Where should the thermal image sensor of a smart A/C look?-Occupant thermal sensation model based on thermal imaging data

Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment Vol. 239; p. 110405
Main Authors: Lyu, Junmeng, Du, Heng, Zhao, Zisheng, Shi, Yongxiang, Wang, Bo, Lian, Zhiwei
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2023
Subjects:
ISSN:0360-1323, 1873-684X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences in body surface temperature on thermal sensation response by gender, etc., which may have many limitations. Subject experiments were conducted in an artificial climate chamber to obtain subjective questionnaires and thermal images of the exposed frontal face, lateral face, top of the head, forearm, and hand dorsum of 27 subjects in this study. By applying machine learning classification algorithms and global optimal regression algorithms, the temperature collection zones that can accurately reflect the thermal sensation of both genders in each view were analyzed, and a two-stage thermal sensation assessment model applicable to multiple views was developed. Of the various imaging views, the frontal view of the face is the best, followed by the lateral view of the face, the top view of the head, and the forearm/hand dorsum view. For male and female, the mean absolute errors of the thermal sensation assessment model established were 0.41–0.49 and 0.50–0.53 thermal sensation units. In addition, gender differences were found in the response of head surface temperatures to thermal sensation. The results obtained can provide a reference for the application of thermal image sensor to smart air conditioners. [Display omitted] •For evaluating thermal sensation using thermal image sensor, front view is the best.•Two-stage model is developed by combining machine learning classifier with regression.•The model evaluates thermal sensation via thermal imaging for smart air conditioner.•The model takes into account gender differences in surface temperature sensitivity.•The mean absolute error of the model is less than 0.5 thermal sensation units.
AbstractList Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs while saving energy. The existing studies are mostly based on single-view imaging to build the model and ignore the possible differences in body surface temperature on thermal sensation response by gender, etc., which may have many limitations. Subject experiments were conducted in an artificial climate chamber to obtain subjective questionnaires and thermal images of the exposed frontal face, lateral face, top of the head, forearm, and hand dorsum of 27 subjects in this study. By applying machine learning classification algorithms and global optimal regression algorithms, the temperature collection zones that can accurately reflect the thermal sensation of both genders in each view were analyzed, and a two-stage thermal sensation assessment model applicable to multiple views was developed. Of the various imaging views, the frontal view of the face is the best, followed by the lateral view of the face, the top view of the head, and the forearm/hand dorsum view. For male and female, the mean absolute errors of the thermal sensation assessment model established were 0.41–0.49 and 0.50–0.53 thermal sensation units. In addition, gender differences were found in the response of head surface temperatures to thermal sensation. The results obtained can provide a reference for the application of thermal image sensor to smart air conditioners. [Display omitted] •For evaluating thermal sensation using thermal image sensor, front view is the best.•Two-stage model is developed by combining machine learning classifier with regression.•The model evaluates thermal sensation via thermal imaging for smart air conditioner.•The model takes into account gender differences in surface temperature sensitivity.•The mean absolute error of the model is less than 0.5 thermal sensation units.
ArticleNumber 110405
Author Du, Heng
Wang, Bo
Shi, Yongxiang
Lyu, Junmeng
Zhao, Zisheng
Lian, Zhiwei
Author_xml – sequence: 1
  givenname: Junmeng
  surname: Lyu
  fullname: Lyu, Junmeng
  organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 2
  givenname: Heng
  surname: Du
  fullname: Du, Heng
  organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 3
  givenname: Zisheng
  surname: Zhao
  fullname: Zhao, Zisheng
  organization: Guangdong Midea Air-Conditioning Equipment Co., Ltd, Guangdong, 528311, China
– sequence: 4
  givenname: Yongxiang
  surname: Shi
  fullname: Shi, Yongxiang
  organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 5
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Guangdong Midea Air-Conditioning Equipment Co., Ltd, Guangdong, 528311, China
– sequence: 6
  givenname: Zhiwei
  orcidid: 0000-0003-0043-4127
  surname: Lian
  fullname: Lian, Zhiwei
  email: zwlian@sjtu.edu.cn
  organization: School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
BookMark eNqFkN9KwzAUxoNMcJu-guQF2iVN03Yg6Bj-g8FuFL0LaXK6ZbbNSLLB3t7WqYg3uzgcDuf8Ps73jdCgtS0gdE1JTAnNJpu43JlaQ7uPE5KwmFKSEn6GhrTIWZQV6fsADQnLSERZwi7QyPsN6cApS4fo8LYGB9iv7a7WOKyhL9fIGptGrroFtN46bCsssW-kC3g2mePa2o_baKnUbivb8Iv0xzIY2-LGaqhxKT1o3I1_NU27wloGeYnOK1l7uPruY_T6cP8yf4oWy8fn-WwRKUaTEGmWa15RnqQZ05wCJwUrVeex4imVpFQ5Y1rnihRaZpArBVApnmogipNpBmyMbo66ylnvHVRCmfD1ZXDS1IIS0ccoNuInRtHHKI4xdnj2D9-6zoY7nAbvjiB05vYGnPDKQKtAGwcqCG3NKYlPrJ2VKA
CitedBy_id crossref_primary_10_1016_j_jobe_2023_108134
crossref_primary_10_1016_j_buildenv_2023_110958
crossref_primary_10_1016_j_buildenv_2023_110949
crossref_primary_10_1016_j_buildenv_2025_113523
crossref_primary_10_1016_j_jobe_2024_111519
crossref_primary_10_1016_j_buildenv_2024_111727
crossref_primary_10_1016_j_enbuild_2025_116408
crossref_primary_10_1177_1420326X251333153
crossref_primary_10_1016_j_buildenv_2025_112824
crossref_primary_10_1016_j_enbuild_2025_115566
crossref_primary_10_1007_s12273_024_1147_0
crossref_primary_10_1016_j_enbuild_2024_115019
crossref_primary_10_1016_j_buildenv_2023_111002
crossref_primary_10_1016_j_buildenv_2023_111079
crossref_primary_10_1016_j_buildenv_2024_111692
Cites_doi 10.1016/j.jtherbio.2022.103422
10.1016/j.enbuild.2015.12.016
10.1016/j.enbuild.2023.112950
10.1016/j.jtherbio.2022.103401
10.1016/j.buildenv.2019.106223
10.1016/j.enbuild.2020.110392
10.1038/nbt1206-1565
10.1016/j.enbuild.2020.110261
10.1016/j.buildenv.2018.06.052
10.1016/j.jclepro.2015.05.139
10.1152/jappl.1971.31.1.80
10.1016/j.ejor.2017.05.017
10.1016/j.buildenv.2019.04.012
10.1016/j.buildenv.2022.109887
10.1016/j.enbuild.2018.02.035
10.1016/j.buildenv.2018.04.040
10.1007/s004840050056
10.1016/j.buildenv.2021.108041
10.1016/j.enbuild.2021.111771
10.1016/j.buildenv.2019.106216
10.1016/j.sna.2022.113611
10.1016/j.enbuild.2018.07.025
10.1016/j.buildenv.2017.06.027
10.1016/j.buildenv.2019.01.007
10.1016/j.buildenv.2015.04.003
10.1016/j.enbuild.2022.112334
10.1016/j.buildenv.2017.05.004
10.1016/j.buildenv.2021.108196
10.1016/j.enbuild.2020.109776
10.1016/j.buildenv.2022.109933
10.1016/j.apenergy.2019.113336
10.1111/ina.12916
10.1016/j.buildenv.2022.109576
10.1016/j.apenergy.2022.120283
10.1016/j.buildenv.2022.109811
10.1016/j.enbuild.2021.111360
10.4065/78.5.603
10.1016/j.enbuild.2023.112856
10.1016/j.buildenv.2016.09.005
10.1016/j.buildenv.2021.108430
10.1016/j.buildenv.2009.11.002
10.1016/j.buildenv.2022.109269
10.1016/j.buildenv.2022.109504
10.1016/j.buildenv.2019.106615
10.1002/mus.23693
10.7600/jpfsm.5.77
10.3390/s19183826
10.1016/j.dss.2019.01.002
10.1016/j.rser.2022.112704
10.1016/j.buildenv.2019.106231
10.1007/s00421-007-0609-2
10.1016/j.buildenv.2022.109774
10.1016/j.enbuild.2023.112900
10.1016/j.buildenv.2016.12.005
10.1016/j.buildenv.2019.106284
10.1080/23328940.2021.1976004
10.1007/s12652-021-02999-z
10.1016/j.buildenv.2018.02.049
10.1111/ina.13138
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2023.110405
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2023_110405
S0360132323004328
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c312t-d37d5f152463d51e5083bc110f541a0bc733dd7c08da6e7cceefc54de0c5096e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007222600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Sat Nov 29 07:20:53 EST 2025
Tue Nov 18 21:20:27 EST 2025
Fri Feb 23 02:35:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal sensation model
Thermal image sensor
Two-stage model
Smart air conditioner
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-d37d5f152463d51e5083bc110f541a0bc733dd7c08da6e7cceefc54de0c5096e3
ORCID 0000-0003-0043-4127
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2023_110405
crossref_primary_10_1016_j_buildenv_2023_110405
elsevier_sciencedirect_doi_10_1016_j_buildenv_2023_110405
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nadel, Bullard, Stolwijk (bib15) 1971; 31
He, Zhang, Arens, Merritt, Huizenga, Levinson, Wang, Ghahramani, Alvarez-Suarez (bib27) 2023; 228
Lan, Tang, Wargocki, Wyon, Lian (bib39) 2022; 32
Noble (bib58) 2006; 24
Volk, Wystub, Pohlmann, Finkensieper, Chalmers, Guntinas-Lichius (bib37) 2013; 47
Wu, Zhang, Liu, Li, Chen, Kosonen, Jokisalo (bib49) 2023; 228
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib53) 2011; 12
Qavidel Fard, Zomorodian, Korsavi (bib56) 2022; 256
Uchida, Nagashima, Marui (bib17) 2016; 5
Zhou, Jiao, Chen, Sun, Ding, Ao (bib50) 2022; 226
Choi, Yeom (bib66) 2017; 121
Yang, Li, Hou, Meier, Cheng, Choi, Wang, Wang, Wagner, Yan, Li, Olofsson, Li (bib23) 2020; 224
Aryal, Becerik-Gerber (bib30) 2019; 160
Tian, Xu, Liu (bib32) 2023; 112
Zhai, Zhang, Zhang, Pasut, Arens, Meng (bib41) 2015; 90
Luo, Xie, Yan, Ke, Yu, Wang, Zhang (bib54) 2020; 210
Zhao, Lyu, Du, Lian, Zhao (bib36) 2023; 111
Chaudhuri, Zhai, Soh, Li, Xie (bib63) 2018; 166
Fanger (bib7) 1970
Xiong, Ma, Lian, de Dear (bib72) 2019; 156
Ghahramani, Castro, Becerik-Gerber, Yu (bib31) 2016; 109
Na, Choi, Kim, Kim (bib10) 2019; 160
Li, Menassa, Kamat (bib34) 2018; 176
Luo, Jiang, Wang, Feng, Ma, Shi, Zhou (bib12) 2022; 220
Wang, Matsuhashi, Onodera (bib13) 2023; 329
Yadav, Yadav, Ajitha, Rajasekar, Gupta, Ashok Kumar Reddy (bib24) 2022; 342
(bib3) 2020
Lyu, Li, Zhao, Miao, Du, Lai, Yang, Lian (bib4) 2023; 284
Chaudhuri, Soh, Li, Xie (bib21) 2020; 170
Yang, Zhao, Gao, Zhang, Arens, Zhai (bib65) 2021; 251
Cosma, Simha (bib28) 2018; 143
Wright (bib57) 1995
Khalid, Khalil, Nasreen (bib61) 2014
Choi, Yeom (bib64) 2019; 150
Kaciuba-Uscilko, Grucza (bib16) 2001; 4
Lugaresi, Tang, Nash, McClanahan, Uboweja, Hays, Zhang, Chang, Yong, Lee, Chang, Hua, Georg, Grundmann (bib47) 2019
Montgomery (bib43) 2008
Xie, Li, Li, Zhang, Luo (bib22) 2020; 226
Wang, Yu, Luo, Wang, Zhang, Jiao (bib71) 2019; 161
Jahromi, Taheri (bib59) 2017
Li, Menassa, Kamat (bib26) 2019; 251
Yoshikawa, Uchiyama, Higashino (bib38) 2019; 19
Yang, Cheng, Dai, Olofsson, Li, Meier (bib11) 2019; 162
Lan, Lian (bib44) 2010; 45
Vellei, Chinazzo, Zitting, Hubbard (bib46) 2021; 8
Rupp, Kim, de Dear, Ghisi (bib70) 2018; 135
Yao, Crook, Andreeva (bib51) 2017; 263
(bib45) 2000; 894
Zhang, Gao, Liu, Liu, Wang, Zhu, Zhou, Li (bib2) 2021; 202
Choi, Miki, Sagawa, Shiraki (bib33) 1997; 41
Hou, Ma, Kwok, Cheng (bib5) 2022; 225
Zhang, Wu, Calautit (bib55) 2022; 167
Allouhi, El Fouih, Kousksou, Jamil, Zeraouli, Mourad (bib1) 2015; 109
Papouskova, Hajek (bib52) 2019; 118
Tian, Yu, Liu (bib62) 2022; 32
Chaudhuri, Soh, Li, Xie (bib9) 2017
Li, Menassa, Kamat (bib25) 2018; 176
Zhai, Arens, Elsworth, Zhang (bib40) 2017; 122
Wang, Matsuhashi, Onodera (bib14) 2022; 223
Yeom, Delogu (bib19) 2021; 204
Lan, Lian, Liu, Liu (bib35) 2008; 102
Pallubinsky, Schellen, Rieswijk, Breukel, Kingma, van Marken Lichtenbelt (bib67) 2016; 113
Ji, de Dear, Kim, Zhu, Cao, Liu (bib69) 2022; 207
Du, Lian, Lai, Duanmu, Zhai, Cao, Zhang, Zhou, Wang, Zhang, Hou (bib8) 2022; 271
Charkoudian (bib18) 2003; 78
Wang, Liu, Xiong, Wu, Zhang (bib6) 2021
Wang, de Dear, Luo, Lin, He, Ghahramani, Zhu (bib68) 2018; 138
Zhou, Zhang, Xie, Liu (bib42) 2023; 229
Dai, Zhang, Arens, Lian (bib20) 2017; 114
Gao, Liu, Wu, Liu, Wu, Tian, Li, Lv (bib48) 2023; 286
Wu, Cao, Hu, Lv, Meng, Zhang (bib29) 2023; 285
McKinney (bib60) 2020
Wu (10.1016/j.buildenv.2023.110405_bib49) 2023; 228
Jahromi (10.1016/j.buildenv.2023.110405_bib59) 2017
Lan (10.1016/j.buildenv.2023.110405_bib39) 2022; 32
Noble (10.1016/j.buildenv.2023.110405_bib58) 2006; 24
Vellei (10.1016/j.buildenv.2023.110405_bib46) 2021; 8
Hou (10.1016/j.buildenv.2023.110405_bib5) 2022; 225
Lan (10.1016/j.buildenv.2023.110405_bib35) 2008; 102
Aryal (10.1016/j.buildenv.2023.110405_bib30) 2019; 160
Pedregosa (10.1016/j.buildenv.2023.110405_bib53) 2011; 12
Wang (10.1016/j.buildenv.2023.110405_bib14) 2022; 223
Montgomery (10.1016/j.buildenv.2023.110405_bib43) 2008
Choi (10.1016/j.buildenv.2023.110405_bib33) 1997; 41
Tian (10.1016/j.buildenv.2023.110405_bib32) 2023; 112
Wang (10.1016/j.buildenv.2023.110405_bib13) 2023; 329
Uchida (10.1016/j.buildenv.2023.110405_bib17) 2016; 5
Yang (10.1016/j.buildenv.2023.110405_bib23) 2020; 224
Papouskova (10.1016/j.buildenv.2023.110405_bib52) 2019; 118
Yoshikawa (10.1016/j.buildenv.2023.110405_bib38) 2019; 19
Zhou (10.1016/j.buildenv.2023.110405_bib42) 2023; 229
Qavidel Fard (10.1016/j.buildenv.2023.110405_bib56) 2022; 256
Choi (10.1016/j.buildenv.2023.110405_bib64) 2019; 150
Wang (10.1016/j.buildenv.2023.110405_bib68) 2018; 138
Li (10.1016/j.buildenv.2023.110405_bib26) 2019; 251
Ji (10.1016/j.buildenv.2023.110405_bib69) 2022; 207
Wang (10.1016/j.buildenv.2023.110405_bib6) 2021
Lyu (10.1016/j.buildenv.2023.110405_bib4) 2023; 284
Yadav (10.1016/j.buildenv.2023.110405_bib24) 2022; 342
Yao (10.1016/j.buildenv.2023.110405_bib51) 2017; 263
Zhang (10.1016/j.buildenv.2023.110405_bib2) 2021; 202
Allouhi (10.1016/j.buildenv.2023.110405_bib1) 2015; 109
Volk (10.1016/j.buildenv.2023.110405_bib37) 2013; 47
Choi (10.1016/j.buildenv.2023.110405_bib66) 2017; 121
Yang (10.1016/j.buildenv.2023.110405_bib65) 2021; 251
Zhao (10.1016/j.buildenv.2023.110405_bib36) 2023; 111
Yang (10.1016/j.buildenv.2023.110405_bib11) 2019; 162
Wu (10.1016/j.buildenv.2023.110405_bib29) 2023; 285
Zhai (10.1016/j.buildenv.2023.110405_bib41) 2015; 90
Fanger (10.1016/j.buildenv.2023.110405_bib7) 1970
Lan (10.1016/j.buildenv.2023.110405_bib44) 2010; 45
Xiong (10.1016/j.buildenv.2023.110405_bib72) 2019; 156
Yeom (10.1016/j.buildenv.2023.110405_bib19) 2021; 204
Tian (10.1016/j.buildenv.2023.110405_bib62) 2022; 32
Kaciuba-Uscilko (10.1016/j.buildenv.2023.110405_bib16) 2001; 4
Na (10.1016/j.buildenv.2023.110405_bib10) 2019; 160
Wang (10.1016/j.buildenv.2023.110405_bib71) 2019; 161
Luo (10.1016/j.buildenv.2023.110405_bib54) 2020; 210
McKinney (10.1016/j.buildenv.2023.110405_bib60)
Chaudhuri (10.1016/j.buildenv.2023.110405_bib63) 2018; 166
Rupp (10.1016/j.buildenv.2023.110405_bib70) 2018; 135
Chaudhuri (10.1016/j.buildenv.2023.110405_bib9) 2017
Li (10.1016/j.buildenv.2023.110405_bib34) 2018; 176
Dai (10.1016/j.buildenv.2023.110405_bib20) 2017; 114
Ghahramani (10.1016/j.buildenv.2023.110405_bib31) 2016; 109
Zhai (10.1016/j.buildenv.2023.110405_bib40) 2017; 122
Zhou (10.1016/j.buildenv.2023.110405_bib50) 2022; 226
Lugaresi (10.1016/j.buildenv.2023.110405_bib47) 2019
Pallubinsky (10.1016/j.buildenv.2023.110405_bib67) 2016; 113
Nadel (10.1016/j.buildenv.2023.110405_bib15) 1971; 31
Gao (10.1016/j.buildenv.2023.110405_bib48) 2023; 286
Chaudhuri (10.1016/j.buildenv.2023.110405_bib21) 2020; 170
He (10.1016/j.buildenv.2023.110405_bib27) 2023; 228
Khalid (10.1016/j.buildenv.2023.110405_bib61) 2014
Li (10.1016/j.buildenv.2023.110405_bib25) 2018; 176
Xie (10.1016/j.buildenv.2023.110405_bib22) 2020; 226
Luo (10.1016/j.buildenv.2023.110405_bib12) 2022; 220
Charkoudian (10.1016/j.buildenv.2023.110405_bib18) 2003; 78
(10.1016/j.buildenv.2023.110405_bib3) 2020
Du (10.1016/j.buildenv.2023.110405_bib8) 2022; 271
(10.1016/j.buildenv.2023.110405_bib45) 2000; 894
Cosma (10.1016/j.buildenv.2023.110405_bib28) 2018; 143
Wright (10.1016/j.buildenv.2023.110405_bib57) 1995
Zhang (10.1016/j.buildenv.2023.110405_bib55) 2022; 167
References_xml – volume: 226
  year: 2022
  ident: bib50
  article-title: Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6 kPa)
  publication-title: Build. Environ.
– volume: 113
  start-page: 15
  year: 2016
  end-page: 22
  ident: bib67
  article-title: Local cooling in a warm environment
  publication-title: Energy Build.
– volume: 226
  year: 2020
  ident: bib22
  article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling
  publication-title: Energy Build.
– volume: 160
  year: 2019
  ident: bib30
  article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor
  publication-title: Build. Environ.
– volume: 256
  year: 2022
  ident: bib56
  article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges
  publication-title: Energy Build.
– volume: 251
  year: 2019
  ident: bib26
  article-title: Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras
  publication-title: Appl. Energy
– volume: 8
  start-page: 320
  year: 2021
  end-page: 341
  ident: bib46
  article-title: Human thermal perception and time of day: a review
  publication-title: Temperature
– volume: 102
  start-page: 471
  year: 2008
  end-page: 480
  ident: bib35
  article-title: Investigation of gender difference in thermal comfort for Chinese people
  publication-title: Eur. J. Appl. Physiol.
– volume: 32
  year: 2022
  ident: bib62
  article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China
  publication-title: Indoor Air
– year: 2021
  ident: bib6
  article-title: Research on intelligent regulation of air conditioning energy saving based on human thermal comfort
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: bib58
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 166
  start-page: 391
  year: 2018
  end-page: 406
  ident: bib63
  article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
  publication-title: Energy Build.
– volume: 228
  year: 2023
  ident: bib49
  article-title: Age differences in thermal comfort and physiological responses in thermal environments with temperature ramp
  publication-title: Build. Environ.
– volume: 210
  year: 2020
  ident: bib54
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energy Build.
– volume: 162
  year: 2019
  ident: bib11
  article-title: Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings
  publication-title: Build. Environ.
– start-page: 217
  year: 1995
  end-page: 244
  ident: bib57
  article-title: Logistic regression
  publication-title: Reading and Understanding Multivariate Statistics
– volume: 109
  start-page: 118
  year: 2015
  end-page: 130
  ident: bib1
  article-title: Energy consumption and efficiency in buildings: current status and future trends
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib47
  article-title: MediaPipe: A Framework for Building Perception Pipelines
– volume: 114
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib20
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
– volume: 109
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib31
  article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort
  publication-title: Build. Environ.
– volume: 223
  year: 2022
  ident: bib14
  article-title: Towards wearable thermal comfort assessment framework by analysis of heart rate variability
  publication-title: Build. Environ.
– volume: 224
  year: 2020
  ident: bib23
  article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review
  publication-title: Energy Build.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib53
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 1202
  year: 2010
  end-page: 1213
  ident: bib44
  article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
– volume: 225
  year: 2022
  ident: bib5
  article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model
  publication-title: Build. Environ.
– start-page: 372
  year: 2014
  end-page: 378
  ident: bib61
  article-title: A survey of feature selection and feature extraction techniques in machine learning
  publication-title: Science and Information Conference
– volume: 204
  year: 2021
  ident: bib19
  article-title: Local body skin temperature-driven thermal sensation predictive model for the occupant's optimum productivity
  publication-title: Build. Environ.
– volume: 47
  start-page: 878
  year: 2013
  end-page: 883
  ident: bib37
  article-title: Quantitative ultrasonography of facial muscles
  publication-title: Muscle Nerve
– volume: 156
  start-page: 117
  year: 2019
  end-page: 122
  ident: bib72
  article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures
  publication-title: Build. Environ.
– volume: 150
  start-page: 206
  year: 2019
  end-page: 218
  ident: bib64
  article-title: Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment
  publication-title: Build. Environ.
– year: 2020
  ident: bib3
  article-title: ANSI/ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy
– volume: 78
  start-page: 603
  year: 2003
  end-page: 612
  ident: bib18
  article-title: Skin blood flow in adult human thermoregulation: how it works, when it does not, and why
  publication-title: Mayo Clin. Proc.
– volume: 143
  start-page: 36
  year: 2018
  end-page: 47
  ident: bib28
  article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera
  publication-title: Build. Environ.
– volume: 285
  year: 2023
  ident: bib29
  article-title: Development of personal comfort model and its use in the control of air conditioner
  publication-title: Energy Build.
– volume: 41
  start-page: 68
  year: 1997
  end-page: 75
  ident: bib33
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
– volume: 135
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib70
  article-title: Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings
  publication-title: Build. Environ.
– volume: 228
  year: 2023
  ident: bib27
  article-title: Smart detection of indoor occupant thermal state via infrared thermography, computer vision, and machine learning
  publication-title: Build. Environ.
– volume: 286
  year: 2023
  ident: bib48
  article-title: Occupant's thermal responses to asymmetric radiant thermal environment with warm wall and cool ceiling, Part A: overall thermal responses
  publication-title: Energy Build.
– volume: 4
  year: 2001
  ident: bib16
  article-title: Gender differences in thermoregulation
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– year: 2020
  ident: bib60
  article-title: Pandas: a foundational Python library for data analysis and statistics
– volume: 31
  start-page: 80
  year: 1971
  end-page: 87
  ident: bib15
  article-title: Importance of skin temperature in the regulation of sweating
  publication-title: J. Appl. Physiol.
– volume: 167
  year: 2022
  ident: bib55
  article-title: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment
  publication-title: Renew. Sustain. Energy Rev.
– volume: 121
  start-page: 130
  year: 2017
  end-page: 147
  ident: bib66
  article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment
  publication-title: Build. Environ.
– volume: 5
  start-page: 77
  year: 2016
  end-page: 80
  ident: bib17
  article-title: Estrogenic modulation of female thermoregulatory behavior in a cold environment
  publication-title: J Phys Fit Sports Med
– volume: 202
  year: 2021
  ident: bib2
  article-title: Smart air supply terminal for floor-standing room air conditioners based on the identification of human positions
  publication-title: Build. Environ.
– volume: 170
  year: 2020
  ident: bib21
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
– volume: 19
  year: 2019
  ident: bib38
  article-title: ThermalWrist: smartphone thermal camera correction using a wristband sensor
  publication-title: Sensors
– volume: 111
  year: 2023
  ident: bib36
  article-title: Gender differences in thermal sensation and skin temperature sensitivity under local cooling
  publication-title: J. Therm. Biol.
– volume: 220
  year: 2022
  ident: bib12
  article-title: Data-driven thermal preference prediction model with embodied air-conditioning sensors and historical usage behaviors
  publication-title: Build. Environ.
– volume: 329
  year: 2023
  ident: bib13
  article-title: Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature
  publication-title: Appl. Energy
– volume: 229
  year: 2023
  ident: bib42
  article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Environ.
– volume: 160
  year: 2019
  ident: bib10
  article-title: Development of a human metabolic rate prediction model based on the use of Kinect-camera generated visual data-driven approaches
  publication-title: Build. Environ.
– start-page: 72
  year: 2017
  end-page: 77
  ident: bib9
  article-title: Machine learning based prediction of thermal comfort in buildings of equatorial Singapore
  publication-title: IEEE International Conference on Smart Grid and Smart Cities
– volume: 176
  start-page: 246
  year: 2018
  end-page: 261
  ident: bib34
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
– year: 1970
  ident: bib7
  article-title: Thermal Comfort. Analysis and Applications in Environmental engineering., Thermal Comfort. Analysis and Applications in Environmental Engineering
– volume: 32
  year: 2022
  ident: bib39
  article-title: Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28°C range
  publication-title: Indoor Air
– volume: 894
  year: 2000
  ident: bib45
  article-title: Obesity: preventing and managing the global epidemic. Report of a WHO consultation
  publication-title: World Health Organ. Tech. Rep. Ser.
– volume: 284
  year: 2023
  ident: bib4
  article-title: How do people set air conditioning temperature setpoint in urban domestic–Behavior model in Chinese three climate zones based on historical usage data
  publication-title: Energy Build.
– volume: 176
  start-page: 246
  year: 2018
  end-page: 261
  ident: bib25
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
– volume: 90
  start-page: 178
  year: 2015
  end-page: 185
  ident: bib41
  article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans
  publication-title: Build. Environ.
– volume: 263
  start-page: 679
  year: 2017
  end-page: 689
  ident: bib51
  article-title: Enhancing two-stage modelling methodology for loss given default with support vector machines
  publication-title: Eur. J. Oper. Res.
– volume: 271
  year: 2022
  ident: bib8
  article-title: Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database
  publication-title: Energy Build.
– volume: 122
  start-page: 247
  year: 2017
  end-page: 257
  ident: bib40
  article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels
  publication-title: Build. Environ.
– volume: 251
  year: 2021
  ident: bib65
  article-title: Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures
  publication-title: Energy Build.
– volume: 342
  year: 2022
  ident: bib24
  article-title: Advancements of uncooled infrared microbolometer materials: a review
  publication-title: Sens. Actuators A Phys.
– volume: 207
  year: 2022
  ident: bib69
  article-title: Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference
  publication-title: Build. Environ.
– year: 2008
  ident: bib43
  publication-title: Design and Analysis of Experiments
– volume: 118
  start-page: 33
  year: 2019
  end-page: 45
  ident: bib52
  article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning
  publication-title: Decis. Support Syst.
– volume: 138
  start-page: 181
  year: 2018
  end-page: 193
  ident: bib68
  article-title: Individual difference in thermal comfort: a literature review
  publication-title: Build. Environ.
– volume: 161
  year: 2019
  ident: bib71
  article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application
  publication-title: Build. Environ.
– volume: 112
  year: 2023
  ident: bib32
  article-title: Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer
  publication-title: J. Therm. Biol.
– start-page: 209
  year: 2017
  end-page: 212
  ident: bib59
  article-title: A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features
  publication-title: Artificial Intelligence and Signal Processing Conference
– volume: 112
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib32
  article-title: Facial skin temperature and overall thermal sensation of sub-tropically acclimated Chinese subjects in summer
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2022.103422
– volume: 113
  start-page: 15
  year: 2016
  ident: 10.1016/j.buildenv.2023.110405_bib67
  article-title: Local cooling in a warm environment
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.016
– volume: 286
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib48
  article-title: Occupant's thermal responses to asymmetric radiant thermal environment with warm wall and cool ceiling, Part A: overall thermal responses
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112950
– volume: 111
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib36
  article-title: Gender differences in thermal sensation and skin temperature sensitivity under local cooling
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2022.103401
– volume: 160
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib30
  article-title: A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106223
– volume: 226
  year: 2020
  ident: 10.1016/j.buildenv.2023.110405_bib22
  article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110392
– volume: 24
  start-page: 1565
  year: 2006
  ident: 10.1016/j.buildenv.2023.110405_bib58
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 224
  year: 2020
  ident: 10.1016/j.buildenv.2023.110405_bib23
  article-title: Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110261
– volume: 143
  start-page: 36
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib28
  article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.052
– volume: 109
  start-page: 118
  year: 2015
  ident: 10.1016/j.buildenv.2023.110405_bib1
  article-title: Energy consumption and efficiency in buildings: current status and future trends
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.139
– volume: 31
  start-page: 80
  year: 1971
  ident: 10.1016/j.buildenv.2023.110405_bib15
  article-title: Importance of skin temperature in the regulation of sweating
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1971.31.1.80
– volume: 263
  start-page: 679
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib51
  article-title: Enhancing two-stage modelling methodology for loss given default with support vector machines
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.05.017
– volume: 156
  start-page: 117
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib72
  article-title: Perceptual and physiological responses of elderly subjects to moderate temperatures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.04.012
– volume: 228
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib49
  article-title: Age differences in thermal comfort and physiological responses in thermal environments with temperature ramp
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109887
– volume: 166
  start-page: 391
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib63
  article-title: Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.035
– volume: 138
  start-page: 181
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib68
  article-title: Individual difference in thermal comfort: a literature review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.04.040
– volume: 41
  start-page: 68
  year: 1997
  ident: 10.1016/j.buildenv.2023.110405_bib33
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840050056
– volume: 202
  year: 2021
  ident: 10.1016/j.buildenv.2023.110405_bib2
  article-title: Smart air supply terminal for floor-standing room air conditioners based on the identification of human positions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108041
– volume: 256
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib56
  article-title: Application of machine learning in thermal comfort studies: a review of methods, performance and challenges
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111771
– start-page: 217
  year: 1995
  ident: 10.1016/j.buildenv.2023.110405_bib57
  article-title: Logistic regression
– volume: 160
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib10
  article-title: Development of a human metabolic rate prediction model based on the use of Kinect-camera generated visual data-driven approaches
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106216
– volume: 342
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib24
  article-title: Advancements of uncooled infrared microbolometer materials: a review
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2022.113611
– volume: 4
  year: 2001
  ident: 10.1016/j.buildenv.2023.110405_bib16
  article-title: Gender differences in thermoregulation
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 176
  start-page: 246
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib25
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.07.025
– volume: 122
  start-page: 247
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib40
  article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.06.027
– volume: 176
  start-page: 246
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib34
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.07.025
– volume: 150
  start-page: 206
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib64
  article-title: Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.01.007
– volume: 90
  start-page: 178
  year: 2015
  ident: 10.1016/j.buildenv.2023.110405_bib41
  article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.003
– ident: 10.1016/j.buildenv.2023.110405_bib60
– year: 1970
  ident: 10.1016/j.buildenv.2023.110405_bib7
– volume: 271
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib8
  article-title: Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112334
– start-page: 72
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib9
  article-title: Machine learning based prediction of thermal comfort in buildings of equatorial Singapore
– volume: 121
  start-page: 130
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib66
  article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.05.004
– start-page: 209
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib59
  article-title: A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features
– volume: 204
  year: 2021
  ident: 10.1016/j.buildenv.2023.110405_bib19
  article-title: Local body skin temperature-driven thermal sensation predictive model for the occupant's optimum productivity
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108196
– volume: 210
  year: 2020
  ident: 10.1016/j.buildenv.2023.110405_bib54
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109776
– year: 2008
  ident: 10.1016/j.buildenv.2023.110405_bib43
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.buildenv.2023.110405_bib53
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 229
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib42
  article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109933
– volume: 251
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib26
  article-title: Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113336
– volume: 32
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib39
  article-title: Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28°C range
  publication-title: Indoor Air
  doi: 10.1111/ina.12916
– volume: 225
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib5
  article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109576
– volume: 329
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib13
  article-title: Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120283
– volume: 228
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib27
  article-title: Smart detection of indoor occupant thermal state via infrared thermography, computer vision, and machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109811
– volume: 894
  year: 2000
  ident: 10.1016/j.buildenv.2023.110405_bib45
  article-title: Obesity: preventing and managing the global epidemic. Report of a WHO consultation
  publication-title: World Health Organ. Tech. Rep. Ser.
– start-page: 372
  year: 2014
  ident: 10.1016/j.buildenv.2023.110405_bib61
  article-title: A survey of feature selection and feature extraction techniques in machine learning
– volume: 251
  year: 2021
  ident: 10.1016/j.buildenv.2023.110405_bib65
  article-title: Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111360
– volume: 78
  start-page: 603
  year: 2003
  ident: 10.1016/j.buildenv.2023.110405_bib18
  article-title: Skin blood flow in adult human thermoregulation: how it works, when it does not, and why
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/78.5.603
– volume: 284
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib4
  article-title: How do people set air conditioning temperature setpoint in urban domestic–Behavior model in Chinese three climate zones based on historical usage data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112856
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.buildenv.2023.110405_bib31
  article-title: Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.005
– volume: 207
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib69
  article-title: Study on the influence of climatic thermal exposure environment changed from cold to hot on human thermal preference
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108430
– volume: 45
  start-page: 1202
  year: 2010
  ident: 10.1016/j.buildenv.2023.110405_bib44
  article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.11.002
– volume: 220
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib12
  article-title: Data-driven thermal preference prediction model with embodied air-conditioning sensors and historical usage behaviors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109269
– volume: 223
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib14
  article-title: Towards wearable thermal comfort assessment framework by analysis of heart rate variability
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109504
– volume: 170
  year: 2020
  ident: 10.1016/j.buildenv.2023.110405_bib21
  article-title: Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106615
– volume: 47
  start-page: 878
  year: 2013
  ident: 10.1016/j.buildenv.2023.110405_bib37
  article-title: Quantitative ultrasonography of facial muscles
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23693
– year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib47
– volume: 5
  start-page: 77
  year: 2016
  ident: 10.1016/j.buildenv.2023.110405_bib17
  article-title: Estrogenic modulation of female thermoregulatory behavior in a cold environment
  publication-title: J Phys Fit Sports Med
  doi: 10.7600/jpfsm.5.77
– year: 2020
  ident: 10.1016/j.buildenv.2023.110405_bib3
– volume: 19
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib38
  article-title: ThermalWrist: smartphone thermal camera correction using a wristband sensor
  publication-title: Sensors
  doi: 10.3390/s19183826
– volume: 118
  start-page: 33
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib52
  article-title: Two-stage consumer credit risk modelling using heterogeneous ensemble learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.01.002
– volume: 167
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib55
  article-title: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112704
– volume: 161
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib71
  article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106231
– volume: 102
  start-page: 471
  year: 2008
  ident: 10.1016/j.buildenv.2023.110405_bib35
  article-title: Investigation of gender difference in thermal comfort for Chinese people
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-007-0609-2
– volume: 226
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib50
  article-title: Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6 kPa)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109774
– volume: 285
  year: 2023
  ident: 10.1016/j.buildenv.2023.110405_bib29
  article-title: Development of personal comfort model and its use in the control of air conditioner
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112900
– volume: 114
  start-page: 1
  year: 2017
  ident: 10.1016/j.buildenv.2023.110405_bib20
  article-title: Machine learning approaches to predict thermal demands using skin temperatures: steady-state conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.12.005
– volume: 162
  year: 2019
  ident: 10.1016/j.buildenv.2023.110405_bib11
  article-title: Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106284
– volume: 8
  start-page: 320
  year: 2021
  ident: 10.1016/j.buildenv.2023.110405_bib46
  article-title: Human thermal perception and time of day: a review
  publication-title: Temperature
  doi: 10.1080/23328940.2021.1976004
– year: 2021
  ident: 10.1016/j.buildenv.2023.110405_bib6
  article-title: Research on intelligent regulation of air conditioning energy saving based on human thermal comfort
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-021-02999-z
– volume: 135
  start-page: 1
  year: 2018
  ident: 10.1016/j.buildenv.2023.110405_bib70
  article-title: Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.02.049
– volume: 32
  year: 2022
  ident: 10.1016/j.buildenv.2023.110405_bib62
  article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China
  publication-title: Indoor Air
  doi: 10.1111/ina.13138
SSID ssj0016934
Score 2.4775062
Snippet Applying thermal imaging sensor to air conditioner for monitoring human thermal sensation and achieving dynamic settings may satisfy occupants' thermal needs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110405
SubjectTerms Smart air conditioner
Thermal image sensor
Thermal sensation model
Two-stage model
Title Where should the thermal image sensor of a smart A/C look?-Occupant thermal sensation model based on thermal imaging data
URI https://dx.doi.org/10.1016/j.buildenv.2023.110405
Volume 239
WOSCitedRecordID wos001007222600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZusN2GPtk3Rc6bCfj1pb8IZ9GKC3bDmXQDrJejC3J6UrilCQt6X-xP3nvSbJsWKEbYxeTiDwp0vtZek_vi5D3BdMiqht4kaqchUkMCkrFUhnWmmV10jQqVrbYRH58LKbT4uto9LOLhbme520rttvi8r-yGtqA2Rg6-xfs9p1CA3wGpsMT2A7PP2I8bK8rHazPsXa1EStRxFtgbo0F-uesQW9drmxY5HoB9MEEc-QGc5C2P_Cj0KYdbjeeDAksSkzVnADPPeVsDL5fvHBwYW69jdhV3Db2iUFAnfcBurmycSHYOuslansa9i1n55W5zz1D9_2--cSUIw6-L9vZFjA-G95fMO59Xd2lWhdY03sx2WCuKARF2e592u7NIudhJqxDZ7d5M5sK6beDwN5JXOzVOFWY4h4OjTEPSZT2R593SDzBAXE8xk2SQnGP7LA8LcSY7Ew-H06_eMtUVnCXksz-wUHU-e2j3S7wDISY08fkkdM-6MSi5gkZ6fYpeTjISfmM3Bj8UIsfCjymjs_U4Ida_NBlQytq8EMn-wcU0fPRY8eTeOxQgx1qsEPh67BPGJYidp6Tb0eHpwefQlefI5Q8ZptQ8VylDQiAScZVGmusLFBLmHWTJnEV1TLnXKlcRkJVmc4lyGONTBOlI4lJhzR_QcbtstUvCQUVT8BJwNDMnuQyE_CTtCpEUddMVHW2S9JuEUvpktdjDZV52XkpXpTd4pe4-KVd_F2y7-kubfqWOymKjkelE0KtcFkCtO6gffUPtK_Jg_7teEPGm9WVfkvuy-vNj_XqnUPhL-uAsXs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Where+should+the+thermal+image+sensor+of+a+smart+A%2FC+look%3F-Occupant+thermal+sensation+model+based+on+thermal+imaging+data&rft.jtitle=Building+and+environment&rft.au=Lyu%2C+Junmeng&rft.au=Du%2C+Heng&rft.au=Zhao%2C+Zisheng&rft.au=Shi%2C+Yongxiang&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=239&rft_id=info:doi/10.1016%2Fj.buildenv.2023.110405&rft.externalDocID=S0360132323004328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon