Where should the thermal image sensor of a smart A/C look?-Occupant thermal sensation model based on thermal imaging data
Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences...
Saved in:
| Published in: | Building and environment Vol. 239; p. 110405 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2023
|
| Subjects: | |
| ISSN: | 0360-1323, 1873-684X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences in body surface temperature on thermal sensation response by gender, etc., which may have many limitations. Subject experiments were conducted in an artificial climate chamber to obtain subjective questionnaires and thermal images of the exposed frontal face, lateral face, top of the head, forearm, and hand dorsum of 27 subjects in this study. By applying machine learning classification algorithms and global optimal regression algorithms, the temperature collection zones that can accurately reflect the thermal sensation of both genders in each view were analyzed, and a two-stage thermal sensation assessment model applicable to multiple views was developed. Of the various imaging views, the frontal view of the face is the best, followed by the lateral view of the face, the top view of the head, and the forearm/hand dorsum view. For male and female, the mean absolute errors of the thermal sensation assessment model established were 0.41–0.49 and 0.50–0.53 thermal sensation units. In addition, gender differences were found in the response of head surface temperatures to thermal sensation. The results obtained can provide a reference for the application of thermal image sensor to smart air conditioners.
[Display omitted]
•For evaluating thermal sensation using thermal image sensor, front view is the best.•Two-stage model is developed by combining machine learning classifier with regression.•The model evaluates thermal sensation via thermal imaging for smart air conditioner.•The model takes into account gender differences in surface temperature sensitivity.•The mean absolute error of the model is less than 0.5 thermal sensation units. |
|---|---|
| AbstractList | Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences in body surface temperature on thermal sensation response by gender, etc., which may have many limitations. Subject experiments were conducted in an artificial climate chamber to obtain subjective questionnaires and thermal images of the exposed frontal face, lateral face, top of the head, forearm, and hand dorsum of 27 subjects in this study. By applying machine learning classification algorithms and global optimal regression algorithms, the temperature collection zones that can accurately reflect the thermal sensation of both genders in each view were analyzed, and a two-stage thermal sensation assessment model applicable to multiple views was developed. Of the various imaging views, the frontal view of the face is the best, followed by the lateral view of the face, the top view of the head, and the forearm/hand dorsum view. For male and female, the mean absolute errors of the thermal sensation assessment model established were 0.41–0.49 and 0.50–0.53 thermal sensation units. In addition, gender differences were found in the response of head surface temperatures to thermal sensation. The results obtained can provide a reference for the application of thermal image sensor to smart air conditioners.
[Display omitted]
•For evaluating thermal sensation using thermal image sensor, front view is the best.•Two-stage model is developed by combining machine learning classifier with regression.•The model evaluates thermal sensation via thermal imaging for smart air conditioner.•The model takes into account gender differences in surface temperature sensitivity.•The mean absolute error of the model is less than 0.5 thermal sensation units. |
| ArticleNumber | 110405 |
| Author | Du, Heng Wang, Bo Shi, Yongxiang Lyu, Junmeng Zhao, Zisheng Lian, Zhiwei |
| Author_xml | – sequence: 1 givenname: Junmeng surname: Lyu fullname: Lyu, Junmeng organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 2 givenname: Heng surname: Du fullname: Du, Heng organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 3 givenname: Zisheng surname: Zhao fullname: Zhao, Zisheng organization: Guangdong Midea Air-Conditioning Equipment Co., Ltd, Guangdong, 528311, China – sequence: 4 givenname: Yongxiang surname: Shi fullname: Shi, Yongxiang organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 5 givenname: Bo surname: Wang fullname: Wang, Bo organization: Guangdong Midea Air-Conditioning Equipment Co., Ltd, Guangdong, 528311, China – sequence: 6 givenname: Zhiwei orcidid: 0000-0003-0043-4127 surname: Lian fullname: Lian, Zhiwei email: zwlian@sjtu.edu.cn organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China |
| BookMark | eNqFkN9KwzAUxoNMcJu-guQF2iVN03Yg6Bj-g8FuFL0LaXK6ZbbNSLLB3t7WqYg3uzgcDuf8Ps73jdCgtS0gdE1JTAnNJpu43JlaQ7uPE5KwmFKSEn6GhrTIWZQV6fsADQnLSERZwi7QyPsN6cApS4fo8LYGB9iv7a7WOKyhL9fIGptGrroFtN46bCsssW-kC3g2mePa2o_baKnUbivb8Iv0xzIY2-LGaqhxKT1o3I1_NU27wloGeYnOK1l7uPruY_T6cP8yf4oWy8fn-WwRKUaTEGmWa15RnqQZ05wCJwUrVeex4imVpFQ5Y1rnihRaZpArBVApnmogipNpBmyMbo66ylnvHVRCmfD1ZXDS1IIS0ccoNuInRtHHKI4xdnj2D9-6zoY7nAbvjiB05vYGnPDKQKtAGwcqCG3NKYlPrJ2VKA |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2023_108134 crossref_primary_10_1016_j_buildenv_2023_110958 crossref_primary_10_1016_j_buildenv_2023_110949 crossref_primary_10_1016_j_buildenv_2025_113523 crossref_primary_10_1016_j_jobe_2024_111519 crossref_primary_10_1016_j_buildenv_2024_111727 crossref_primary_10_1016_j_enbuild_2025_116408 crossref_primary_10_1177_1420326X251333153 crossref_primary_10_1016_j_buildenv_2025_112824 crossref_primary_10_1016_j_enbuild_2025_115566 crossref_primary_10_1007_s12273_024_1147_0 crossref_primary_10_1016_j_enbuild_2024_115019 crossref_primary_10_1016_j_buildenv_2023_111002 crossref_primary_10_1016_j_buildenv_2023_111079 crossref_primary_10_1016_j_buildenv_2024_111692 |
| Cites_doi | 10.1016/j.jtherbio.2022.103422 10.1016/j.enbuild.2015.12.016 10.1016/j.enbuild.2023.112950 10.1016/j.jtherbio.2022.103401 10.1016/j.buildenv.2019.106223 10.1016/j.enbuild.2020.110392 10.1038/nbt1206-1565 10.1016/j.enbuild.2020.110261 10.1016/j.buildenv.2018.06.052 10.1016/j.jclepro.2015.05.139 10.1152/jappl.1971.31.1.80 10.1016/j.ejor.2017.05.017 10.1016/j.buildenv.2019.04.012 10.1016/j.buildenv.2022.109887 10.1016/j.enbuild.2018.02.035 10.1016/j.buildenv.2018.04.040 10.1007/s004840050056 10.1016/j.buildenv.2021.108041 10.1016/j.enbuild.2021.111771 10.1016/j.buildenv.2019.106216 10.1016/j.sna.2022.113611 10.1016/j.enbuild.2018.07.025 10.1016/j.buildenv.2017.06.027 10.1016/j.buildenv.2019.01.007 10.1016/j.buildenv.2015.04.003 10.1016/j.enbuild.2022.112334 10.1016/j.buildenv.2017.05.004 10.1016/j.buildenv.2021.108196 10.1016/j.enbuild.2020.109776 10.1016/j.buildenv.2022.109933 10.1016/j.apenergy.2019.113336 10.1111/ina.12916 10.1016/j.buildenv.2022.109576 10.1016/j.apenergy.2022.120283 10.1016/j.buildenv.2022.109811 10.1016/j.enbuild.2021.111360 10.4065/78.5.603 10.1016/j.enbuild.2023.112856 10.1016/j.buildenv.2016.09.005 10.1016/j.buildenv.2021.108430 10.1016/j.buildenv.2009.11.002 10.1016/j.buildenv.2022.109269 10.1016/j.buildenv.2022.109504 10.1016/j.buildenv.2019.106615 10.1002/mus.23693 10.7600/jpfsm.5.77 10.3390/s19183826 10.1016/j.dss.2019.01.002 10.1016/j.rser.2022.112704 10.1016/j.buildenv.2019.106231 10.1007/s00421-007-0609-2 10.1016/j.buildenv.2022.109774 10.1016/j.enbuild.2023.112900 10.1016/j.buildenv.2016.12.005 10.1016/j.buildenv.2019.106284 10.1080/23328940.2021.1976004 10.1007/s12652-021-02999-z 10.1016/j.buildenv.2018.02.049 10.1111/ina.13138 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.buildenv.2023.110405 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| ExternalDocumentID | 10_1016_j_buildenv_2023_110405 S0360132323004328 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c312t-d37d5f152463d51e5083bc110f541a0bc733dd7c08da6e7cceefc54de0c5096e3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007222600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Sat Nov 29 07:20:53 EST 2025 Tue Nov 18 21:20:27 EST 2025 Fri Feb 23 02:35:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal sensation model Thermal image sensor Two-stage model Smart air conditioner |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-d37d5f152463d51e5083bc110f541a0bc733dd7c08da6e7cceefc54de0c5096e3 |
| ORCID | 0000-0003-0043-4127 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_buildenv_2023_110405 crossref_primary_10_1016_j_buildenv_2023_110405 elsevier_sciencedirect_doi_10_1016_j_buildenv_2023_110405 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Building and environment |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nadel, Bullard, Stolwijk (bib15) 1971; 31 He, Zhang, Arens, Merritt, Huizenga, Levinson, Wang, Ghahramani, Alvarez-Suarez (bib27) 2023; 228 Lan, Tang, Wargocki, Wyon, Lian (bib39) 2022; 32 Noble (bib58) 2006; 24 Volk, Wystub, Pohlmann, Finkensieper, Chalmers, Guntinas-Lichius (bib37) 2013; 47 Wu, Zhang, Liu, Li, Chen, Kosonen, Jokisalo (bib49) 2023; 228 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib53) 2011; 12 Qavidel Fard, Zomorodian, Korsavi (bib56) 2022; 256 Uchida, Nagashima, Marui (bib17) 2016; 5 Zhou, Jiao, Chen, Sun, Ding, Ao (bib50) 2022; 226 Choi, Yeom (bib66) 2017; 121 Yang, Li, Hou, Meier, Cheng, Choi, Wang, Wang, Wagner, Yan, Li, Olofsson, Li (bib23) 2020; 224 Aryal, Becerik-Gerber (bib30) 2019; 160 Tian, Xu, Liu (bib32) 2023; 112 Zhai, Zhang, Zhang, Pasut, Arens, Meng (bib41) 2015; 90 Luo, Xie, Yan, Ke, Yu, Wang, Zhang (bib54) 2020; 210 Zhao, Lyu, Du, Lian, Zhao (bib36) 2023; 111 Chaudhuri, Zhai, Soh, Li, Xie (bib63) 2018; 166 Fanger (bib7) 1970 Xiong, Ma, Lian, de Dear (bib72) 2019; 156 Ghahramani, Castro, Becerik-Gerber, Yu (bib31) 2016; 109 Na, Choi, Kim, Kim (bib10) 2019; 160 Li, Menassa, Kamat (bib34) 2018; 176 Luo, Jiang, Wang, Feng, Ma, Shi, Zhou (bib12) 2022; 220 Wang, Matsuhashi, Onodera (bib13) 2023; 329 Yadav, Yadav, Ajitha, Rajasekar, Gupta, Ashok Kumar Reddy (bib24) 2022; 342 (bib3) 2020 Lyu, Li, Zhao, Miao, Du, Lai, Yang, Lian (bib4) 2023; 284 Chaudhuri, Soh, Li, Xie (bib21) 2020; 170 Yang, Zhao, Gao, Zhang, Arens, Zhai (bib65) 2021; 251 Cosma, Simha (bib28) 2018; 143 Wright (bib57) 1995 Khalid, Khalil, Nasreen (bib61) 2014 Choi, Yeom (bib64) 2019; 150 Kaciuba-Uscilko, Grucza (bib16) 2001; 4 Lugaresi, Tang, Nash, McClanahan, Uboweja, Hays, Zhang, Chang, Yong, Lee, Chang, Hua, Georg, Grundmann (bib47) 2019 Montgomery (bib43) 2008 Xie, Li, Li, Zhang, Luo (bib22) 2020; 226 Wang, Yu, Luo, Wang, Zhang, Jiao (bib71) 2019; 161 Jahromi, Taheri (bib59) 2017 Li, Menassa, Kamat (bib26) 2019; 251 Yoshikawa, Uchiyama, Higashino (bib38) 2019; 19 Yang, Cheng, Dai, Olofsson, Li, Meier (bib11) 2019; 162 Lan, Lian (bib44) 2010; 45 Vellei, Chinazzo, Zitting, Hubbard (bib46) 2021; 8 Rupp, Kim, de Dear, Ghisi (bib70) 2018; 135 Yao, Crook, Andreeva (bib51) 2017; 263 (bib45) 2000; 894 Zhang, Gao, Liu, Liu, Wang, Zhu, Zhou, Li (bib2) 2021; 202 Choi, Miki, Sagawa, Shiraki (bib33) 1997; 41 Hou, Ma, Kwok, Cheng (bib5) 2022; 225 Zhang, Wu, Calautit (bib55) 2022; 167 Allouhi, El Fouih, Kousksou, Jamil, Zeraouli, Mourad (bib1) 2015; 109 Papouskova, Hajek (bib52) 2019; 118 Tian, Yu, Liu (bib62) 2022; 32 Chaudhuri, Soh, Li, Xie (bib9) 2017 Li, Menassa, Kamat (bib25) 2018; 176 Zhai, Arens, Elsworth, Zhang (bib40) 2017; 122 Wang, Matsuhashi, Onodera (bib14) 2022; 223 Yeom, Delogu (bib19) 2021; 204 Lan, Lian, Liu, Liu (bib35) 2008; 102 Pallubinsky, Schellen, Rieswijk, Breukel, Kingma, van Marken Lichtenbelt (bib67) 2016; 113 Ji, de Dear, Kim, Zhu, Cao, Liu (bib69) 2022; 207 Du, Lian, Lai, Duanmu, Zhai, Cao, Zhang, Zhou, Wang, Zhang, Hou (bib8) 2022; 271 Charkoudian (bib18) 2003; 78 Wang, Liu, Xiong, Wu, Zhang (bib6) 2021 Wang, de Dear, Luo, Lin, He, Ghahramani, Zhu (bib68) 2018; 138 Zhou, Zhang, Xie, Liu (bib42) 2023; 229 Dai, Zhang, Arens, Lian (bib20) 2017; 114 Gao, Liu, Wu, Liu, Wu, Tian, Li, Lv (bib48) 2023; 286 Wu, Cao, Hu, Lv, Meng, Zhang (bib29) 2023; 285 McKinney (bib60) 2020 Wu (10.1016/j.buildenv.2023.110405_bib49) 2023; 228 Jahromi (10.1016/j.buildenv.2023.110405_bib59) 2017 Lan (10.1016/j.buildenv.2023.110405_bib39) 2022; 32 Noble (10.1016/j.buildenv.2023.110405_bib58) 2006; 24 Vellei (10.1016/j.buildenv.2023.110405_bib46) 2021; 8 Hou (10.1016/j.buildenv.2023.110405_bib5) 2022; 225 Lan (10.1016/j.buildenv.2023.110405_bib35) 2008; 102 Aryal (10.1016/j.buildenv.2023.110405_bib30) 2019; 160 Pedregosa (10.1016/j.buildenv.2023.110405_bib53) 2011; 12 Wang (10.1016/j.buildenv.2023.110405_bib14) 2022; 223 Montgomery (10.1016/j.buildenv.2023.110405_bib43) 2008 Choi (10.1016/j.buildenv.2023.110405_bib33) 1997; 41 Tian (10.1016/j.buildenv.2023.110405_bib32) 2023; 112 Wang (10.1016/j.buildenv.2023.110405_bib13) 2023; 329 Uchida (10.1016/j.buildenv.2023.110405_bib17) 2016; 5 Yang (10.1016/j.buildenv.2023.110405_bib23) 2020; 224 Papouskova (10.1016/j.buildenv.2023.110405_bib52) 2019; 118 Yoshikawa (10.1016/j.buildenv.2023.110405_bib38) 2019; 19 Zhou (10.1016/j.buildenv.2023.110405_bib42) 2023; 229 Qavidel Fard (10.1016/j.buildenv.2023.110405_bib56) 2022; 256 Choi (10.1016/j.buildenv.2023.110405_bib64) 2019; 150 Wang (10.1016/j.buildenv.2023.110405_bib68) 2018; 138 Li (10.1016/j.buildenv.2023.110405_bib26) 2019; 251 Ji (10.1016/j.buildenv.2023.110405_bib69) 2022; 207 Wang (10.1016/j.buildenv.2023.110405_bib6) 2021 Lyu (10.1016/j.buildenv.2023.110405_bib4) 2023; 284 Yadav (10.1016/j.buildenv.2023.110405_bib24) 2022; 342 Yao (10.1016/j.buildenv.2023.110405_bib51) 2017; 263 Zhang (10.1016/j.buildenv.2023.110405_bib2) 2021; 202 Allouhi (10.1016/j.buildenv.2023.110405_bib1) 2015; 109 Volk (10.1016/j.buildenv.2023.110405_bib37) 2013; 47 Choi (10.1016/j.buildenv.2023.110405_bib66) 2017; 121 Yang (10.1016/j.buildenv.2023.110405_bib65) 2021; 251 Zhao (10.1016/j.buildenv.2023.110405_bib36) 2023; 111 Yang (10.1016/j.buildenv.2023.110405_bib11) 2019; 162 Wu (10.1016/j.buildenv.2023.110405_bib29) 2023; 285 Zhai (10.1016/j.buildenv.2023.110405_bib41) 2015; 90 Fanger (10.1016/j.buildenv.2023.110405_bib7) 1970 Lan (10.1016/j.buildenv.2023.110405_bib44) 2010; 45 Xiong (10.1016/j.buildenv.2023.110405_bib72) 2019; 156 Yeom (10.1016/j.buildenv.2023.110405_bib19) 2021; 204 Tian (10.1016/j.buildenv.2023.110405_bib62) 2022; 32 Kaciuba-Uscilko (10.1016/j.buildenv.2023.110405_bib16) 2001; 4 Na (10.1016/j.buildenv.2023.110405_bib10) 2019; 160 Wang (10.1016/j.buildenv.2023.110405_bib71) 2019; 161 Luo (10.1016/j.buildenv.2023.110405_bib54) 2020; 210 McKinney (10.1016/j.buildenv.2023.110405_bib60) Chaudhuri (10.1016/j.buildenv.2023.110405_bib63) 2018; 166 Rupp (10.1016/j.buildenv.2023.110405_bib70) 2018; 135 Chaudhuri (10.1016/j.buildenv.2023.110405_bib9) 2017 Li (10.1016/j.buildenv.2023.110405_bib34) 2018; 176 Dai (10.1016/j.buildenv.2023.110405_bib20) 2017; 114 Ghahramani (10.1016/j.buildenv.2023.110405_bib31) 2016; 109 Zhai (10.1016/j.buildenv.2023.110405_bib40) 2017; 122 Zhou (10.1016/j.buildenv.2023.110405_bib50) 2022; 226 Lugaresi (10.1016/j.buildenv.2023.110405_bib47) 2019 Pallubinsky (10.1016/j.buildenv.2023.110405_bib67) 2016; 113 Nadel (10.1016/j.buildenv.2023.110405_bib15) 1971; 31 Gao (10.1016/j.buildenv.2023.110405_bib48) 2023; 286 Chaudhuri (10.1016/j.buildenv.2023.110405_bib21) 2020; 170 He (10.1016/j.buildenv.2023.110405_bib27) 2023; 228 Khalid (10.1016/j.buildenv.2023.110405_bib61) 2014 Li (10.1016/j.buildenv.2023.110405_bib25) 2018; 176 Xie (10.1016/j.buildenv.2023.110405_bib22) 2020; 226 Luo (10.1016/j.buildenv.2023.110405_bib12) 2022; 220 Charkoudian (10.1016/j.buildenv.2023.110405_bib18) 2003; 78 (10.1016/j.buildenv.2023.110405_bib3) 2020 Du (10.1016/j.buildenv.2023.110405_bib8) 2022; 271 (10.1016/j.buildenv.2023.110405_bib45) 2000; 894 Cosma (10.1016/j.buildenv.2023.110405_bib28) 2018; 143 Wright (10.1016/j.buildenv.2023.110405_bib57) 1995 Zhang (10.1016/j.buildenv.2023.110405_bib55) 2022; 167 |
| References_xml | – volume: 226 year: 2022 ident: bib50 article-title: Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6 kPa) publication-title: Build. Environ. – volume: 113 start-page: 15 year: 2016 end-page: 22 ident: bib67 article-title: Local cooling in a warm environment publication-title: Energy Build. – volume: 226 year: 2020 ident: bib22 article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling publication-title: Energy Build. – volume: 160 year: 2019 ident: bib30 article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor publication-title: Build. Environ. – volume: 256 year: 2022 ident: bib56 article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges publication-title: Energy Build. – volume: 251 year: 2019 ident: bib26 article-title: Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras publication-title: Appl. Energy – volume: 8 start-page: 320 year: 2021 end-page: 341 ident: bib46 article-title: Human thermal perception and time of day: a review publication-title: Temperature – volume: 102 start-page: 471 year: 2008 end-page: 480 ident: bib35 article-title: Investigation of gender difference in thermal comfort for Chinese people publication-title: Eur. J. Appl. Physiol. – volume: 32 year: 2022 ident: bib62 article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China publication-title: Indoor Air – year: 2021 ident: bib6 article-title: Research on intelligent regulation of air conditioning energy saving based on human thermal comfort publication-title: J. Ambient Intell. Hum. Comput. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: bib58 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. – volume: 166 start-page: 391 year: 2018 end-page: 406 ident: bib63 article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology publication-title: Energy Build. – volume: 228 year: 2023 ident: bib49 article-title: Age differences in thermal comfort and physiological responses in thermal environments with temperature ramp publication-title: Build. Environ. – volume: 210 year: 2020 ident: bib54 article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II publication-title: Energy Build. – volume: 162 year: 2019 ident: bib11 article-title: Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings publication-title: Build. Environ. – start-page: 217 year: 1995 end-page: 244 ident: bib57 article-title: Logistic regression publication-title: Reading and Understanding Multivariate Statistics – volume: 109 start-page: 118 year: 2015 end-page: 130 ident: bib1 article-title: Energy consumption and efficiency in buildings: current status and future trends publication-title: J. Clean. Prod. – year: 2019 ident: bib47 article-title: MediaPipe: A Framework for Building Perception Pipelines – volume: 114 start-page: 1 year: 2017 end-page: 10 ident: bib20 article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions publication-title: Build. Environ. – volume: 109 start-page: 1 year: 2016 end-page: 11 ident: bib31 article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort publication-title: Build. Environ. – volume: 223 year: 2022 ident: bib14 article-title: Towards wearable thermal comfort assessment framework by analysis of heart rate variability publication-title: Build. Environ. – volume: 224 year: 2020 ident: bib23 article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review publication-title: Energy Build. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib53 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 1202 year: 2010 end-page: 1213 ident: bib44 article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. – volume: 225 year: 2022 ident: bib5 article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model publication-title: Build. Environ. – start-page: 372 year: 2014 end-page: 378 ident: bib61 article-title: A survey of feature selection and feature extraction techniques in machine learning publication-title: Science and Information Conference – volume: 204 year: 2021 ident: bib19 article-title: Local body skin temperature-driven thermal sensation predictive model for the occupant's optimum productivity publication-title: Build. Environ. – volume: 47 start-page: 878 year: 2013 end-page: 883 ident: bib37 article-title: Quantitative ultrasonography of facial muscles publication-title: Muscle Nerve – volume: 156 start-page: 117 year: 2019 end-page: 122 ident: bib72 article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures publication-title: Build. Environ. – volume: 150 start-page: 206 year: 2019 end-page: 218 ident: bib64 article-title: Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment publication-title: Build. Environ. – year: 2020 ident: bib3 article-title: ANSI/ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy – volume: 78 start-page: 603 year: 2003 end-page: 612 ident: bib18 article-title: Skin blood flow in adult human thermoregulation: how it works, when it does not, and why publication-title: Mayo Clin. Proc. – volume: 143 start-page: 36 year: 2018 end-page: 47 ident: bib28 article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera publication-title: Build. Environ. – volume: 285 year: 2023 ident: bib29 article-title: Development of personal comfort model and its use in the control of air conditioner publication-title: Energy Build. – volume: 41 start-page: 68 year: 1997 end-page: 75 ident: bib33 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. – volume: 135 start-page: 1 year: 2018 end-page: 9 ident: bib70 article-title: Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings publication-title: Build. Environ. – volume: 228 year: 2023 ident: bib27 article-title: Smart detection of indoor occupant thermal state via infrared thermography, computer vision, and machine learning publication-title: Build. Environ. – volume: 286 year: 2023 ident: bib48 article-title: Occupant's thermal responses to asymmetric radiant thermal environment with warm wall and cool ceiling, Part A: overall thermal responses publication-title: Energy Build. – volume: 4 year: 2001 ident: bib16 article-title: Gender differences in thermoregulation publication-title: Curr. Opin. Clin. Nutr. Metab. Care – year: 2020 ident: bib60 article-title: Pandas: a foundational Python library for data analysis and statistics – volume: 31 start-page: 80 year: 1971 end-page: 87 ident: bib15 article-title: Importance of skin temperature in the regulation of sweating publication-title: J. Appl. Physiol. – volume: 167 year: 2022 ident: bib55 article-title: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment publication-title: Renew. Sustain. Energy Rev. – volume: 121 start-page: 130 year: 2017 end-page: 147 ident: bib66 article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment publication-title: Build. Environ. – volume: 5 start-page: 77 year: 2016 end-page: 80 ident: bib17 article-title: Estrogenic modulation of female thermoregulatory behavior in a cold environment publication-title: J Phys Fit Sports Med – volume: 202 year: 2021 ident: bib2 article-title: Smart air supply terminal for floor-standing room air conditioners based on the identification of human positions publication-title: Build. Environ. – volume: 170 year: 2020 ident: bib21 article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature publication-title: Build. Environ. – volume: 19 year: 2019 ident: bib38 article-title: ThermalWrist: smartphone thermal camera correction using a wristband sensor publication-title: Sensors – volume: 111 year: 2023 ident: bib36 article-title: Gender differences in thermal sensation and skin temperature sensitivity under local cooling publication-title: J. Therm. Biol. – volume: 220 year: 2022 ident: bib12 article-title: Data-driven thermal preference prediction model with embodied air-conditioning sensors and historical usage behaviors publication-title: Build. Environ. – volume: 329 year: 2023 ident: bib13 article-title: Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature publication-title: Appl. Energy – volume: 229 year: 2023 ident: bib42 article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort publication-title: Build. Environ. – volume: 160 year: 2019 ident: bib10 article-title: Development of a human metabolic rate prediction model based on the use of Kinect-camera generated visual data-driven approaches publication-title: Build. Environ. – start-page: 72 year: 2017 end-page: 77 ident: bib9 article-title: Machine learning based prediction of thermal comfort in buildings of equatorial Singapore publication-title: IEEE International Conference on Smart Grid and Smart Cities – volume: 176 start-page: 246 year: 2018 end-page: 261 ident: bib34 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. – year: 1970 ident: bib7 article-title: Thermal Comfort. Analysis and Applications in Environmental engineering., Thermal Comfort. Analysis and Applications in Environmental Engineering – volume: 32 year: 2022 ident: bib39 article-title: Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28°C range publication-title: Indoor Air – volume: 894 year: 2000 ident: bib45 article-title: Obesity: preventing and managing the global epidemic. Report of a WHO consultation publication-title: World Health Organ. Tech. Rep. Ser. – volume: 284 year: 2023 ident: bib4 article-title: How do people set air conditioning temperature setpoint in urban domestic–Behavior model in Chinese three climate zones based on historical usage data publication-title: Energy Build. – volume: 176 start-page: 246 year: 2018 end-page: 261 ident: bib25 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. – volume: 90 start-page: 178 year: 2015 end-page: 185 ident: bib41 article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans publication-title: Build. Environ. – volume: 263 start-page: 679 year: 2017 end-page: 689 ident: bib51 article-title: Enhancing two-stage modelling methodology for loss given default with support vector machines publication-title: Eur. J. Oper. Res. – volume: 271 year: 2022 ident: bib8 article-title: Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database publication-title: Energy Build. – volume: 122 start-page: 247 year: 2017 end-page: 257 ident: bib40 article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels publication-title: Build. Environ. – volume: 251 year: 2021 ident: bib65 article-title: Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures publication-title: Energy Build. – volume: 342 year: 2022 ident: bib24 article-title: Advancements of uncooled infrared microbolometer materials: a review publication-title: Sens. Actuators A Phys. – volume: 207 year: 2022 ident: bib69 article-title: Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference publication-title: Build. Environ. – year: 2008 ident: bib43 publication-title: Design and Analysis of Experiments – volume: 118 start-page: 33 year: 2019 end-page: 45 ident: bib52 article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning publication-title: Decis. Support Syst. – volume: 138 start-page: 181 year: 2018 end-page: 193 ident: bib68 article-title: Individual difference in thermal comfort: a literature review publication-title: Build. Environ. – volume: 161 year: 2019 ident: bib71 article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application publication-title: Build. Environ. – volume: 112 year: 2023 ident: bib32 article-title: Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer publication-title: J. Therm. Biol. – start-page: 209 year: 2017 end-page: 212 ident: bib59 article-title: A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features publication-title: Artificial Intelligence and Signal Processing Conference – volume: 112 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib32 article-title: Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2022.103422 – volume: 113 start-page: 15 year: 2016 ident: 10.1016/j.buildenv.2023.110405_bib67 article-title: Local cooling in a warm environment publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.016 – volume: 286 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib48 article-title: Occupant's thermal responses to asymmetric radiant thermal environment with warm wall and cool ceiling, Part A: overall thermal responses publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.112950 – volume: 111 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib36 article-title: Gender differences in thermal sensation and skin temperature sensitivity under local cooling publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2022.103401 – volume: 160 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib30 article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106223 – volume: 226 year: 2020 ident: 10.1016/j.buildenv.2023.110405_bib22 article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110392 – volume: 24 start-page: 1565 year: 2006 ident: 10.1016/j.buildenv.2023.110405_bib58 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 224 year: 2020 ident: 10.1016/j.buildenv.2023.110405_bib23 article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110261 – volume: 143 start-page: 36 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib28 article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.06.052 – volume: 109 start-page: 118 year: 2015 ident: 10.1016/j.buildenv.2023.110405_bib1 article-title: Energy consumption and efficiency in buildings: current status and future trends publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.139 – volume: 31 start-page: 80 year: 1971 ident: 10.1016/j.buildenv.2023.110405_bib15 article-title: Importance of skin temperature in the regulation of sweating publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1971.31.1.80 – volume: 263 start-page: 679 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib51 article-title: Enhancing two-stage modelling methodology for loss given default with support vector machines publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.05.017 – volume: 156 start-page: 117 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib72 article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.04.012 – volume: 228 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib49 article-title: Age differences in thermal comfort and physiological responses in thermal environments with temperature ramp publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109887 – volume: 166 start-page: 391 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib63 article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.02.035 – volume: 138 start-page: 181 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib68 article-title: Individual difference in thermal comfort: a literature review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.04.040 – volume: 41 start-page: 68 year: 1997 ident: 10.1016/j.buildenv.2023.110405_bib33 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. doi: 10.1007/s004840050056 – volume: 202 year: 2021 ident: 10.1016/j.buildenv.2023.110405_bib2 article-title: Smart air supply terminal for floor-standing room air conditioners based on the identification of human positions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108041 – volume: 256 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib56 article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111771 – start-page: 217 year: 1995 ident: 10.1016/j.buildenv.2023.110405_bib57 article-title: Logistic regression – volume: 160 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib10 article-title: Development of a human metabolic rate prediction model based on the use of Kinect-camera generated visual data-driven approaches publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106216 – volume: 342 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib24 article-title: Advancements of uncooled infrared microbolometer materials: a review publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2022.113611 – volume: 4 year: 2001 ident: 10.1016/j.buildenv.2023.110405_bib16 article-title: Gender differences in thermoregulation publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 176 start-page: 246 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib25 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.07.025 – volume: 122 start-page: 247 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib40 article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.06.027 – volume: 176 start-page: 246 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib34 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.07.025 – volume: 150 start-page: 206 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib64 article-title: Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.01.007 – volume: 90 start-page: 178 year: 2015 ident: 10.1016/j.buildenv.2023.110405_bib41 article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.003 – ident: 10.1016/j.buildenv.2023.110405_bib60 – year: 1970 ident: 10.1016/j.buildenv.2023.110405_bib7 – volume: 271 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib8 article-title: Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112334 – start-page: 72 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib9 article-title: Machine learning based prediction of thermal comfort in buildings of equatorial Singapore – volume: 121 start-page: 130 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib66 article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.05.004 – start-page: 209 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib59 article-title: A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features – volume: 204 year: 2021 ident: 10.1016/j.buildenv.2023.110405_bib19 article-title: Local body skin temperature-driven thermal sensation predictive model for the occupant's optimum productivity publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108196 – volume: 210 year: 2020 ident: 10.1016/j.buildenv.2023.110405_bib54 article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.109776 – year: 2008 ident: 10.1016/j.buildenv.2023.110405_bib43 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.buildenv.2023.110405_bib53 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 229 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib42 article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109933 – volume: 251 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib26 article-title: Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113336 – volume: 32 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib39 article-title: Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28°C range publication-title: Indoor Air doi: 10.1111/ina.12916 – volume: 225 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib5 article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109576 – volume: 329 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib13 article-title: Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120283 – volume: 228 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib27 article-title: Smart detection of indoor occupant thermal state via infrared thermography, computer vision, and machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109811 – volume: 894 year: 2000 ident: 10.1016/j.buildenv.2023.110405_bib45 article-title: Obesity: preventing and managing the global epidemic. Report of a WHO consultation publication-title: World Health Organ. Tech. Rep. Ser. – start-page: 372 year: 2014 ident: 10.1016/j.buildenv.2023.110405_bib61 article-title: A survey of feature selection and feature extraction techniques in machine learning – volume: 251 year: 2021 ident: 10.1016/j.buildenv.2023.110405_bib65 article-title: Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111360 – volume: 78 start-page: 603 year: 2003 ident: 10.1016/j.buildenv.2023.110405_bib18 article-title: Skin blood flow in adult human thermoregulation: how it works, when it does not, and why publication-title: Mayo Clin. Proc. doi: 10.4065/78.5.603 – volume: 284 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib4 article-title: How do people set air conditioning temperature setpoint in urban domestic–Behavior model in Chinese three climate zones based on historical usage data publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.112856 – volume: 109 start-page: 1 year: 2016 ident: 10.1016/j.buildenv.2023.110405_bib31 article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.09.005 – volume: 207 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib69 article-title: Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108430 – volume: 45 start-page: 1202 year: 2010 ident: 10.1016/j.buildenv.2023.110405_bib44 article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.11.002 – volume: 220 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib12 article-title: Data-driven thermal preference prediction model with embodied air-conditioning sensors and historical usage behaviors publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109269 – volume: 223 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib14 article-title: Towards wearable thermal comfort assessment framework by analysis of heart rate variability publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109504 – volume: 170 year: 2020 ident: 10.1016/j.buildenv.2023.110405_bib21 article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106615 – volume: 47 start-page: 878 year: 2013 ident: 10.1016/j.buildenv.2023.110405_bib37 article-title: Quantitative ultrasonography of facial muscles publication-title: Muscle Nerve doi: 10.1002/mus.23693 – year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib47 – volume: 5 start-page: 77 year: 2016 ident: 10.1016/j.buildenv.2023.110405_bib17 article-title: Estrogenic modulation of female thermoregulatory behavior in a cold environment publication-title: J Phys Fit Sports Med doi: 10.7600/jpfsm.5.77 – year: 2020 ident: 10.1016/j.buildenv.2023.110405_bib3 – volume: 19 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib38 article-title: ThermalWrist: smartphone thermal camera correction using a wristband sensor publication-title: Sensors doi: 10.3390/s19183826 – volume: 118 start-page: 33 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib52 article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.01.002 – volume: 167 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib55 article-title: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112704 – volume: 161 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib71 article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106231 – volume: 102 start-page: 471 year: 2008 ident: 10.1016/j.buildenv.2023.110405_bib35 article-title: Investigation of gender difference in thermal comfort for Chinese people publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-007-0609-2 – volume: 226 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib50 article-title: Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6 kPa) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109774 – volume: 285 year: 2023 ident: 10.1016/j.buildenv.2023.110405_bib29 article-title: Development of personal comfort model and its use in the control of air conditioner publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.112900 – volume: 114 start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2023.110405_bib20 article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.12.005 – volume: 162 year: 2019 ident: 10.1016/j.buildenv.2023.110405_bib11 article-title: Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106284 – volume: 8 start-page: 320 year: 2021 ident: 10.1016/j.buildenv.2023.110405_bib46 article-title: Human thermal perception and time of day: a review publication-title: Temperature doi: 10.1080/23328940.2021.1976004 – year: 2021 ident: 10.1016/j.buildenv.2023.110405_bib6 article-title: Research on intelligent regulation of air conditioning energy saving based on human thermal comfort publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-021-02999-z – volume: 135 start-page: 1 year: 2018 ident: 10.1016/j.buildenv.2023.110405_bib70 article-title: Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.02.049 – volume: 32 year: 2022 ident: 10.1016/j.buildenv.2023.110405_bib62 article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China publication-title: Indoor Air doi: 10.1111/ina.13138 |
| SSID | ssj0016934 |
| Score | 2.4775062 |
| Snippet | Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110405 |
| SubjectTerms | Smart air conditioner Thermal image sensor Thermal sensation model Two-stage model |
| Title | Where should the thermal image sensor of a smart A/C look?-Occupant thermal sensation model based on thermal imaging data |
| URI | https://dx.doi.org/10.1016/j.buildenv.2023.110405 |
| Volume | 239 |
| WOSCitedRecordID | wos001007222600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZusN2GPtk3Rc6bCfj1pb8IZ9GKC3bDmXQDrJejC3J6UrilCQt6X-xP3nvSbJsWKEbYxeTiDwp0vtZek_vi5D3BdMiqht4kaqchUkMCkrFUhnWmmV10jQqVrbYRH58LKbT4uto9LOLhbme520rttvi8r-yGtqA2Rg6-xfs9p1CA3wGpsMT2A7PP2I8bK8rHazPsXa1EStRxFtgbo0F-uesQW9drmxY5HoB9MEEc-QGc5C2P_Cj0KYdbjeeDAksSkzVnADPPeVsDL5fvHBwYW69jdhV3Db2iUFAnfcBurmycSHYOuslansa9i1n55W5zz1D9_2--cSUIw6-L9vZFjA-G95fMO59Xd2lWhdY03sx2WCuKARF2e592u7NIudhJqxDZ7d5M5sK6beDwN5JXOzVOFWY4h4OjTEPSZT2R593SDzBAXE8xk2SQnGP7LA8LcSY7Ew-H06_eMtUVnCXksz-wUHU-e2j3S7wDISY08fkkdM-6MSi5gkZ6fYpeTjISfmM3Bj8UIsfCjymjs_U4Ida_NBlQytq8EMn-wcU0fPRY8eTeOxQgx1qsEPh67BPGJYidp6Tb0eHpwefQlefI5Q8ZptQ8VylDQiAScZVGmusLFBLmHWTJnEV1TLnXKlcRkJVmc4lyGONTBOlI4lJhzR_QcbtstUvCQUVT8BJwNDMnuQyE_CTtCpEUddMVHW2S9JuEUvpktdjDZV52XkpXpTd4pe4-KVd_F2y7-kubfqWOymKjkelE0KtcFkCtO6gffUPtK_Jg_7teEPGm9WVfkvuy-vNj_XqnUPhL-uAsXs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Where+should+the+thermal+image+sensor+of+a+smart+A%2FC+look%3F-Occupant+thermal+sensation+model+based+on+thermal+imaging+data&rft.jtitle=Building+and+environment&rft.au=Lyu%2C+Junmeng&rft.au=Du%2C+Heng&rft.au=Zhao%2C+Zisheng&rft.au=Shi%2C+Yongxiang&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=239&rft_id=info:doi/10.1016%2Fj.buildenv.2023.110405&rft.externalDocID=S0360132323004328 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |