Tracking control study of AUV large curvature path based on artificial physics method

To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 303; p. 117737
Main Authors: Xu, Xiaoting, He, Bo, Dai, Ning, Wang, Tong, Shen, Yue
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2024
Subjects:
ISSN:0029-8018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions are parsed for the AUV. The main concept is to create a virtual physical force between the AUV and the intended path, and determine the heading control instructions based on Newton’s law. To improve tracking accuracy and convergence speed when following paths with large curvature, multiple virtual physical forces are added. The kinematics controller is then designed in conjunction with the traditional line of sight method. The algorithm designs an adaptive adjustment function and an anti-saturation link to distribute multiple virtual forces. Through simulation experiments, the most appropriate dynamics controller parameters are determined. The tracking effects of line-of-sight (LOS), artificial physics (AP), and PTM-AP are compared. The actual maritime experiment was conducted in Tuandao Bay, Qingdao, China. The results showed that compared with other algorithms, PTM-AP reduced the path convergence time by at least 26.67% and saved energy consumption by at least 25.49%. The results show that the proposed AUV path tracking algorithm based on artificial physics method is feasible when tracking larger curvature paths. •Apply the artificial physics method to the path tracking field of AUV, and analyze the tracking guidance law.•Considering the current position and attitude of the AUV, making the path tracking at large curvature smoother and reducing energy consumption.•Adding the interaction of forward pulling force and lateral pulling force makes the AUV path converge faster.•The parameters of the guidance law are given corresponding physical meanings, and the parameters are easy to adjust in practical applications.
AbstractList To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions are parsed for the AUV. The main concept is to create a virtual physical force between the AUV and the intended path, and determine the heading control instructions based on Newton’s law. To improve tracking accuracy and convergence speed when following paths with large curvature, multiple virtual physical forces are added. The kinematics controller is then designed in conjunction with the traditional line of sight method. The algorithm designs an adaptive adjustment function and an anti-saturation link to distribute multiple virtual forces. Through simulation experiments, the most appropriate dynamics controller parameters are determined. The tracking effects of line-of-sight (LOS), artificial physics (AP), and PTM-AP are compared. The actual maritime experiment was conducted in Tuandao Bay, Qingdao, China. The results showed that compared with other algorithms, PTM-AP reduced the path convergence time by at least 26.67% and saved energy consumption by at least 25.49%. The results show that the proposed AUV path tracking algorithm based on artificial physics method is feasible when tracking larger curvature paths. •Apply the artificial physics method to the path tracking field of AUV, and analyze the tracking guidance law.•Considering the current position and attitude of the AUV, making the path tracking at large curvature smoother and reducing energy consumption.•Adding the interaction of forward pulling force and lateral pulling force makes the AUV path converge faster.•The parameters of the guidance law are given corresponding physical meanings, and the parameters are easy to adjust in practical applications.
ArticleNumber 117737
Author Xu, Xiaoting
Wang, Tong
He, Bo
Shen, Yue
Dai, Ning
Author_xml – sequence: 1
  givenname: Xiaoting
  surname: Xu
  fullname: Xu, Xiaoting
  email: xuxiaoting@stu.ouc.edu.cn
  organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China
– sequence: 2
  givenname: Bo
  surname: He
  fullname: He, Bo
  email: bhe@ouc.edu.cn
  organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China
– sequence: 3
  givenname: Ning
  surname: Dai
  fullname: Dai, Ning
  email: dn5700@stu.ouc.edu.cn
  organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China
– sequence: 4
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  email: tongw@cjlu.edu.cn
  organization: Department of Mechanical & Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
– sequence: 5
  givenname: Yue
  surname: Shen
  fullname: Shen, Yue
  email: shenyue@ouc.edu.cn
  organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China
BookMark eNqFkMtOAjEYhbvAREBfwfQFBv92sB0SFxLiLSFxA26bXv6B4tCStpDw9kLQjRtXZ_WdnPMNSC_EgITcMRgxYOJ-M4oWdcCwGnHg4xFjUtayR_oAfFI1wJprMsh5AwBCQN0ny0XS9suHFbUxlBQ7msveHWls6XT5STudVkjtPh102SekO13W1OiMjsZAdSq-9dbrju7Wx-xtplss6-huyFWru4y3Pzkki5fnxeytmn-8vs-m88rWjJfKtmjQSMGdtK07TUWNraxRigkaI13DYSIeODBjGgNiDEIjgpTO8VpwqIfk8VJrU8w5YausL7r48xPtO8VAna2ojfq1os5W1MXKCRd_8F3yW52O_4NPFxBP3w4ek8rWY7DofEJblIv-v4pvBWCGaA
CitedBy_id crossref_primary_10_3390_jmse13050879
crossref_primary_10_1002_rob_70006
crossref_primary_10_3390_jmse13040644
crossref_primary_10_1080_17445302_2024_2424311
Cites_doi 10.1023/B:AURO.0000033970.96785.f2
10.1109/ACCESS.2020.2977609
10.3901/JME.2018.24.166
10.1016/j.oceaneng.2019.106726
10.1109/ACCESS.2019.2937978
10.1016/j.oceaneng.2021.110348
10.1109/TCST.2016.2601624
10.1016/j.oceaneng.2009.10.004
10.1016/j.oceaneng.2018.06.068
10.3182/20120919-3-IT-2046.00068
10.1016/j.conengprac.2022.105406
10.1007/s10846-018-0830-8
10.1016/j.ifacol.2017.08.907
10.1016/j.oceaneng.2023.113634
10.1007/s12555-020-0514-6
10.1109/TASE.2019.2925657
10.1109/TSMC.2019.2931771
10.1016/S1474-6670(17)37809-6
10.1109/TITS.2023.3256094
10.1007/s12204-021-2359-4
10.1016/j.oceaneng.2022.112797
10.1016/j.ejcon.2022.100616
10.1016/j.oceaneng.2020.107874
10.3182/20110828-6-IT-1002.03720
10.1016/j.oceaneng.2020.107302
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2024.117737
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2024_117737
S0029801824010746
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-cfebeb762d7cfd177eaef73e769ebb7d820965201bb8b06406aee077dd236203
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 03:32:56 EST 2025
Tue Nov 18 22:18:36 EST 2025
Fri May 16 00:30:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Autonomous underwater vehicle(AUV)
Artificial physics(AP)
Path tracking
Large curvature
Line of sight(LOS)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-cfebeb762d7cfd177eaef73e769ebb7d820965201bb8b06406aee077dd236203
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2024_117737
crossref_primary_10_1016_j_oceaneng_2024_117737
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_117737
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mehrez, Worthmann, Mann, Gosine, Faulwasser (b16) 2017; 50
Liu, Chen, Li (b13) 2022; 20
Spears, Spears, Hamann, Heil (b30) 2004; 17
Chen, Zhang, Nie, Tang, Zhu (b3) 2020; 8
Wan, Su, Zhang, Shi, AbouOmar (b33) 2020; 205
Liu (b12) 2022; 245
Faulwasser, Kern, Findeisen (b5) 2009
Qin, Du, Li (b21) 2023; 24
Zhao, Zhou, Zhu (b39) 2018; 54
Bellingham (b1) 2009
Liu, Yang (b14) 2022; 6
Wan, He, Wang, Yan, Shen (b32) 2019; 7
Nie, Lin (b18) 2020; 195
Lekkas, Fossen (b11) 2012; 45
Gao, Wan (b9) 2022; 30
Yang, Yan, Liu, Ye, Du, Zhong (b35) 2022; 266
Wan, He, Shen, Liu, Ding, Gao (b31) 2018; 164
Qin, Du (b20) 2023; 271
Ye, Ma, Chen (b36) 2022; 36
Qiu, Wang, Fan (b22) 2020; 214
Jeon, Lee, Kim, Kum (b10) 2019
Fossen, Breivik, Skjetne (b8) 2003; 36
Shi, Zhang, Yang (b26) 2021; 26
Faulwasser, Weber, Zometa, Findeisen (b6) 2016; 25
Wang, Zhang, Shen (b34) 2016; 38
Cenerini, Mehrez, Han, Jeon, Melek (b2) 2023; 132
Zhao, Liu, Zhao (b38) 2022
Spears, Gordon (b29) 1999
Shojaei (b27) 2022; 65
Ratnoo, Sujit, Kothari (b24) 2011; 44
Yu, Guo, Yu (b37) 2019; 16
Micaelli, Samson (b17) 1993
Elmokadem, Zribi, Youcef-Toumi (b4) 2019; 95
SNAME (b28) 1950
Liu, Zhao, Li (b15) 2021
Shi (b25) 1981
Fossen (b7) 2011
Qu, Cai, Xu (b23) 2019; 51
Oh, Sun (b19) 2010; 37
Bellingham (10.1016/j.oceaneng.2024.117737_b1) 2009
Shi (10.1016/j.oceaneng.2024.117737_b25) 1981
Yang (10.1016/j.oceaneng.2024.117737_b35) 2022; 266
Oh (10.1016/j.oceaneng.2024.117737_b19) 2010; 37
Spears (10.1016/j.oceaneng.2024.117737_b30) 2004; 17
Qin (10.1016/j.oceaneng.2024.117737_b21) 2023; 24
Lekkas (10.1016/j.oceaneng.2024.117737_b11) 2012; 45
Wan (10.1016/j.oceaneng.2024.117737_b33) 2020; 205
Fossen (10.1016/j.oceaneng.2024.117737_b7) 2011
Ye (10.1016/j.oceaneng.2024.117737_b36) 2022; 36
Fossen (10.1016/j.oceaneng.2024.117737_b8) 2003; 36
Wang (10.1016/j.oceaneng.2024.117737_b34) 2016; 38
Faulwasser (10.1016/j.oceaneng.2024.117737_b5) 2009
Qu (10.1016/j.oceaneng.2024.117737_b23) 2019; 51
Spears (10.1016/j.oceaneng.2024.117737_b29) 1999
Chen (10.1016/j.oceaneng.2024.117737_b3) 2020; 8
Qiu (10.1016/j.oceaneng.2024.117737_b22) 2020; 214
Wan (10.1016/j.oceaneng.2024.117737_b31) 2018; 164
Faulwasser (10.1016/j.oceaneng.2024.117737_b6) 2016; 25
Liu (10.1016/j.oceaneng.2024.117737_b13) 2022; 20
Wan (10.1016/j.oceaneng.2024.117737_b32) 2019; 7
Ratnoo (10.1016/j.oceaneng.2024.117737_b24) 2011; 44
Cenerini (10.1016/j.oceaneng.2024.117737_b2) 2023; 132
Yu (10.1016/j.oceaneng.2024.117737_b37) 2019; 16
Elmokadem (10.1016/j.oceaneng.2024.117737_b4) 2019; 95
Shi (10.1016/j.oceaneng.2024.117737_b26) 2021; 26
SNAME (10.1016/j.oceaneng.2024.117737_b28) 1950
Liu (10.1016/j.oceaneng.2024.117737_b15) 2021
Zhao (10.1016/j.oceaneng.2024.117737_b39) 2018; 54
Liu (10.1016/j.oceaneng.2024.117737_b14) 2022; 6
Jeon (10.1016/j.oceaneng.2024.117737_b10) 2019
Liu (10.1016/j.oceaneng.2024.117737_b12) 2022; 245
Qin (10.1016/j.oceaneng.2024.117737_b20) 2023; 271
Gao (10.1016/j.oceaneng.2024.117737_b9) 2022; 30
Nie (10.1016/j.oceaneng.2024.117737_b18) 2020; 195
Zhao (10.1016/j.oceaneng.2024.117737_b38) 2022
Shojaei (10.1016/j.oceaneng.2024.117737_b27) 2022; 65
Mehrez (10.1016/j.oceaneng.2024.117737_b16) 2017; 50
Micaelli (10.1016/j.oceaneng.2024.117737_b17) 1993
References_xml – start-page: 473
  year: 2009
  end-page: 484
  ident: b1
  article-title: Platforms: Autonomous underwater vehicles
  publication-title: Encyclopedia of Ocean Sciences (Second Edition)
– volume: 214
  year: 2020
  ident: b22
  article-title: Predictor LOS-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation
  publication-title: Ocean Eng.
– volume: 45
  start-page: 398
  year: 2012
  end-page: 403
  ident: b11
  article-title: A time-varying lookahead distance guidance law for path following
  publication-title: IFAC Proc. Vol.
– volume: 36
  start-page: 11
  year: 2022
  end-page: 19
  ident: b36
  article-title: Research on MFAC large curvature lateral control method for unmanned vehicles on unstructured roads
  publication-title: J. Chongqing Univ. Technol. (Nat. Sci.)
– volume: 245
  year: 2022
  ident: b12
  article-title: Improved ELOS based path following control for underactuated surface vessels with roll constraint
  publication-title: Ocean Eng.
– volume: 20
  start-page: 1166
  year: 2022
  end-page: 1178
  ident: b13
  article-title: Disturbance observer-based LQR tracking control for unmanned autonomous helicopter slung-load system
  publication-title: Int. J. Control Autom. Syst.
– volume: 205
  year: 2020
  ident: b33
  article-title: An improved integral light-of-sight guidance law for path following of unmanned surface vehicles
  publication-title: Ocean Eng.
– volume: 50
  start-page: 9852
  year: 2017
  end-page: 9857
  ident: b16
  article-title: Predictive path following of mobile robots without terminal stabilizing constraints
  publication-title: IFAC-PapersOnLine
– volume: 54
  start-page: 166
  year: 2018
  end-page: 173
  ident: b39
  article-title: Preview distance adaptive optimization for the path tracking control of unmanned vehicle
  publication-title: J. Mech. Eng.
– volume: 8
  start-page: 45457
  year: 2020
  end-page: 45467
  ident: b3
  article-title: Adaptive sliding mode control design for nonlinear unmanned surface vessel using RBFNN and disturbance-observer
  publication-title: IEEE Access
– volume: 25
  start-page: 1505
  year: 2016
  end-page: 1511
  ident: b6
  article-title: Implementation of nonlinear model predictive path-following control for an industrial robot
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 7928
  year: 2021
  end-page: 7933
  ident: b15
  article-title: Node gain-based cooperative fault-tolerant tracking control of multi-helicopter systems
  publication-title: 2021 China Automation Congress
– volume: 6
  year: 2022
  ident: b14
  article-title: Adaptive path tracking controller for intelligent driving vehicles for large curvature paths
  publication-title: SAE Int. J. Connect. Autom. Veh.
– volume: 38
  start-page: 329
  year: 2016
  end-page: 336
  ident: b34
  article-title: A virtual force based path following approach for unmanned aerial vehicles
– volume: 195
  year: 2020
  ident: b18
  article-title: FAILOS guidance law based adaptive fuzzy finite-time path following control for underactuated MSV
  publication-title: Ocean Eng.
– start-page: 1
  year: 1950
  end-page: 5
  ident: b28
  article-title: Nomenclature for treating the motion of a submerged body through a fluid
  publication-title: Soc. Nav. Archit. Mar. Eng. Tech. Res. Bull.
– volume: 164
  start-page: 672
  year: 2018
  end-page: 682
  ident: b31
  article-title: Heading multi-mode control based on soft-switching for autonomous underwater vehicle
  publication-title: Ocean Eng.
– start-page: 8642
  year: 2009
  end-page: 8647
  ident: b5
  article-title: Model predictive path-following for constrained nonlinear systems
  publication-title: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference
– volume: 17
  start-page: 137
  year: 2004
  end-page: 162
  ident: b30
  article-title: Distributed, physics-based control of swarms of vehicles
  publication-title: Auton. Robots
– volume: 65
  year: 2022
  ident: b27
  article-title: A prescribed performance PID control of robotic cars with only posture measurements considering path curvature
  publication-title: Eur. J. Control
– year: 1981
  ident: b25
  article-title: Dictionary of Ship Hydrodynamics
– volume: 24
  start-page: 8809
  year: 2023
  end-page: 8819
  ident: b21
  article-title: Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation
  publication-title: Trans. Intell. Transp. Syst.
– volume: 30
  start-page: 429
  year: 2022
  end-page: 440
  ident: b9
  article-title: Waypoint-tracking control of a benthic AUV based on model-free adaptive control method
  publication-title: J. Underw. Unmanned Syst.
– start-page: 281
  year: 1999
  end-page: 288
  ident: b29
  article-title: Using artificial physics to control agents
  publication-title: Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No. PR00446)
– volume: 44
  start-page: 12985
  year: 2011
  end-page: 12990
  ident: b24
  article-title: Adaptive optimal path following for high wind flights
  publication-title: IFAC Proc. Vol.
– start-page: 5980
  year: 2022
  end-page: 5985
  ident: b38
  article-title: Adaptive sliding mode-based fault-tolerant tracking control of multi-USV systems
  publication-title: 2022 34th Chinese Control and Decision Conference
– start-page: 1543
  year: 2019
  end-page: 1548
  ident: b10
  article-title: Path tracking control of autonomous vehicles using augmented lqg with curvature disturbance model
  publication-title: 2019 19th International Conference on Control, Automation and Systems
– volume: 266
  year: 2022
  ident: b35
  article-title: An improved stanley guidance law for large curvature path following of unmanned surface vehicle
  publication-title: Ocean Eng.
– volume: 36
  start-page: 211
  year: 2003
  end-page: 216
  ident: b8
  article-title: Line-of-sight path following of underactuated marine craft
  publication-title: IFAC Proc. Vol.
– volume: 7
  start-page: 124828
  year: 2019
  end-page: 124843
  ident: b32
  article-title: Fractional-order PID motion control for AUV using cloud-model-based quantum genetic algorithm
  publication-title: IEEE Access
– volume: 132
  year: 2023
  ident: b2
  article-title: Model predictive path following control without terminal constraints for holonomic mobile robots
  publication-title: Control Eng. Pract.
– volume: 26
  start-page: 690
  year: 2021
  end-page: 698
  ident: b26
  article-title: Curvature adaptive control based path following for automatic driving vehicles in private area
  publication-title: J. Shanghai Jiaotong Univ. (Sci.)
– volume: 16
  start-page: 1500
  year: 2019
  end-page: 1511
  ident: b37
  article-title: Finite-time PLOS-based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 51
  start-page: 4183
  year: 2019
  end-page: 4192
  ident: b23
  article-title: Curved path following for unmanned surface vehicles with heading amendment
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 37
  start-page: 289
  year: 2010
  end-page: 295
  ident: b19
  article-title: Path following of underactuated marine surface vessels using line-of-sight based model predictive control
  publication-title: Ocean Eng.
– volume: 95
  start-page: 1113
  year: 2019
  end-page: 1132
  ident: b4
  article-title: Control for dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles using sliding mode control
  publication-title: J. Intell. Robot. Syst.
– year: 1993
  ident: b17
  article-title: Trajectory Tracking for Unicycle-Type and Two-Steering-Wheels Mobile Robots
– year: 2011
  ident: b7
  article-title: Handbook of Marine Craft Hydrodynamics and Motion Control
– volume: 271
  year: 2023
  ident: b20
  article-title: Minimum-learning-parameter-based adaptive finite-time trajectory tracking event-triggered control for underactuated surface vessels with parametric uncertainties
  publication-title: Ocean Eng.
– volume: 30
  start-page: 429
  issue: 4
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b9
  article-title: Waypoint-tracking control of a benthic AUV based on model-free adaptive control method
  publication-title: J. Underw. Unmanned Syst.
– volume: 17
  start-page: 137
  issue: 2–3
  year: 2004
  ident: 10.1016/j.oceaneng.2024.117737_b30
  article-title: Distributed, physics-based control of swarms of vehicles
  publication-title: Auton. Robots
  doi: 10.1023/B:AURO.0000033970.96785.f2
– volume: 8
  start-page: 45457
  year: 2020
  ident: 10.1016/j.oceaneng.2024.117737_b3
  article-title: Adaptive sliding mode control design for nonlinear unmanned surface vessel using RBFNN and disturbance-observer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977609
– volume: 54
  start-page: 166
  issue: 24
  year: 2018
  ident: 10.1016/j.oceaneng.2024.117737_b39
  article-title: Preview distance adaptive optimization for the path tracking control of unmanned vehicle
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2018.24.166
– volume: 195
  year: 2020
  ident: 10.1016/j.oceaneng.2024.117737_b18
  article-title: FAILOS guidance law based adaptive fuzzy finite-time path following control for underactuated MSV
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106726
– volume: 7
  start-page: 124828
  year: 2019
  ident: 10.1016/j.oceaneng.2024.117737_b32
  article-title: Fractional-order PID motion control for AUV using cloud-model-based quantum genetic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937978
– volume: 245
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b12
  article-title: Improved ELOS based path following control for underactuated surface vessels with roll constraint
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110348
– start-page: 1543
  year: 2019
  ident: 10.1016/j.oceaneng.2024.117737_b10
  article-title: Path tracking control of autonomous vehicles using augmented lqg with curvature disturbance model
– start-page: 5980
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b38
  article-title: Adaptive sliding mode-based fault-tolerant tracking control of multi-USV systems
– start-page: 473
  year: 2009
  ident: 10.1016/j.oceaneng.2024.117737_b1
  article-title: Platforms: Autonomous underwater vehicles
– volume: 36
  start-page: 11
  issue: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b36
  article-title: Research on MFAC large curvature lateral control method for unmanned vehicles on unstructured roads
  publication-title: J. Chongqing Univ. Technol. (Nat. Sci.)
– start-page: 7928
  year: 2021
  ident: 10.1016/j.oceaneng.2024.117737_b15
  article-title: Node gain-based cooperative fault-tolerant tracking control of multi-helicopter systems
– volume: 25
  start-page: 1505
  issue: 4
  year: 2016
  ident: 10.1016/j.oceaneng.2024.117737_b6
  article-title: Implementation of nonlinear model predictive path-following control for an industrial robot
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2601624
– volume: 37
  start-page: 289
  issue: 2–3
  year: 2010
  ident: 10.1016/j.oceaneng.2024.117737_b19
  article-title: Path following of underactuated marine surface vessels using line-of-sight based model predictive control
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2009.10.004
– start-page: 281
  year: 1999
  ident: 10.1016/j.oceaneng.2024.117737_b29
  article-title: Using artificial physics to control agents
– volume: 164
  start-page: 672
  year: 2018
  ident: 10.1016/j.oceaneng.2024.117737_b31
  article-title: Heading multi-mode control based on soft-switching for autonomous underwater vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.06.068
– volume: 45
  start-page: 398
  issue: 27
  year: 2012
  ident: 10.1016/j.oceaneng.2024.117737_b11
  article-title: A time-varying lookahead distance guidance law for path following
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120919-3-IT-2046.00068
– start-page: 1
  issue: 1950
  year: 1950
  ident: 10.1016/j.oceaneng.2024.117737_b28
  article-title: Nomenclature for treating the motion of a submerged body through a fluid
  publication-title: Soc. Nav. Archit. Mar. Eng. Tech. Res. Bull.
– volume: 132
  year: 2023
  ident: 10.1016/j.oceaneng.2024.117737_b2
  article-title: Model predictive path following control without terminal constraints for holonomic mobile robots
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105406
– volume: 38
  start-page: 329
  year: 2016
  ident: 10.1016/j.oceaneng.2024.117737_b34
  article-title: A virtual force based path following approach for unmanned aerial vehicles
– volume: 95
  start-page: 1113
  year: 2019
  ident: 10.1016/j.oceaneng.2024.117737_b4
  article-title: Control for dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles using sliding mode control
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-018-0830-8
– volume: 50
  start-page: 9852
  issue: 1
  year: 2017
  ident: 10.1016/j.oceaneng.2024.117737_b16
  article-title: Predictive path following of mobile robots without terminal stabilizing constraints
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.907
– volume: 271
  year: 2023
  ident: 10.1016/j.oceaneng.2024.117737_b20
  article-title: Minimum-learning-parameter-based adaptive finite-time trajectory tracking event-triggered control for underactuated surface vessels with parametric uncertainties
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113634
– volume: 20
  start-page: 1166
  issue: 4
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b13
  article-title: Disturbance observer-based LQR tracking control for unmanned autonomous helicopter slung-load system
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-020-0514-6
– year: 1981
  ident: 10.1016/j.oceaneng.2024.117737_b25
– start-page: 8642
  year: 2009
  ident: 10.1016/j.oceaneng.2024.117737_b5
  article-title: Model predictive path-following for constrained nonlinear systems
– year: 1993
  ident: 10.1016/j.oceaneng.2024.117737_b17
– volume: 16
  start-page: 1500
  issue: 4
  year: 2019
  ident: 10.1016/j.oceaneng.2024.117737_b37
  article-title: Finite-time PLOS-based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2925657
– volume: 51
  start-page: 4183
  issue: 7
  year: 2019
  ident: 10.1016/j.oceaneng.2024.117737_b23
  article-title: Curved path following for unmanned surface vehicles with heading amendment
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2931771
– volume: 36
  start-page: 211
  issue: 21
  year: 2003
  ident: 10.1016/j.oceaneng.2024.117737_b8
  article-title: Line-of-sight path following of underactuated marine craft
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)37809-6
– volume: 24
  start-page: 8809
  issue: 8
  year: 2023
  ident: 10.1016/j.oceaneng.2024.117737_b21
  article-title: Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation
  publication-title: Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3256094
– year: 2011
  ident: 10.1016/j.oceaneng.2024.117737_b7
– volume: 26
  start-page: 690
  year: 2021
  ident: 10.1016/j.oceaneng.2024.117737_b26
  article-title: Curvature adaptive control based path following for automatic driving vehicles in private area
  publication-title: J. Shanghai Jiaotong Univ. (Sci.)
  doi: 10.1007/s12204-021-2359-4
– volume: 266
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b35
  article-title: An improved stanley guidance law for large curvature path following of unmanned surface vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112797
– volume: 65
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b27
  article-title: A prescribed performance PID control of robotic cars with only posture measurements considering path curvature
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2022.100616
– volume: 214
  year: 2020
  ident: 10.1016/j.oceaneng.2024.117737_b22
  article-title: Predictor LOS-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107874
– volume: 6
  issue: 12-06-02-0013
  year: 2022
  ident: 10.1016/j.oceaneng.2024.117737_b14
  article-title: Adaptive path tracking controller for intelligent driving vehicles for large curvature paths
  publication-title: SAE Int. J. Connect. Autom. Veh.
– volume: 44
  start-page: 12985
  issue: 1
  year: 2011
  ident: 10.1016/j.oceaneng.2024.117737_b24
  article-title: Adaptive optimal path following for high wind flights
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20110828-6-IT-1002.03720
– volume: 205
  year: 2020
  ident: 10.1016/j.oceaneng.2024.117737_b33
  article-title: An improved integral light-of-sight guidance law for path following of unmanned surface vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107302
SSID ssj0006603
Score 2.4139156
Snippet To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117737
SubjectTerms Artificial physics(AP)
Autonomous underwater vehicle(AUV)
Large curvature
Line of sight(LOS)
Path tracking
Title Tracking control study of AUV large curvature path based on artificial physics method
URI https://dx.doi.org/10.1016/j.oceaneng.2024.117737
Volume 303
WOSCitedRecordID wos001229309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMbKG3a0jwadOhtcerXStZxE1KSHNJCN4lvxpJl2CTYYR8lPz8zetgmDaSlhAVjxMpG-j5J49HoG0K-qiyJtJRpAB9eYZCymsNdooKIR6UNvEhtsgl-dpblufjpsnQuTDoB3jTZ3Z24fVaooQzAxqOz_wB391AogHsAHa4AO1z_Dvh5qa7tUVobhb7wutGT84vRDUZ-j9QKXbG4d4AZiUe4lFW4bYCPc5IS1uWxcCmmhzbsD4Xee90LGXrQ8hUCls_KdjkoPTYu04O294nPLAX7v1w6p_W0dWXODRGnXciq84358zF9MJI9KyBwDcyG821iRA3-nLutG-Fqv8VWQCP28TVmU9nKwjzQxf5l1OPh2WCTYFQpe0nWYz4WMDuvT06O8tNuQWYsTHykD1YYHBR__G2P2ygDu2P6jrx1Hwx0YoF-T17oZpO8GchIbpINg4jTHv9Azj0DqGMANQygbU2BAdQwgHYMoMgAahhA24b2DKCOAdQy4COZfj-aHh4HLntGoJIoXgaqhvEpYa2ruKoraJcudc0TzZmAwckrMP0Eg7EYSZlJ3M9lpdYh51UVg1ETJp_IWtM2-jOhMpVllFZMj4VMIy1EXJXwq7Myi8cJC7fI2HdXoZyyPCY4uSl8COFV4bu5wG4ubDdvkW9dvVurrfJkDeHRKJyFaC2_Akj0RN3t_6i7Q173nN8la8v5Sn8hr9Tv5Wwx33N8uweqTo7l
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+control+study+of+AUV+large+curvature+path+based+on+artificial+physics+method&rft.jtitle=Ocean+engineering&rft.au=Xu%2C+Xiaoting&rft.au=He%2C+Bo&rft.au=Dai%2C+Ning&rft.au=Wang%2C+Tong&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=303&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.117737&rft.externalDocID=S0029801824010746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon