016
Arulkumaran (10.1016/j.engappai.2022.105798_b1) 2017
Ashraf (10.1016/j.engappai.2022.105798_b2) 2021; 16
Brockman (10.1016/j.engappai.2022.105798_b5) 2016
Refaeilzadeh (10.1016/j.engappai.2022.105798_b60) 2009
Lamba (10.1016/j.engappai.2022.105798_b40) 2018
Dutta (10.1016/j.engappai.2022.105798_b11) 2018
Grzes (10.1016/j.engappai.2022.105798_b22) 2010; 23
Li (10.1016/j.engappai.2022.105798_b41) 2018; 18
Dong (10.1016/j.engappai.2022.105798_b10) 2020
Furfaro (10.1016/j.engappai.2022.105798_b16) 2015
Sehgal (10.1016/j.engappai.2022.105798_b64) 2022
Gunnell (10.1016/j.engappai.2022.105798_b23) 2019
10.1016/j.engappai.2022.105798_b28
Jones (10.1016/j.engappai.2022.105798_b33) 2017
Skinner (10.1016/j.engappai.2022.105798_b68) 1938
Liu (10.1016/j.engappai.2022.105798_b44) 2019; 1
Ragab (10.1016/j.engappai.2022.105798_b57) 2015
Sehgal (10.1016/j.engappai.2022.105798_b63) 2019
Gaudet (10.1016/j.engappai.2022.105798_b18) 2014
Ng (10.1016/j.engappai.2022.105798_b51) 1999
Meriçli (10.1016/j.engappai.2022.105798_b48) 2010
Kim (10.1016/j.engappai.2022.105798_b38) 2021
Silver (10.1016/j.engappai.2022.105798_b67) 2014
Oestreich (10.1016/j.engappai.2022.105798_b54) 2020
Rubinsztejn (10.1016/j.engappai.2022.105798_b61) 2020
Khadka (10.1016/j.engappai.2022.105798_b37) 2018
Hagan (10.1016/j.engappai.2022.105798_b24) 2002; 12
Kersandt (10.1016/j.engappai.2022.105798_b35) 2018
Wu (10.1016/j.engappai.2022.105798_b75) 2020; 2020
Shin (10.1016/j.engappai.2022.105798_b66) 2023
Randløv (10.1016/j.engappai.2022.105798_b58) 1998
Mataric (10.1016/j.engappai.2022.105798_b46) 1997
Izzo (10.1016/j.engappai.2022.105798_b30) 2019; 3
Elfwing (10.1016/j.engappai.2022.105798_b12) 2008; 16
Wibben (10.1016/j.engappai.2022.105798_b74) 2016; 57
Wang (10.1016/j.engappai.2022.105798_b73) 2020; 2020
Chen (10.1016/j.engappai.2022.105798_b9) 2019
Parberry (10.1016/j.engappai.2022.105798_b55) 2013
Gage (10.1016/j.engappai.2022.105798_b17) 1994
Ng (10.1016/j.engappai.2022.105798_b50) 2003
Pawlyk (10.1016/j.engappai.2022.105798_b56) 2020
Nguyen (10.1016/j.engappai.2022.105798_b52) 2019
Uhlenbeck (10.1016/j.engappai.2022.105798_b70) 1930
Gaudet (10.1016/j.engappai.2022.105798_b21) 2020
Bower (10.1016/j.engappai.2022.105798_b4) 1981
Yu (10.1016/j.engappai.2022.105798_b76) 2021
Holland (10.1016/j.engappai.2022.105798_b27) 1992
Iiyama (10.1016/j.engappai.2022.105798_b29) 2021
Mathur (10.1016/j.engappai.2022.105798_b47) 2021
References_xml – year: 2018
  ident: b11
  article-title: Reinforcement Learning with TensorFlow
– start-page: 6607
  year: 2020
  end-page: 6616
  ident: b36
  article-title: Evolutionary reinforcement learning for sample-efficient multiagent coordination
  publication-title: 37th International Conference on Machine Learning, ICML 2020, PartF 16814
– volume: 1
  year: 2018
  ident: b8
  article-title: Bayesian optimization in AlphaGo
  publication-title: DeepMind Technol.
– year: 2020
  ident: b10
  article-title: Deep Reinforcement Learning Fundamentals, Research and Applications
– start-page: 1188
  year: 2018
  end-page: 1200
  ident: b37
  article-title: Evolution-guided policy gradient in reinforcement learning
  publication-title: Advances in Neural Information Processing Systems, 2018-Decem
– year: 2018
  ident: b35
  article-title: Deep Reinforcement Learning As Control Method for Autonomous UAVs
– reference: Liu, X., Jiang, D., Tao, B., Jiang, G., Sun, Y., Kong, J., 2022. Genetic algorithm-based trajectory optimization for digital twin robots. 9 (January), 1–11.
– start-page: 1517
  year: 2020
  ident: b56
  article-title: Rise of the Machines: AI Algorithm Beats F- 16 Pilot in Dogfight
– year: 2020
  ident: b61
  article-title: Using reinforcement learning to design missed thrust resilient trajectories
  publication-title: AIAA Astrodynamics Conference, August
– year: 2017
  ident: b14
  article-title: A Robust Control Approach for Rocket Landing
– start-page: 590
  year: 2019
  end-page: 595
  ident: b52
  article-title: Review of deep reinforcement learning for robot manipulation
  publication-title: Proceedings - 3 Rd IEEE International Conference on Robotic Computing, IRC 2019, November
– volume: 16
  start-page: 400
  year: 2008
  end-page: 412
  ident: b12
  article-title: Co-evolution of shaping rewards and meta-parameters in reinforcement learning
  publication-title: Adapt. Behav.
– year: 2020
  ident: b62
  article-title: Using Genetic Algorithms for Safe Swarm Trajectory Optimization
– year: 2014
  ident: b18
  article-title: Adaptive pinpoint and fuel efficient mars landing using reinforcement learning adaptive
– start-page: 1
  year: 2017
  end-page: 16
  ident: b1
  article-title: A brief survey of deep reinforcement learning
  publication-title: IEEE Signal Process. Mag.
– year: 2013
  ident: b55
  article-title: Introduction Game Physics with Box2D
– start-page: 1
  year: 2015
  end-page: 10
  ident: b57
  article-title: Launch vehicle recovery and reuse
  publication-title: AIAA Space
– volume: 2020
  year: 2020
  ident: b73
  article-title: A simple and accurate apollo-trained neural network controller for mars atmospheric entry
  publication-title: Int. J. Aerosp. Eng.
– year: 2009
  ident: b60
  article-title: Cross-Validation. Encyclopedia of Database Systems
– year: 1999
  ident: b51
  article-title: Policy search via density estimation
  publication-title: Advances in Neural Information Processing Systems, Vol. 12
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b49
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– start-page: 1
  year: 1993
  end-page: 5
  ident: b7
  article-title: A growing network that optimizes between undertraining and overtraining
  publication-title: IEEE Xplore
– volume: 16
  start-page: 1
  year: 2021
  end-page: 24
  ident: b2
  article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
  publication-title: PLoS ONE
– volume: 8
  year: 1992
  ident: b45
  article-title: Integration of representation into goad-driven behavior-based robots
  publication-title: IEEE Trans. Robot. Autom.
– year: 2022
  ident: b64
  article-title: Automatic parameter optimization using genetic algorithm in deep reinforcement learning for robotic manipulation tasks
– start-page: 175
  year: 2021
  end-page: 180
  ident: b47
  article-title: Trajectory optimization of lunar landing using genetic algorithm
  publication-title: IEEE Xplore
– year: 1981
  ident: b4
  article-title: Theories of Learning
– year: 2016
  ident: b25
  article-title: Deep reinforcement learning with double Q-learning
– start-page: 538
  year: 1994
  end-page: 547
  ident: b17
  article-title: Interplanetary trajectory optimization using a genetic algorithm
  publication-title: AIAA Astrodynamics Conference
– year: 2019
  ident: b65
  article-title: Deterministic Policy Gradient and the DDPG: Deterministic-Policy-Gradient-Based Approaches
– volume: 23
  start-page: 541
  year: 2010
  end-page: 550
  ident: b22
  article-title: Online learning of shaping rewards in reinforcement learning
  publication-title: Neural Netw.
– start-page: 1
  year: 2010
  end-page: 3
  ident: b48
  article-title: A reward function generation method using genetic algorithms: A robot soccer case study
  publication-title: 9th International Conference on Autonomous Agents and Multiagent Systems AAMAS 2010, May 2014
– year: 2019
  ident: b9
  article-title: Rocket Powered Landing Guidance Using Proximal Policy Optimization
– start-page: 1
  year: 2021
  end-page: 25
  ident: b29
  article-title: Deep reinforcement learning for safe landing site selection with concurrent consideration of divert maneuvers
  publication-title: AIAA Astrodynamics Conference
– reference: Fortune Business Insight, 2020. The U.S. Reusable Launch Vehicle Market Size. Market Research Report,.
– year: 2021
  ident: b32
  article-title: SS symmetry deep deterministic policy gradient algorithm based on convolutional block attention for autonomous driving
– year: 2019
  ident: b23
  article-title: Powered Descent and Landing of an Orbital-Class Rocket
– volume: 33
  year: 1996
  ident: b59
  article-title: Near-optimal low-thrust orbit transfers generated by a genetic algorithm
  publication-title: J. Spacecr. Rockets
– year: 1998
  ident: b58
  article-title: Learning to drive a bicycle using reinforcement learning and shaping
– volume: 12
  start-page: 959
  year: 2002
  end-page: 985
  ident: b24
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Internat. J. Robust Nonlinear Control
– start-page: 605
  year: 2014
  end-page: 619
  ident: b67
  article-title: Deterministic policy gradient algorithms
  publication-title: 31st International Conference on Machine Learning, ICML 2014, Vol. 1
– volume: 99
  start-page: 1
  year: 2020
  end-page: 16
  ident: b19
  article-title: Reinforcement learning for angle-only intercept guidance of maneuvering targets
  publication-title: Aerosp. Sci. Technol.
– start-page: 1
  year: 2020
  end-page: 20
  ident: b54
  article-title: Autonomous six-degree-of-freedom spacecraft docking maneuvers via reinforcement learning
– start-page: 155
  year: 2003
  ident: b50
  article-title: Shaping and Policy Search in Reinforcement Learning
– start-page: 1
  year: 2018
  end-page: 15
  ident: b40
  article-title: An introduction to Q- learning : reinforcement learning
– year: 2020
  ident: b72
  article-title: Fuel-Optimal Guidance for End-to-End Human-Mars Entry, Powered-Descent, and Landing Mission
– volume: 3
  start-page: 287
  year: 2019
  end-page: 299
  ident: b30
  article-title: A survey on artificial intelligence trends in spacecraft guidance dynamics and control
  publication-title: Astrodynamics
– year: 2020
  ident: b21
  article-title: Deep reinforcement learning for six degree-of-freedom planetary landing
– volume: 19
  start-page: 43
  year: 2021
  end-page: 56
  ident: b53
  article-title: Powered landing guidance algorithms using reinforcement learning methods for lunar lander case
  publication-title: J. Teknol. Dirgant.
– start-page: 596
  year: 2019
  end-page: 601
  ident: b63
  article-title: Deep reinforcement learning using genetic algorithm for parameter optimization
  publication-title: Proceedings - 3 Rd IEEE International Conference on Robotic Computing, IRC 2019, February
– year: 2016
  ident: b5
  article-title: OpenAI Gym. OpenAI 1–4
– volume: 51
  start-page: 118
  year: 2018
  end-page: 123
  ident: b39
  article-title: Hypersonic boost glide vehicle trajectory optimization using genetic algorithm optimization using genetic algorithm
  publication-title: IFAC-PapersOnLine
– year: 2019
  ident: b31
  article-title: Interplanetary transfers via deep representations of the optimal policy and/or of the value function
  publication-title: GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, July, 1971–1979
– volume: 2020
  year: 2020
  ident: b75
  article-title: Deep ensemble reinforcement learning with multiple deep deterministic policy gradient algorithm
  publication-title: Math. Probl. Eng.
– year: 2023
  ident: b66
  article-title: Optimal Agent Search Using Surrogate-Assisted Genetic Algorithms. MDPI - Mathematics 1–17
– year: 2021
  ident: b38
  article-title: Temporal consistency based loss function for both deep Q networks and deep deterministic policy gradients for continuous actions
– year: 2014
  ident: b6
  article-title: Understanding Constraints. GDC 2014, 1–65
– reference: Huang, X., Luo, W., Liu, J., 2019. Attitude control of fixed-wing UAV based on DDQN. 1, 47224726.
– volume: 57
  start-page: 948
  year: 2016
  end-page: 961
  ident: b74
  article-title: Optimal sliding guidance algorithm for Mars powered descent phase
  publication-title: Adv. Space Res.
– year: 2021
  ident: b76
  article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing backpropagation neural network
  publication-title: MDPI - Sensors
– start-page: 1
  year: 2017
  end-page: 8
  ident: b33
  article-title: Train a software agent to behave rationally with reinforcement learning Q-learning
– year: 1930
  ident: b70
  article-title: On the theory of the Brownian motion
  publication-title: Phys. Rev.
– year: 1997
  ident: b46
  article-title: Behavior-based control : Examples from navigation, learning, and group behavior
  publication-title: J. Exp. Theor. Artif. Intell.
– year: 2019
  ident: b3
  article-title: TensorFlow Reinforcement Learning Quick Start Guide Get Up and Running with Training and Deploying Intelligent, Self-Learning Agents using Python
– year: 2018
  ident: b20
  article-title: Integrated guidance and control for pinpoint mars landing using reinforcement learning
  publication-title: AIAA Guidance, Navigation and Control Conference and Exhibit
– start-page: 1
  year: 2018
  end-page: 13
  ident: b34
  article-title: Policy gradients in a nutshell
  publication-title: Towards Data Sci.
– year: 2022
  ident: b71
  article-title: College Physics 2e. OpenStax - Rice University, Houston
– year: 2016
  ident: b42
  article-title: Continuous control with deep reinforcement learning
  publication-title: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings
– reference: .
– volume: 18
  start-page: 1
  year: 2018
  end-page: 52
  ident: b41
  article-title: Hyperband: A novel bandit-based approach to
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: b13
  article-title: AI Algorithm Defeats Human Fighter Pilot in Simulated Dogfight
– start-page: 1
  year: 2012
  end-page: 12
  ident: b69
  article-title: Practical Bayesian optimization of machine learning
– year: 1992
  ident: b27
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– year: 2015
  ident: b16
  article-title: Terminal multiple surface sliding guidance for planetary landing: Development, tuning and optimization via reinforcement learning
  publication-title: J. Astronaut. Sci.
– year: 2020
  ident: b26
  article-title: Deep reinforcement learning for intelligent transportation systems : A survey
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 1
  start-page: 1
  year: 2019
  end-page: 14
  ident: b44
  article-title: Reinforcement learning in multiple-UAV networks :Deployment and movement design
  publication-title: IEEE Trans. Veh. Technol.
– year: 1938
  ident: b68
  article-title: The Behavior of Organisms: An Experimental Analysis
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b26
  article-title: Deep reinforcement learning for intelligent transportation systems : A survey
  publication-title: IEEE Intell. Transp. Syst. Mag.
– year: 2022
  ident: 10.1016/j.engappai.2022.105798_b71
– year: 2018
  ident: 10.1016/j.engappai.2022.105798_b11
– ident: 10.1016/j.engappai.2022.105798_b15
– start-page: 596
  year: 2019
  ident: 10.1016/j.engappai.2022.105798_b63
  article-title: Deep reinforcement learning using genetic algorithm for parameter optimization
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b72
– year: 2009
  ident: 10.1016/j.engappai.2022.105798_b60
– year: 2015
  ident: 10.1016/j.engappai.2022.105798_b16
  article-title: Terminal multiple surface sliding guidance for planetary landing: Development, tuning and optimization via reinforcement learning
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/s40295-015-0045-1
– year: 1992
  ident: 10.1016/j.engappai.2022.105798_b27
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– year: 2021
  ident: 10.1016/j.engappai.2022.105798_b76
  article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing backpropagation neural network
  publication-title: MDPI - Sensors
– start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2022.105798_b57
  article-title: Launch vehicle recovery and reuse
  publication-title: AIAA Space
– year: 2023
  ident: 10.1016/j.engappai.2022.105798_b66
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b19
  article-title: Reinforcement learning for angle-only intercept guidance of maneuvering targets
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105746
– year: 2019
  ident: 10.1016/j.engappai.2022.105798_b3
– year: 1997
  ident: 10.1016/j.engappai.2022.105798_b46
  article-title: Behavior-based control : Examples from navigation, learning, and group behavior
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/095281397147149
– year: 2016
  ident: 10.1016/j.engappai.2022.105798_b5
– year: 2013
  ident: 10.1016/j.engappai.2022.105798_b55
– year: 1930
  ident: 10.1016/j.engappai.2022.105798_b70
  article-title: On the theory of the Brownian motion
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– volume: 16
  start-page: 400
  issue: 6
  year: 2008
  ident: 10.1016/j.engappai.2022.105798_b12
  article-title: Co-evolution of shaping rewards and meta-parameters in reinforcement learning
  publication-title: Adapt. Behav.
  doi: 10.1177/1059712308092835
– ident: 10.1016/j.engappai.2022.105798_b43
  doi: 10.3389/fbioe.2021.793782
– volume: 2020
  issue: September
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b73
  article-title: A simple and accurate apollo-trained neural network controller for mars atmospheric entry
  publication-title: Int. J. Aerosp. Eng.
– year: 2014
  ident: 10.1016/j.engappai.2022.105798_b18
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b61
  article-title: Using reinforcement learning to design missed thrust resilient trajectories
– ident: 10.1016/j.engappai.2022.105798_b28
  doi: 10.1109/CAC48633.2019.8996970
– start-page: 590
  year: 2019
  ident: 10.1016/j.engappai.2022.105798_b52
  article-title: Review of deep reinforcement learning for robot manipulation
– year: 1998
  ident: 10.1016/j.engappai.2022.105798_b58
– year: 2019
  ident: 10.1016/j.engappai.2022.105798_b65
– start-page: 1
  year: 1993
  ident: 10.1016/j.engappai.2022.105798_b7
  article-title: A growing network that optimizes between undertraining and overtraining
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b34
  article-title: Policy gradients in a nutshell
  publication-title: Towards Data Sci.
– year: 1999
  ident: 10.1016/j.engappai.2022.105798_b51
  article-title: Policy search via density estimation
– volume: 57
  start-page: 948
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2022.105798_b74
  article-title: Optimal sliding guidance algorithm for Mars powered descent phase
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.12.006
– year: 2017
  ident: 10.1016/j.engappai.2022.105798_b14
– year: 1938
  ident: 10.1016/j.engappai.2022.105798_b68
– volume: 23
  start-page: 541
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2022.105798_b22
  article-title: Online learning of shaping rewards in reinforcement learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.01.001
– year: 2016
  ident: 10.1016/j.engappai.2022.105798_b42
  article-title: Continuous control with deep reinforcement learning
– year: 1981
  ident: 10.1016/j.engappai.2022.105798_b4
– year: 2014
  ident: 10.1016/j.engappai.2022.105798_b6
– year: 2016
  ident: 10.1016/j.engappai.2022.105798_b25
– volume: 2020
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b75
  article-title: Deep ensemble reinforcement learning with multiple deep deterministic policy gradient algorithm
  publication-title: Math. Probl. Eng.
– year: 2022
  ident: 10.1016/j.engappai.2022.105798_b64
– volume: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b8
  article-title: Bayesian optimization in AlphaGo
  publication-title: DeepMind Technol.
– year: 2019
  ident: 10.1016/j.engappai.2022.105798_b9
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b54
– year: 2018
  ident: 10.1016/j.engappai.2022.105798_b35
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.engappai.2022.105798_b49
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2021
  ident: 10.1016/j.engappai.2022.105798_b32
– start-page: 605
  year: 2014
  ident: 10.1016/j.engappai.2022.105798_b67
  article-title: Deterministic policy gradient algorithms
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b13
– volume: 3
  start-page: 287
  issue: 4
  year: 2019
  ident: 10.1016/j.engappai.2022.105798_b30
  article-title: A survey on artificial intelligence trends in spacecraft guidance dynamics and control
  publication-title: Astrodynamics
  doi: 10.1007/s42064-018-0053-6
– volume: 19
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105798_b53
  article-title: Powered landing guidance algorithms using reinforcement learning methods for lunar lander case
  publication-title: J. Teknol. Dirgant.
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105798_b29
  article-title: Deep reinforcement learning for safe landing site selection with concurrent consideration of divert maneuvers
– start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2022.105798_b1
  article-title: A brief survey of deep reinforcement learning
  publication-title: IEEE Signal Process. Mag.
– start-page: 538
  year: 1994
  ident: 10.1016/j.engappai.2022.105798_b17
  article-title: Interplanetary trajectory optimization using a genetic algorithm
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b41
  article-title: Hyperband: A novel bandit-based approach to
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2022.105798_b69
– start-page: 6607
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b36
  article-title: Evolutionary reinforcement learning for sample-efficient multiagent coordination
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b21
– start-page: 1188
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b37
  article-title: Evolution-guided policy gradient in reinforcement learning
– start-page: 175
  year: 2021
  ident: 10.1016/j.engappai.2022.105798_b47
  article-title: Trajectory optimization of lunar landing using genetic algorithm
– year: 2018
  ident: 10.1016/j.engappai.2022.105798_b20
  article-title: Integrated guidance and control for pinpoint mars landing using reinforcement learning
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2022.105798_b44
  article-title: Reinforcement learning in multiple-UAV networks :Deployment and movement design
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2010
  ident: 10.1016/j.engappai.2022.105798_b48
  article-title: A reward function generation method using genetic algorithms: A robot soccer case study
– volume: 51
  start-page: 118
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b39
  article-title: Hypersonic boost glide vehicle trajectory optimization using genetic algorithm optimization using genetic algorithm
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.05.020
– volume: 12
  start-page: 959
  issue: 11
  year: 2002
  ident: 10.1016/j.engappai.2022.105798_b24
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.727
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b10
– start-page: 155
  year: 2003
  ident: 10.1016/j.engappai.2022.105798_b50
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105798_b40
– volume: 16
  start-page: 1
  issue: 6 June
  year: 2021
  ident: 10.1016/j.engappai.2022.105798_b2
  article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
  publication-title: PLoS ONE
– year: 2021
  ident: 10.1016/j.engappai.2022.105798_b38
– volume: 33
  issue: 6
  year: 1996
  ident: 10.1016/j.engappai.2022.105798_b59
  article-title: Near-optimal low-thrust orbit transfers generated by a genetic algorithm
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/3.26850
– year: 2019
  ident: 10.1016/j.engappai.2022.105798_b23
– volume: 8
  issue: 3
  year: 1992
  ident: 10.1016/j.engappai.2022.105798_b45
  article-title: Integration of representation into goad-driven behavior-based robots
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.143349
– year: 2020
  ident: 10.1016/j.engappai.2022.105798_b62
– start-page: 1517
  year: 2020
  ident: 10.1016/j.engappai.2022.105798_b56
– year: 2019
  ident: 10.1016/j.engappai.2022.105798_b31
  article-title: Interplanetary transfers via deep representations of the optimal policy and/or of the value function
– start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2022.105798_b33
SSID ssj0003846
Score 2.4405708
Snippet One major capability of a Deep Reinforcement Learning (DRL) agent to control a specific vehicle in an environment without any prior knowledge is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105798
SubjectTerms DDPG
Fitness
GA-search
Reusable launch vehicle
Reward shaping function
Title Optimization of reward shaping function based on genetic algorithm applied to a cross validated deep deterministic policy gradient in a powered landing guidance problem
URI https://dx.doi.org/10.1016/j.engappai.2022.105798
Volume 120
WOSCitedRecordID wos000924435400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65SQ-99F0lfWkOvSFcw2IDRzdK1faQVpUPvqFlWRxiGyyMk_gf9Tf21NkXxm3UNIdeEFq0w6L52HnsPAh5N8hyFnpp5oaMj9wg58JlfJC5QRhkKI2EF2VMNZsIz86i6TT-1uv9tLkwl4uwLKPr63j1X1mNY8hsmTp7B3a3RHEA75HpeEW24_WfGP8VN4Glya6UqmAtZGCssz5nKjVKCjL1SMqvTJ4VICWhyrYuZlVdNOdLhxnVFPVS5ig56uAKC-kcyJxMiBVedBSNKvOsOj3wrTOrVfyYajrAcPBK9gGVHlGVODPbIAG5jZgeNntnAruqiE73SF1FKdQqnEk1F-nUD2292JtZXZ1XOse7Zutlta12vg1EvwlY-F7MWwk0ni_FomBXzD4qi92RVsO2OvOncCYyjODDST03IczGO-LTTlCNdXP6rhfrHjPtju8POnu27HSsO2H_IU60Z-OiL8oZfjwr-vgKv7-bsF-_-ze52kY72kC6i8TSSSSdRNO5Rw79cBijUDkcfz6dfmn1CBrpNDP7BZ389ptXdLNq1VGXJo_JQ2PnwFjj8wnpifIpeWRsHjASZY1Dtq2IHXtGfnQRDFUOGsFgEAwWwaAQDHhjEAwtgsEgGJoKGKjlQotgkAiGPQSDRjBYBENR4jyDYDAIBotgMAh-TiYfTycnn1zTUMTl1PMbN0t5FHOfjQZUjNAuGEUiCKJRTvNYpKH0PGSUhqgzcy9EVTqP09xDfY2xmNEBz-kLclBWpTgikIqAo_EeiTilaHCw1GNoeXtDRtM0Q6PnmAwtKxJuiu3Lni-L5O9gOCbv23krXW7m1hmx5XRilGatDCcI4lvmvrzz216RB7u_7DU5aOqNeEPu88umWNdvDYJ_AVTl86I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+reward+shaping+function+based+on+genetic+algorithm+applied+to+a+cross+validated+deep+deterministic+policy+gradient+in+a+powered+landing+guidance+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Nugroho%2C+Larasmoyo&rft.au=Andiarti%2C+Rika&rft.au=Akmeliawati%2C+Rini&rft.au=Kutay%2C+Ali+T%C3%BCrker&rft.date=2023-04-01&rft.issn=0952-1976&rft.volume=120&rft.spage=105798&rft_id=info:doi/10.1016%2Fj.engappai.2022.105798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon