Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide
Gespeichert in:
| Veröffentlicht in: | Materials chemistry and physics Jg. 313; S. 128787 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.02.2024
|
| ISSN: | 0254-0584 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| ArticleNumber | 128787 |
|---|---|
| Author | Chandrasekar, Narendhar Nagendran, Vasundra Narasimhan, Manoj Kumar Varadavenkatesan, Thivaharan Vinayagam, Ramesh Goveas, Louella Concepta Selvaraj, Raja |
| Author_xml | – sequence: 1 givenname: Ramesh surname: Vinayagam fullname: Vinayagam, Ramesh – sequence: 2 givenname: Vasundra surname: Nagendran fullname: Nagendran, Vasundra – sequence: 3 givenname: Louella Concepta surname: Goveas fullname: Goveas, Louella Concepta – sequence: 4 givenname: Manoj Kumar surname: Narasimhan fullname: Narasimhan, Manoj Kumar – sequence: 5 givenname: Thivaharan orcidid: 0000-0002-3772-2408 surname: Varadavenkatesan fullname: Varadavenkatesan, Thivaharan – sequence: 6 givenname: Narendhar orcidid: 0000-0003-3276-0859 surname: Chandrasekar fullname: Chandrasekar, Narendhar – sequence: 7 givenname: Raja orcidid: 0000-0002-3170-7899 surname: Selvaraj fullname: Selvaraj, Raja |
| BookMark | eNqNkL1OwzAURj0UibbwDuYBEuw4vxNCFX9SJQZgjm7sm8ZVYle2W1E23pyEMiAmpm-4ukc6Z0Fmxhok5IqzmDOeX2_jAYLscNh1Rx8nLBExT8qiLGZkzpIsjVhWpudk4f2WMV5wLubk8yW4vQx7Bz2VHTiQAZ3-gKCtobalAzhtcBzpLPQbQKrG-wEV9bo_oKMGjN2BC1r26CkYRUOH2lFpe-v0gMFpST0ar81mAnZH5ewGDd2hs-9a4QU5a6H3ePmzS_J2f_e6eozWzw9Pq9t1JAVPQqSaRFRpIluBLGvaolT55IASoEDZYpkJxEqiKrloKslV2TY55KJM20bwtBBLcnPijibeO2xrqcO3Z3Cg-5qzeqpYb-tfFeupYn2qOBKqP4TdaAju-I_fL6FJh7Q |
| CitedBy_id | crossref_primary_10_1007_s11581_024_05457_w crossref_primary_10_1134_S1070363224070181 crossref_primary_10_1002_tqem_22358 crossref_primary_10_1016_j_jwpe_2025_107981 crossref_primary_10_1007_s12668_024_01629_0 crossref_primary_10_1038_s41598_025_11980_1 crossref_primary_10_1007_s10800_024_02089_w crossref_primary_10_1016_j_micpath_2025_107620 crossref_primary_10_1002_slct_202405145 crossref_primary_10_1007_s10570_025_06370_9 crossref_primary_10_1002_slct_202405940 crossref_primary_10_1016_j_snb_2024_136128 crossref_primary_10_1080_10667857_2024_2439832 crossref_primary_10_1007_s00210_024_03547_0 crossref_primary_10_12692_ijbb_20_3_1_12 crossref_primary_10_1002_slct_202401826 crossref_primary_10_1007_s11581_024_05823_8 crossref_primary_10_1016_j_emcon_2025_100469 crossref_primary_10_1007_s11947_024_03423_y crossref_primary_10_1007_s42452_024_05736_1 crossref_primary_10_1038_s41598_025_88792_w crossref_primary_10_1002_slct_202404860 crossref_primary_10_1080_00032719_2024_2367008 crossref_primary_10_1038_s41598_024_55460_4 crossref_primary_10_1016_j_eti_2024_103752 crossref_primary_10_1016_j_nxmate_2025_100820 crossref_primary_10_1038_s41598_025_86629_0 crossref_primary_10_1007_s42452_024_05990_3 crossref_primary_10_3390_chemosensors12020023 crossref_primary_10_1016_j_molstruc_2024_139181 crossref_primary_10_1016_j_surfin_2025_107662 crossref_primary_10_1038_s41598_025_88342_4 crossref_primary_10_1177_1934578X251314752 crossref_primary_10_1007_s11696_025_04074_9 crossref_primary_10_1016_j_jece_2025_116921 crossref_primary_10_1038_s41598_025_00128_w crossref_primary_10_1007_s43994_024_00182_6 crossref_primary_10_1016_j_inoche_2024_112760 crossref_primary_10_1080_10667857_2024_2440907 crossref_primary_10_1049_mna2_70003 crossref_primary_10_1007_s10895_025_04497_3 crossref_primary_10_1016_j_biteb_2024_101914 crossref_primary_10_1016_j_molstruc_2024_139433 crossref_primary_10_1016_j_jece_2024_113948 crossref_primary_10_1111_ppl_14638 crossref_primary_10_1016_j_jallcom_2025_178922 crossref_primary_10_1016_j_matlet_2025_139484 crossref_primary_10_1007_s11947_024_03461_6 crossref_primary_10_1016_j_jics_2024_101363 crossref_primary_10_1515_ntrev_2024_0048 crossref_primary_10_3390_md22040154 crossref_primary_10_1038_s41598_024_66046_5 |
| Cites_doi | 10.3390/toxics9110280 10.1016/j.eti.2020.101348 10.3389/fmicb.2021.693899 10.1016/j.snb.2017.02.066 10.1039/C6AY01108J 10.3390/ma15196639 10.1080/02726351.2021.2006381 10.1038/s41598-023-33632-y 10.1063/5.0053443 10.1155/2017/4213275 10.1016/j.carbpol.2019.02.053 10.1016/j.jics.2023.101003 10.1016/j.matchemphys.2015.04.003 10.1515/znc-2021-0298 10.3390/app11104638 10.1088/2053-1591/ac1de3 10.1016/j.jphotobiol.2016.12.013 10.1021/acs.langmuir.3c00260 10.1007/s10904-022-02362-5 10.1515/ntrev-2015-0054 10.1080/21691401.2018.1536060 10.1016/j.matchemphys.2021.125017 10.1021/acsomega.3c01292 10.3390/molecules28093692 10.3390/molecules26134041 10.1016/j.tifs.2021.04.031 10.1007/s13204-020-01577-7 10.1039/D0RA09941D 10.1016/j.indcrop.2023.116951 10.1016/j.envpol.2020.116174 10.1016/j.tplants.2022.08.017 10.3390/ijerph19020674 10.1080/16583655.2020.1854495 10.1016/j.jtice.2019.03.003 10.3390/nano12030493 10.1007/s11356-021-18419-w 10.1016/j.cdc.2020.100411 10.1016/j.molstruc.2023.136076 10.2147/IJN.S246764 10.1080/17518253.2020.1802517 10.3390/ijms23158483 10.1016/j.mrrev.2016.08.006 10.7150/thno.45413 10.3390/ma12162540 10.3390/antibiotics12030574 10.1007/s10876-018-1473-4 10.1016/j.procbio.2021.05.008 10.1016/j.jksus.2021.101791 10.1016/j.arabjc.2015.06.023 10.1002/slct.202300404 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matchemphys.2023.128787 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| ExternalDocumentID | 10_1016_j_matchemphys_2023_128787 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XPP ZMT ~02 ~G- ~HD |
| ID | FETCH-LOGICAL-c312t-db23942cf3e05bf78d60171ecaa7ecfe853ee9ced813b9c1d8fb6a6384fb31473 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140557900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-0584 |
| IngestDate | Tue Nov 18 20:36:42 EST 2025 Sat Nov 29 07:22:08 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-db23942cf3e05bf78d60171ecaa7ecfe853ee9ced813b9c1d8fb6a6384fb31473 |
| ORCID | 0000-0002-3170-7899 0000-0003-3276-0859 0000-0002-3772-2408 |
| OpenAccessLink | https://doi.org/10.1016/j.matchemphys.2023.128787 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_matchemphys_2023_128787 crossref_primary_10_1016_j_matchemphys_2023_128787 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials chemistry and physics |
| PublicationYear | 2024 |
| References | López-Miranda (10.1016/j.matchemphys.2023.128787_bib20) 2021; 11 Kavaz (10.1016/j.matchemphys.2023.128787_bib39) 2018; 46 Du (10.1016/j.matchemphys.2023.128787_bib51) 2015; 160 Abass Sofi (10.1016/j.matchemphys.2023.128787_bib7) 2022; 34 Rudrappa (10.1016/j.matchemphys.2023.128787_bib50) 2022; 12 Varadavenkatesan (10.1016/j.matchemphys.2023.128787_bib32) 2021; 272 Lakra (10.1016/j.matchemphys.2023.128787_bib47) 2021; 21 Nowicka (10.1016/j.matchemphys.2023.128787_bib18) 2022; 29 Dadi (10.1016/j.matchemphys.2023.128787_bib2) 2023; 39 Yin (10.1016/j.matchemphys.2023.128787_bib8) 2020 Xu (10.1016/j.matchemphys.2023.128787_bib17) 2020; 10 Raja (10.1016/j.matchemphys.2023.128787_bib27) 2017; 10 Alzahrani (10.1016/j.matchemphys.2023.128787_bib36) 2020; 14 Castañeda-Aude (10.1016/j.matchemphys.2023.128787_bib42) 2023; 12 Saratale (10.1016/j.matchemphys.2023.128787_bib34) 2019; 99 Ijaz (10.1016/j.matchemphys.2023.128787_bib4) 2020; 13 Céolin (10.1016/j.matchemphys.2023.128787_bib48) 2021; 155 Sharma (10.1016/j.matchemphys.2023.128787_bib38) 2023; 202 Csakvari (10.1016/j.matchemphys.2023.128787_bib45) 2021; 26 Hashemitabar (10.1016/j.matchemphys.2023.128787_bib37) 2023; 1291 Venugopal (10.1016/j.matchemphys.2023.128787_bib40) 2017; 167 Gecer (10.1016/j.matchemphys.2023.128787_bib12) 2023; 100 Paladini (10.1016/j.matchemphys.2023.128787_bib9) 2019; 12 Mustapha (10.1016/j.matchemphys.2023.128787_bib6) 2022; 19 Vanlalveni (10.1016/j.matchemphys.2023.128787_bib49) 2021; 11 Karan (10.1016/j.matchemphys.2023.128787_bib33) 2022; 77 Bhole (10.1016/j.matchemphys.2023.128787_bib23) 2022 Jemal (10.1016/j.matchemphys.2023.128787_bib41) 2017; 2017 Sahin Yaglioglu (10.1016/j.matchemphys.2023.128787_bib16) 2022; 32 Erenler (10.1016/j.matchemphys.2023.128787_bib15) 2023; 35 Teodoro (10.1016/j.matchemphys.2023.128787_bib30) 2019; 212 Okotrub (10.1016/j.matchemphys.2023.128787_bib14) 2022; 15 Vinoth (10.1016/j.matchemphys.2023.128787_bib44) 2019; 30 Zhang (10.1016/j.matchemphys.2023.128787_bib26) 2016; 8 Dadi (10.1016/j.matchemphys.2023.128787_bib24) 2021; 11 Mahaseth (10.1016/j.matchemphys.2023.128787_bib25) 2017; 773 Kumar (10.1016/j.matchemphys.2023.128787_bib10) 2021; 112 Dangi (10.1016/j.matchemphys.2023.128787_bib46) 2020; 28 Rudayni (10.1016/j.matchemphys.2023.128787_bib22) 2023; 28 Lee (10.1016/j.matchemphys.2023.128787_bib31) 2021; 269 Moosavy (10.1016/j.matchemphys.2023.128787_bib52) 2023; 13 Dadi (10.1016/j.matchemphys.2023.128787_bib1) 2023; 8 Kumar (10.1016/j.matchemphys.2023.128787_bib28) 2022; 40 Roy (10.1016/j.matchemphys.2023.128787_bib29) 2016; 5 Narayanan (10.1016/j.matchemphys.2023.128787_bib43) 2021; 107 Dippong (10.1016/j.matchemphys.2023.128787_bib13) 2022; 23 Jamkhande (10.1016/j.matchemphys.2023.128787_bib5) 2019; 53 Jabeen (10.1016/j.matchemphys.2023.128787_bib11) 2021; 8 Alamier (10.1016/j.matchemphys.2023.128787_bib35) 2023; 8 López-Miranda (10.1016/j.matchemphys.2023.128787_bib21) 2021; 9 Farrokhnia (10.1016/j.matchemphys.2023.128787_bib53) 2017; 246 Husted (10.1016/j.matchemphys.2023.128787_bib3) 2023; 28 Mukherjee (10.1016/j.matchemphys.2023.128787_bib19) 2021; 12 |
| References_xml | – volume: 9 start-page: 280 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib21 article-title: Green synthesis of homogeneous gold nanoparticles using Sargassum spp. extracts and their enhanced catalytic activity for organic dyes publication-title: Toxics doi: 10.3390/toxics9110280 – volume: 21 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib47 article-title: Furfural mediated synthesis of silver nanoparticles for photocatalytic reduction of hexavalent chromium publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.101348 – volume: 53 year: 2019 ident: 10.1016/j.matchemphys.2023.128787_bib5 article-title: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications publication-title: J. Drug Deliv. Sci. Technol. – volume: 12 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib19 article-title: A review of green synthesis of metal nanoparticles using algae publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.693899 – volume: 246 start-page: 979 year: 2017 ident: 10.1016/j.matchemphys.2023.128787_bib53 article-title: Colorimetric sensor assay for detection of hydrogen peroxide using green synthesis of silver chloride nanoparticles: experimental and theoretical evidence publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.02.066 – volume: 8 start-page: 6691 year: 2016 ident: 10.1016/j.matchemphys.2023.128787_bib26 article-title: Colorimetric detection of hydrogen peroxide using silver nanoparticles with three different morphologies publication-title: Anal. Methods doi: 10.1039/C6AY01108J – volume: 15 start-page: 6639 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib14 article-title: Distribution of iron nanoparticles in arrays of vertically aligned carbon nanotubes grown by chemical vapor deposition publication-title: Materials doi: 10.3390/ma15196639 – volume: 40 start-page: 772 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib28 article-title: Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H2O2 sensing ability publication-title: Part. Sci. Technol. doi: 10.1080/02726351.2021.2006381 – volume: 13 start-page: 7230 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib52 article-title: Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil publication-title: Sci. Rep. doi: 10.1038/s41598-023-33632-y – volume: 155 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib48 article-title: Substituent effects in aqueous solutions of carboxylate salts studied by x-ray absorption spectroscopy at the oxygen K-edge publication-title: J. Chem. Phys. doi: 10.1063/5.0053443 – volume: 2017 start-page: 4213275 year: 2017 ident: 10.1016/j.matchemphys.2023.128787_bib41 article-title: others, Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles publication-title: J. Nanomater. doi: 10.1155/2017/4213275 – volume: 212 start-page: 235 year: 2019 ident: 10.1016/j.matchemphys.2023.128787_bib30 article-title: Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.02.053 – volume: 100 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib12 article-title: Biogenic synthesis of silver nanoparticles using Echium vulgare: characterisation, quantitative analysis of bioactive compounds, antioxidant activity and catalytic degradation publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2023.101003 – volume: 160 start-page: 40 year: 2015 ident: 10.1016/j.matchemphys.2023.128787_bib51 article-title: Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.04.003 – volume: 77 start-page: 343 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib33 article-title: Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines publication-title: Zeitschrift für Naturforsch. C doi: 10.1515/znc-2021-0298 – volume: 11 start-page: 4638 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib20 article-title: Sargassum influx on the Mexican Coast: a source for synthesizing silver nanoparticles with catalytic and antibacterial properties publication-title: Appl. Sci. doi: 10.3390/app11104638 – volume: 8 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib11 article-title: Application of green synthesized silver nanoparticles in cancer treatment—a critical review publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ac1de3 – volume: 167 start-page: 282 year: 2017 ident: 10.1016/j.matchemphys.2023.128787_bib40 article-title: Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.12.013 – volume: 39 start-page: 4819 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib2 article-title: In situ synthesis of horseradish peroxidase Nanoflower@Carbon nanotube hybrid nanobiocatalysts with greatly enhanced catalytic activity publication-title: Langmuir doi: 10.1021/acs.langmuir.3c00260 – volume: 32 start-page: 3700 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib16 article-title: Biosynthesis of silver nanoparticles using Astragalus flavesces leaf: identification, antioxidant activity, and catalytic degradation of methylene blue publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-022-02362-5 – volume: 5 start-page: 251 year: 2016 ident: 10.1016/j.matchemphys.2023.128787_bib29 article-title: Fast colourimetric detection of H2O2 by biogenic silver nanoparticles synthesised using Benincasa hispida fruit extract publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2015-0054 – volume: 46 start-page: S1193 year: 2018 ident: 10.1016/j.matchemphys.2023.128787_bib39 article-title: Synthesis, characterization, antimicrobial and antimetastatic activity of silver nanoparticles synthesized from Ficus ingens leaf publication-title: Artif. Cells, Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1536060 – volume: 272 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib32 article-title: Characterization of silver nano-spheres synthesized using the extract of Arachis hypogaea nuts and their catalytic potential to degrade dyes publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125017 – volume: 8 start-page: 18901 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib35 article-title: Green synthesis of silver nanoparticles using Acacia ehrenbergiana plant cortex extract for efficient removal of rhodamine B cationic dye from wastewater and the evaluation of antimicrobial activity publication-title: ACS Omega doi: 10.1021/acsomega.3c01292 – volume: 28 start-page: 3692 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib22 article-title: Biological activities of Sargassum algae mediated ZnO and Co doped ZnO nanoparticles as enhanced antioxidant and anti-diabetic agents publication-title: Molecules doi: 10.3390/molecules28093692 – volume: 26 start-page: 4041 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib45 article-title: Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts publication-title: Molecules doi: 10.3390/molecules26134041 – volume: 112 start-page: 651 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib10 article-title: Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: a state-of-the-art review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.04.031 – volume: 11 start-page: 117 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib24 article-title: Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01577-7 – volume: 11 start-page: 2804 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib49 article-title: Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature publication-title: RSC Adv. doi: 10.1039/D0RA09941D – volume: 202 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib38 article-title: Photocatalytic and biological properties of silver nanoparticles synthesized using Callistemon lanceolatus leaf extract publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2023.116951 – volume: 269 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib31 article-title: Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116174 – volume: 28 start-page: 90 issue: 1 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib3 article-title: What is missing to advance foliar fertilization using nanotechnology? publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2022.08.017 – volume: 35 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib15 article-title: Green synthesis of silver nanoparticles using Onobrychis sativa L.: characterization, catalytic degradation of methylene blue, antioxidant activity, and quantitative analysis of bioactive compounds publication-title: Mater. Today Commun. – volume: 19 start-page: 674 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib6 article-title: A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph19020674 – volume: 14 start-page: 1651 year: 2020 ident: 10.1016/j.matchemphys.2023.128787_bib36 article-title: Characterization and biological investigation of silver nanoparticles biosynthesized from Galaxaura rugosa against multidrug-resistant bacteria publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2020.1854495 – volume: 99 start-page: 239 year: 2019 ident: 10.1016/j.matchemphys.2023.128787_bib34 article-title: Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.03.003 – volume: 12 start-page: 493 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib50 article-title: Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line publication-title: Nanomaterials doi: 10.3390/nano12030493 – volume: 29 start-page: 16860 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib18 article-title: Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18419-w – volume: 28 year: 2020 ident: 10.1016/j.matchemphys.2023.128787_bib46 article-title: Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity publication-title: Chem. Data Collect. doi: 10.1016/j.cdc.2020.100411 – volume: 1291 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib37 article-title: Assessment of antibacterial, antioxidant, and anticancer effects of biosynthesized silver nanoparticles using Teucrium polium extract publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2023.136076 – start-page: 2555 year: 2020 ident: 10.1016/j.matchemphys.2023.128787_bib8 article-title: The antibacterial mechanism of silver nanoparticles and its application in dentistry publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S246764 – volume: 13 start-page: 223 year: 2020 ident: 10.1016/j.matchemphys.2023.128787_bib4 article-title: Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518253.2020.1802517 – year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib23 article-title: Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential publication-title: Appl. Nanosci. – volume: 23 start-page: 8483 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib13 article-title: Investigation of structural, morphological and magnetic properties of MFe2O4 (M= Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23158483 – volume: 773 start-page: 274 year: 2017 ident: 10.1016/j.matchemphys.2023.128787_bib25 article-title: Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes publication-title: Mutat. Res. Mutat. Res. doi: 10.1016/j.mrrev.2016.08.006 – volume: 10 start-page: 8996 year: 2020 ident: 10.1016/j.matchemphys.2023.128787_bib17 article-title: Silver nanoparticles: synthesis, medical applications and biosafety publication-title: Theranostics doi: 10.7150/thno.45413 – volume: 12 start-page: 2540 year: 2019 ident: 10.1016/j.matchemphys.2023.128787_bib9 article-title: Antimicrobial silver nanoparticles for wound healing application: progress and future trends publication-title: Materials doi: 10.3390/ma12162540 – volume: 12 start-page: 574 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib42 article-title: Ultra-small silver nanoparticles: a sustainable green synthesis approach for antibacterial activity publication-title: Antibiotics doi: 10.3390/antibiotics12030574 – volume: 30 start-page: 171 year: 2019 ident: 10.1016/j.matchemphys.2023.128787_bib44 article-title: Anti-larvicidal activity of silver nanoparticles synthesized from Sargassum polycystum against mosquito vectors publication-title: J. Cluster Sci. doi: 10.1007/s10876-018-1473-4 – volume: 107 start-page: 91 year: 2021 ident: 10.1016/j.matchemphys.2023.128787_bib43 article-title: Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications publication-title: Process Biochem. doi: 10.1016/j.procbio.2021.05.008 – volume: 34 year: 2022 ident: 10.1016/j.matchemphys.2023.128787_bib7 article-title: An overview of antimicrobial and anticancer potential of silver nanoparticles publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2021.101791 – volume: 10 start-page: 253 year: 2017 ident: 10.1016/j.matchemphys.2023.128787_bib27 article-title: Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2015.06.023 – volume: 8 year: 2023 ident: 10.1016/j.matchemphys.2023.128787_bib1 article-title: Natural molecule-incorporated magnetic organic-inorganic nanoflower: investigation of its dual fenton reaction-dependent enzyme-like catalytic activities with cyclic use publication-title: ChemistrySelect doi: 10.1002/slct.202300404 |
| SSID | ssj0017113 |
| Score | 2.6136248 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 128787 |
| Title | Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide |
| Volume | 313 |
| WOSCitedRecordID | wos001140557900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0254-0584 databaseCode: AIEXJ dateStart: 19950115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017113 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_Oq_jxIForrV-s4FvIkWSzt8ljKRWVtojW496Oze6mzdEmJXctV9_8E_2PnMnm6ypSFXzJHYFZMpkfM7Ob38wQ8jYynkhCpl1pYs8NE-G5UhvsRcgg--DCeNX4tsmBODqKptP402Dwo6mFuToTeR6tVvHFfzU13ANjY-nsX5i7XRRuwH8wOlzB7HD9I8N_qTrCVt00VNuN-VubGZ5LrPeDH_DAWMeBdVMluDztLDJkSTu5zGEjXfPlGoJlVjrY3hpnAWBLf2eBvHfLlz691mVxglQvUxarTK9xiw7l0uoMz1JPlrOtCSp4tPn8JMvltTyx4PyMxN3ulBocXq5Le047kVhQWLahBCcF24q0g-ISeVxYwYhEHdmJl3KRnZ9a-UPQbe5UtPL-cUcQNgzp1ivCjtb1uJ0r17hw5rOeE4aQK2wU_yU-2KOK-Qh2A6g2KjvCAfKjTma9J_eNWNkyGBty3HzWW2qGS83sUnfIRiB4HA3Jxu6H_enH9tOW8O3M7kaPe-RNRzr8zXP1kqZe9nP8mDyqty1018LiCRmYfJPc32tsukke9hpbPiXfOxDSmyCkRUotCGkHQlqDkFoQ0jUQUkAMrUBI-yCkNQhxwQaEtAHhFvn6bv94771bD_twFfODpauTgMVhoFJmPJ6kItJjfFdGSSmMSg2klcbEyujIZ0msfB2lyVhC9AjThPmhYM_IMC9ys02oDsYp56lU3B-HXPFYQVwLtdRMy8jnyQ6Jmrc5U3UnfBzIcja71ao7JGhFL2w7mNuFnv-L0AvyoIP_SzIEs5lX5K66WmaL8nUNqp8dC8Ma |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+characterization+of+marine+macroalgae+derived+silver+nanoparticles+and+their+colorimetric+sensing+of+hydrogen+peroxide&rft.jtitle=Materials+chemistry+and+physics&rft.au=Vinayagam%2C+Ramesh&rft.au=Nagendran%2C+Vasundra&rft.au=Goveas%2C+Louella+Concepta&rft.au=Narasimhan%2C+Manoj+Kumar&rft.date=2024-02-01&rft.issn=0254-0584&rft.volume=313&rft.spage=128787&rft_id=info:doi/10.1016%2Fj.matchemphys.2023.128787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2023_128787 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |