Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics Jg. 313; S. 128787
Hauptverfasser: Vinayagam, Ramesh, Nagendran, Vasundra, Goveas, Louella Concepta, Narasimhan, Manoj Kumar, Varadavenkatesan, Thivaharan, Chandrasekar, Narendhar, Selvaraj, Raja
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.02.2024
ISSN:0254-0584
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
ArticleNumber 128787
Author Chandrasekar, Narendhar
Nagendran, Vasundra
Narasimhan, Manoj Kumar
Varadavenkatesan, Thivaharan
Vinayagam, Ramesh
Goveas, Louella Concepta
Selvaraj, Raja
Author_xml – sequence: 1
  givenname: Ramesh
  surname: Vinayagam
  fullname: Vinayagam, Ramesh
– sequence: 2
  givenname: Vasundra
  surname: Nagendran
  fullname: Nagendran, Vasundra
– sequence: 3
  givenname: Louella Concepta
  surname: Goveas
  fullname: Goveas, Louella Concepta
– sequence: 4
  givenname: Manoj Kumar
  surname: Narasimhan
  fullname: Narasimhan, Manoj Kumar
– sequence: 5
  givenname: Thivaharan
  orcidid: 0000-0002-3772-2408
  surname: Varadavenkatesan
  fullname: Varadavenkatesan, Thivaharan
– sequence: 6
  givenname: Narendhar
  orcidid: 0000-0003-3276-0859
  surname: Chandrasekar
  fullname: Chandrasekar, Narendhar
– sequence: 7
  givenname: Raja
  orcidid: 0000-0002-3170-7899
  surname: Selvaraj
  fullname: Selvaraj, Raja
BookMark eNqNkL1OwzAURj0UibbwDuYBEuw4vxNCFX9SJQZgjm7sm8ZVYle2W1E23pyEMiAmpm-4ukc6Z0Fmxhok5IqzmDOeX2_jAYLscNh1Rx8nLBExT8qiLGZkzpIsjVhWpudk4f2WMV5wLubk8yW4vQx7Bz2VHTiQAZ3-gKCtobalAzhtcBzpLPQbQKrG-wEV9bo_oKMGjN2BC1r26CkYRUOH2lFpe-v0gMFpST0ar81mAnZH5ewGDd2hs-9a4QU5a6H3ePmzS_J2f_e6eozWzw9Pq9t1JAVPQqSaRFRpIluBLGvaolT55IASoEDZYpkJxEqiKrloKslV2TY55KJM20bwtBBLcnPijibeO2xrqcO3Z3Cg-5qzeqpYb-tfFeupYn2qOBKqP4TdaAju-I_fL6FJh7Q
CitedBy_id crossref_primary_10_1007_s11581_024_05457_w
crossref_primary_10_1134_S1070363224070181
crossref_primary_10_1002_tqem_22358
crossref_primary_10_1016_j_jwpe_2025_107981
crossref_primary_10_1007_s12668_024_01629_0
crossref_primary_10_1038_s41598_025_11980_1
crossref_primary_10_1007_s10800_024_02089_w
crossref_primary_10_1016_j_micpath_2025_107620
crossref_primary_10_1002_slct_202405145
crossref_primary_10_1007_s10570_025_06370_9
crossref_primary_10_1002_slct_202405940
crossref_primary_10_1016_j_snb_2024_136128
crossref_primary_10_1080_10667857_2024_2439832
crossref_primary_10_1007_s00210_024_03547_0
crossref_primary_10_12692_ijbb_20_3_1_12
crossref_primary_10_1002_slct_202401826
crossref_primary_10_1007_s11581_024_05823_8
crossref_primary_10_1016_j_emcon_2025_100469
crossref_primary_10_1007_s11947_024_03423_y
crossref_primary_10_1007_s42452_024_05736_1
crossref_primary_10_1038_s41598_025_88792_w
crossref_primary_10_1002_slct_202404860
crossref_primary_10_1080_00032719_2024_2367008
crossref_primary_10_1038_s41598_024_55460_4
crossref_primary_10_1016_j_eti_2024_103752
crossref_primary_10_1016_j_nxmate_2025_100820
crossref_primary_10_1038_s41598_025_86629_0
crossref_primary_10_1007_s42452_024_05990_3
crossref_primary_10_3390_chemosensors12020023
crossref_primary_10_1016_j_molstruc_2024_139181
crossref_primary_10_1016_j_surfin_2025_107662
crossref_primary_10_1038_s41598_025_88342_4
crossref_primary_10_1177_1934578X251314752
crossref_primary_10_1007_s11696_025_04074_9
crossref_primary_10_1016_j_jece_2025_116921
crossref_primary_10_1038_s41598_025_00128_w
crossref_primary_10_1007_s43994_024_00182_6
crossref_primary_10_1016_j_inoche_2024_112760
crossref_primary_10_1080_10667857_2024_2440907
crossref_primary_10_1049_mna2_70003
crossref_primary_10_1007_s10895_025_04497_3
crossref_primary_10_1016_j_biteb_2024_101914
crossref_primary_10_1016_j_molstruc_2024_139433
crossref_primary_10_1016_j_jece_2024_113948
crossref_primary_10_1111_ppl_14638
crossref_primary_10_1016_j_jallcom_2025_178922
crossref_primary_10_1016_j_matlet_2025_139484
crossref_primary_10_1007_s11947_024_03461_6
crossref_primary_10_1016_j_jics_2024_101363
crossref_primary_10_1515_ntrev_2024_0048
crossref_primary_10_3390_md22040154
crossref_primary_10_1038_s41598_024_66046_5
Cites_doi 10.3390/toxics9110280
10.1016/j.eti.2020.101348
10.3389/fmicb.2021.693899
10.1016/j.snb.2017.02.066
10.1039/C6AY01108J
10.3390/ma15196639
10.1080/02726351.2021.2006381
10.1038/s41598-023-33632-y
10.1063/5.0053443
10.1155/2017/4213275
10.1016/j.carbpol.2019.02.053
10.1016/j.jics.2023.101003
10.1016/j.matchemphys.2015.04.003
10.1515/znc-2021-0298
10.3390/app11104638
10.1088/2053-1591/ac1de3
10.1016/j.jphotobiol.2016.12.013
10.1021/acs.langmuir.3c00260
10.1007/s10904-022-02362-5
10.1515/ntrev-2015-0054
10.1080/21691401.2018.1536060
10.1016/j.matchemphys.2021.125017
10.1021/acsomega.3c01292
10.3390/molecules28093692
10.3390/molecules26134041
10.1016/j.tifs.2021.04.031
10.1007/s13204-020-01577-7
10.1039/D0RA09941D
10.1016/j.indcrop.2023.116951
10.1016/j.envpol.2020.116174
10.1016/j.tplants.2022.08.017
10.3390/ijerph19020674
10.1080/16583655.2020.1854495
10.1016/j.jtice.2019.03.003
10.3390/nano12030493
10.1007/s11356-021-18419-w
10.1016/j.cdc.2020.100411
10.1016/j.molstruc.2023.136076
10.2147/IJN.S246764
10.1080/17518253.2020.1802517
10.3390/ijms23158483
10.1016/j.mrrev.2016.08.006
10.7150/thno.45413
10.3390/ma12162540
10.3390/antibiotics12030574
10.1007/s10876-018-1473-4
10.1016/j.procbio.2021.05.008
10.1016/j.jksus.2021.101791
10.1016/j.arabjc.2015.06.023
10.1002/slct.202300404
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2023.128787
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchemphys_2023_128787
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
~HD
ID FETCH-LOGICAL-c312t-db23942cf3e05bf78d60171ecaa7ecfe853ee9ced813b9c1d8fb6a6384fb31473
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140557900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-0584
IngestDate Tue Nov 18 20:36:42 EST 2025
Sat Nov 29 07:22:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-db23942cf3e05bf78d60171ecaa7ecfe853ee9ced813b9c1d8fb6a6384fb31473
ORCID 0000-0002-3170-7899
0000-0003-3276-0859
0000-0002-3772-2408
OpenAccessLink https://doi.org/10.1016/j.matchemphys.2023.128787
ParticipantIDs crossref_citationtrail_10_1016_j_matchemphys_2023_128787
crossref_primary_10_1016_j_matchemphys_2023_128787
PublicationCentury 2000
PublicationDate 2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationTitle Materials chemistry and physics
PublicationYear 2024
References López-Miranda (10.1016/j.matchemphys.2023.128787_bib20) 2021; 11
Kavaz (10.1016/j.matchemphys.2023.128787_bib39) 2018; 46
Du (10.1016/j.matchemphys.2023.128787_bib51) 2015; 160
Abass Sofi (10.1016/j.matchemphys.2023.128787_bib7) 2022; 34
Rudrappa (10.1016/j.matchemphys.2023.128787_bib50) 2022; 12
Varadavenkatesan (10.1016/j.matchemphys.2023.128787_bib32) 2021; 272
Lakra (10.1016/j.matchemphys.2023.128787_bib47) 2021; 21
Nowicka (10.1016/j.matchemphys.2023.128787_bib18) 2022; 29
Dadi (10.1016/j.matchemphys.2023.128787_bib2) 2023; 39
Yin (10.1016/j.matchemphys.2023.128787_bib8) 2020
Xu (10.1016/j.matchemphys.2023.128787_bib17) 2020; 10
Raja (10.1016/j.matchemphys.2023.128787_bib27) 2017; 10
Alzahrani (10.1016/j.matchemphys.2023.128787_bib36) 2020; 14
Castañeda-Aude (10.1016/j.matchemphys.2023.128787_bib42) 2023; 12
Saratale (10.1016/j.matchemphys.2023.128787_bib34) 2019; 99
Ijaz (10.1016/j.matchemphys.2023.128787_bib4) 2020; 13
Céolin (10.1016/j.matchemphys.2023.128787_bib48) 2021; 155
Sharma (10.1016/j.matchemphys.2023.128787_bib38) 2023; 202
Csakvari (10.1016/j.matchemphys.2023.128787_bib45) 2021; 26
Hashemitabar (10.1016/j.matchemphys.2023.128787_bib37) 2023; 1291
Venugopal (10.1016/j.matchemphys.2023.128787_bib40) 2017; 167
Gecer (10.1016/j.matchemphys.2023.128787_bib12) 2023; 100
Paladini (10.1016/j.matchemphys.2023.128787_bib9) 2019; 12
Mustapha (10.1016/j.matchemphys.2023.128787_bib6) 2022; 19
Vanlalveni (10.1016/j.matchemphys.2023.128787_bib49) 2021; 11
Karan (10.1016/j.matchemphys.2023.128787_bib33) 2022; 77
Bhole (10.1016/j.matchemphys.2023.128787_bib23) 2022
Jemal (10.1016/j.matchemphys.2023.128787_bib41) 2017; 2017
Sahin Yaglioglu (10.1016/j.matchemphys.2023.128787_bib16) 2022; 32
Erenler (10.1016/j.matchemphys.2023.128787_bib15) 2023; 35
Teodoro (10.1016/j.matchemphys.2023.128787_bib30) 2019; 212
Okotrub (10.1016/j.matchemphys.2023.128787_bib14) 2022; 15
Vinoth (10.1016/j.matchemphys.2023.128787_bib44) 2019; 30
Zhang (10.1016/j.matchemphys.2023.128787_bib26) 2016; 8
Dadi (10.1016/j.matchemphys.2023.128787_bib24) 2021; 11
Mahaseth (10.1016/j.matchemphys.2023.128787_bib25) 2017; 773
Kumar (10.1016/j.matchemphys.2023.128787_bib10) 2021; 112
Dangi (10.1016/j.matchemphys.2023.128787_bib46) 2020; 28
Rudayni (10.1016/j.matchemphys.2023.128787_bib22) 2023; 28
Lee (10.1016/j.matchemphys.2023.128787_bib31) 2021; 269
Moosavy (10.1016/j.matchemphys.2023.128787_bib52) 2023; 13
Dadi (10.1016/j.matchemphys.2023.128787_bib1) 2023; 8
Kumar (10.1016/j.matchemphys.2023.128787_bib28) 2022; 40
Roy (10.1016/j.matchemphys.2023.128787_bib29) 2016; 5
Narayanan (10.1016/j.matchemphys.2023.128787_bib43) 2021; 107
Dippong (10.1016/j.matchemphys.2023.128787_bib13) 2022; 23
Jamkhande (10.1016/j.matchemphys.2023.128787_bib5) 2019; 53
Jabeen (10.1016/j.matchemphys.2023.128787_bib11) 2021; 8
Alamier (10.1016/j.matchemphys.2023.128787_bib35) 2023; 8
López-Miranda (10.1016/j.matchemphys.2023.128787_bib21) 2021; 9
Farrokhnia (10.1016/j.matchemphys.2023.128787_bib53) 2017; 246
Husted (10.1016/j.matchemphys.2023.128787_bib3) 2023; 28
Mukherjee (10.1016/j.matchemphys.2023.128787_bib19) 2021; 12
References_xml – volume: 9
  start-page: 280
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib21
  article-title: Green synthesis of homogeneous gold nanoparticles using Sargassum spp. extracts and their enhanced catalytic activity for organic dyes
  publication-title: Toxics
  doi: 10.3390/toxics9110280
– volume: 21
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib47
  article-title: Furfural mediated synthesis of silver nanoparticles for photocatalytic reduction of hexavalent chromium
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2020.101348
– volume: 53
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128787_bib5
  article-title: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 12
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib19
  article-title: A review of green synthesis of metal nanoparticles using algae
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.693899
– volume: 246
  start-page: 979
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128787_bib53
  article-title: Colorimetric sensor assay for detection of hydrogen peroxide using green synthesis of silver chloride nanoparticles: experimental and theoretical evidence
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.02.066
– volume: 8
  start-page: 6691
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128787_bib26
  article-title: Colorimetric detection of hydrogen peroxide using silver nanoparticles with three different morphologies
  publication-title: Anal. Methods
  doi: 10.1039/C6AY01108J
– volume: 15
  start-page: 6639
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib14
  article-title: Distribution of iron nanoparticles in arrays of vertically aligned carbon nanotubes grown by chemical vapor deposition
  publication-title: Materials
  doi: 10.3390/ma15196639
– volume: 40
  start-page: 772
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib28
  article-title: Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H2O2 sensing ability
  publication-title: Part. Sci. Technol.
  doi: 10.1080/02726351.2021.2006381
– volume: 13
  start-page: 7230
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib52
  article-title: Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-33632-y
– volume: 155
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib48
  article-title: Substituent effects in aqueous solutions of carboxylate salts studied by x-ray absorption spectroscopy at the oxygen K-edge
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0053443
– volume: 2017
  start-page: 4213275
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128787_bib41
  article-title: others, Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles
  publication-title: J. Nanomater.
  doi: 10.1155/2017/4213275
– volume: 212
  start-page: 235
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128787_bib30
  article-title: Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.02.053
– volume: 100
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib12
  article-title: Biogenic synthesis of silver nanoparticles using Echium vulgare: characterisation, quantitative analysis of bioactive compounds, antioxidant activity and catalytic degradation
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2023.101003
– volume: 160
  start-page: 40
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128787_bib51
  article-title: Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.04.003
– volume: 77
  start-page: 343
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib33
  article-title: Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines
  publication-title: Zeitschrift für Naturforsch. C
  doi: 10.1515/znc-2021-0298
– volume: 11
  start-page: 4638
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib20
  article-title: Sargassum influx on the Mexican Coast: a source for synthesizing silver nanoparticles with catalytic and antibacterial properties
  publication-title: Appl. Sci.
  doi: 10.3390/app11104638
– volume: 8
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib11
  article-title: Application of green synthesized silver nanoparticles in cancer treatment—a critical review
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ac1de3
– volume: 167
  start-page: 282
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128787_bib40
  article-title: Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.12.013
– volume: 39
  start-page: 4819
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib2
  article-title: In situ synthesis of horseradish peroxidase Nanoflower@Carbon nanotube hybrid nanobiocatalysts with greatly enhanced catalytic activity
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c00260
– volume: 32
  start-page: 3700
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib16
  article-title: Biosynthesis of silver nanoparticles using Astragalus flavesces leaf: identification, antioxidant activity, and catalytic degradation of methylene blue
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-022-02362-5
– volume: 5
  start-page: 251
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128787_bib29
  article-title: Fast colourimetric detection of H2O2 by biogenic silver nanoparticles synthesised using Benincasa hispida fruit extract
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2015-0054
– volume: 46
  start-page: S1193
  year: 2018
  ident: 10.1016/j.matchemphys.2023.128787_bib39
  article-title: Synthesis, characterization, antimicrobial and antimetastatic activity of silver nanoparticles synthesized from Ficus ingens leaf
  publication-title: Artif. Cells, Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1536060
– volume: 272
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib32
  article-title: Characterization of silver nano-spheres synthesized using the extract of Arachis hypogaea nuts and their catalytic potential to degrade dyes
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.125017
– volume: 8
  start-page: 18901
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib35
  article-title: Green synthesis of silver nanoparticles using Acacia ehrenbergiana plant cortex extract for efficient removal of rhodamine B cationic dye from wastewater and the evaluation of antimicrobial activity
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c01292
– volume: 28
  start-page: 3692
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib22
  article-title: Biological activities of Sargassum algae mediated ZnO and Co doped ZnO nanoparticles as enhanced antioxidant and anti-diabetic agents
  publication-title: Molecules
  doi: 10.3390/molecules28093692
– volume: 26
  start-page: 4041
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib45
  article-title: Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts
  publication-title: Molecules
  doi: 10.3390/molecules26134041
– volume: 112
  start-page: 651
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib10
  article-title: Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: a state-of-the-art review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.04.031
– volume: 11
  start-page: 117
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib24
  article-title: Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01577-7
– volume: 11
  start-page: 2804
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib49
  article-title: Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09941D
– volume: 202
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib38
  article-title: Photocatalytic and biological properties of silver nanoparticles synthesized using Callistemon lanceolatus leaf extract
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2023.116951
– volume: 269
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib31
  article-title: Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116174
– volume: 28
  start-page: 90
  issue: 1
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib3
  article-title: What is missing to advance foliar fertilization using nanotechnology?
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2022.08.017
– volume: 35
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib15
  article-title: Green synthesis of silver nanoparticles using Onobrychis sativa L.: characterization, catalytic degradation of methylene blue, antioxidant activity, and quantitative analysis of bioactive compounds
  publication-title: Mater. Today Commun.
– volume: 19
  start-page: 674
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib6
  article-title: A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph19020674
– volume: 14
  start-page: 1651
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128787_bib36
  article-title: Characterization and biological investigation of silver nanoparticles biosynthesized from Galaxaura rugosa against multidrug-resistant bacteria
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2020.1854495
– volume: 99
  start-page: 239
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128787_bib34
  article-title: Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2019.03.003
– volume: 12
  start-page: 493
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib50
  article-title: Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line
  publication-title: Nanomaterials
  doi: 10.3390/nano12030493
– volume: 29
  start-page: 16860
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib18
  article-title: Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-18419-w
– volume: 28
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128787_bib46
  article-title: Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity
  publication-title: Chem. Data Collect.
  doi: 10.1016/j.cdc.2020.100411
– volume: 1291
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib37
  article-title: Assessment of antibacterial, antioxidant, and anticancer effects of biosynthesized silver nanoparticles using Teucrium polium extract
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2023.136076
– start-page: 2555
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128787_bib8
  article-title: The antibacterial mechanism of silver nanoparticles and its application in dentistry
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S246764
– volume: 13
  start-page: 223
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128787_bib4
  article-title: Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2020.1802517
– year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib23
  article-title: Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential
  publication-title: Appl. Nanosci.
– volume: 23
  start-page: 8483
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib13
  article-title: Investigation of structural, morphological and magnetic properties of MFe2O4 (M= Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23158483
– volume: 773
  start-page: 274
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128787_bib25
  article-title: Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes
  publication-title: Mutat. Res. Mutat. Res.
  doi: 10.1016/j.mrrev.2016.08.006
– volume: 10
  start-page: 8996
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128787_bib17
  article-title: Silver nanoparticles: synthesis, medical applications and biosafety
  publication-title: Theranostics
  doi: 10.7150/thno.45413
– volume: 12
  start-page: 2540
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128787_bib9
  article-title: Antimicrobial silver nanoparticles for wound healing application: progress and future trends
  publication-title: Materials
  doi: 10.3390/ma12162540
– volume: 12
  start-page: 574
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib42
  article-title: Ultra-small silver nanoparticles: a sustainable green synthesis approach for antibacterial activity
  publication-title: Antibiotics
  doi: 10.3390/antibiotics12030574
– volume: 30
  start-page: 171
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128787_bib44
  article-title: Anti-larvicidal activity of silver nanoparticles synthesized from Sargassum polycystum against mosquito vectors
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-018-1473-4
– volume: 107
  start-page: 91
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128787_bib43
  article-title: Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2021.05.008
– volume: 34
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128787_bib7
  article-title: An overview of antimicrobial and anticancer potential of silver nanoparticles
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2021.101791
– volume: 10
  start-page: 253
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128787_bib27
  article-title: Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2015.06.023
– volume: 8
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128787_bib1
  article-title: Natural molecule-incorporated magnetic organic-inorganic nanoflower: investigation of its dual fenton reaction-dependent enzyme-like catalytic activities with cyclic use
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202300404
SSID ssj0017113
Score 2.6136248
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 128787
Title Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide
Volume 313
WOSCitedRecordID wos001140557900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0254-0584
  databaseCode: AIEXJ
  dateStart: 19950115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017113
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_Oq_jxIForrV-s4FvIkWSzt8ljKRWVtojW496Oze6mzdEmJXctV9_8E_2PnMnm6ypSFXzJHYFZMpkfM7Ob38wQ8jYynkhCpl1pYs8NE-G5UhvsRcgg--DCeNX4tsmBODqKptP402Dwo6mFuToTeR6tVvHFfzU13ANjY-nsX5i7XRRuwH8wOlzB7HD9I8N_qTrCVt00VNuN-VubGZ5LrPeDH_DAWMeBdVMluDztLDJkSTu5zGEjXfPlGoJlVjrY3hpnAWBLf2eBvHfLlz691mVxglQvUxarTK9xiw7l0uoMz1JPlrOtCSp4tPn8JMvltTyx4PyMxN3ulBocXq5Le047kVhQWLahBCcF24q0g-ISeVxYwYhEHdmJl3KRnZ9a-UPQbe5UtPL-cUcQNgzp1ivCjtb1uJ0r17hw5rOeE4aQK2wU_yU-2KOK-Qh2A6g2KjvCAfKjTma9J_eNWNkyGBty3HzWW2qGS83sUnfIRiB4HA3Jxu6H_enH9tOW8O3M7kaPe-RNRzr8zXP1kqZe9nP8mDyqty1018LiCRmYfJPc32tsukke9hpbPiXfOxDSmyCkRUotCGkHQlqDkFoQ0jUQUkAMrUBI-yCkNQhxwQaEtAHhFvn6bv94771bD_twFfODpauTgMVhoFJmPJ6kItJjfFdGSSmMSg2klcbEyujIZ0msfB2lyVhC9AjThPmhYM_IMC9ys02oDsYp56lU3B-HXPFYQVwLtdRMy8jnyQ6Jmrc5U3UnfBzIcja71ao7JGhFL2w7mNuFnv-L0AvyoIP_SzIEs5lX5K66WmaL8nUNqp8dC8Ma
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+characterization+of+marine+macroalgae+derived+silver+nanoparticles+and+their+colorimetric+sensing+of+hydrogen+peroxide&rft.jtitle=Materials+chemistry+and+physics&rft.au=Vinayagam%2C+Ramesh&rft.au=Nagendran%2C+Vasundra&rft.au=Goveas%2C+Louella+Concepta&rft.au=Narasimhan%2C+Manoj+Kumar&rft.date=2024-02-01&rft.issn=0254-0584&rft.volume=313&rft.spage=128787&rft_id=info:doi/10.1016%2Fj.matchemphys.2023.128787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2023_128787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon