Tracking control study of AUV large curvature path based on artificial physics method
To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions...
Saved in:
| Published in: | Ocean engineering Vol. 303; p. 117737 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2024
|
| Subjects: | |
| ISSN: | 0029-8018 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions are parsed for the AUV. The main concept is to create a virtual physical force between the AUV and the intended path, and determine the heading control instructions based on Newton’s law. To improve tracking accuracy and convergence speed when following paths with large curvature, multiple virtual physical forces are added. The kinematics controller is then designed in conjunction with the traditional line of sight method. The algorithm designs an adaptive adjustment function and an anti-saturation link to distribute multiple virtual forces. Through simulation experiments, the most appropriate dynamics controller parameters are determined. The tracking effects of line-of-sight (LOS), artificial physics (AP), and PTM-AP are compared. The actual maritime experiment was conducted in Tuandao Bay, Qingdao, China. The results showed that compared with other algorithms, PTM-AP reduced the path convergence time by at least 26.67% and saved energy consumption by at least 25.49%. The results show that the proposed AUV path tracking algorithm based on artificial physics method is feasible when tracking larger curvature paths.
•Apply the artificial physics method to the path tracking field of AUV, and analyze the tracking guidance law.•Considering the current position and attitude of the AUV, making the path tracking at large curvature smoother and reducing energy consumption.•Adding the interaction of forward pulling force and lateral pulling force makes the AUV path converge faster.•The parameters of the guidance law are given corresponding physical meanings, and the parameters are easy to adjust in practical applications. |
|---|---|
| AbstractList | To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth AUV movement when tracking large curvature paths and reduce energy consumption, a series of continuous and smooth heading control instructions are parsed for the AUV. The main concept is to create a virtual physical force between the AUV and the intended path, and determine the heading control instructions based on Newton’s law. To improve tracking accuracy and convergence speed when following paths with large curvature, multiple virtual physical forces are added. The kinematics controller is then designed in conjunction with the traditional line of sight method. The algorithm designs an adaptive adjustment function and an anti-saturation link to distribute multiple virtual forces. Through simulation experiments, the most appropriate dynamics controller parameters are determined. The tracking effects of line-of-sight (LOS), artificial physics (AP), and PTM-AP are compared. The actual maritime experiment was conducted in Tuandao Bay, Qingdao, China. The results showed that compared with other algorithms, PTM-AP reduced the path convergence time by at least 26.67% and saved energy consumption by at least 25.49%. The results show that the proposed AUV path tracking algorithm based on artificial physics method is feasible when tracking larger curvature paths.
•Apply the artificial physics method to the path tracking field of AUV, and analyze the tracking guidance law.•Considering the current position and attitude of the AUV, making the path tracking at large curvature smoother and reducing energy consumption.•Adding the interaction of forward pulling force and lateral pulling force makes the AUV path converge faster.•The parameters of the guidance law are given corresponding physical meanings, and the parameters are easy to adjust in practical applications. |
| ArticleNumber | 117737 |
| Author | Xu, Xiaoting Wang, Tong He, Bo Shen, Yue Dai, Ning |
| Author_xml | – sequence: 1 givenname: Xiaoting surname: Xu fullname: Xu, Xiaoting email: xuxiaoting@stu.ouc.edu.cn organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China – sequence: 2 givenname: Bo surname: He fullname: He, Bo email: bhe@ouc.edu.cn organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China – sequence: 3 givenname: Ning surname: Dai fullname: Dai, Ning email: dn5700@stu.ouc.edu.cn organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China – sequence: 4 givenname: Tong surname: Wang fullname: Wang, Tong email: tongw@cjlu.edu.cn organization: Department of Mechanical & Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China – sequence: 5 givenname: Yue surname: Shen fullname: Shen, Yue email: shenyue@ouc.edu.cn organization: School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China |
| BookMark | eNqFkMtOAjEYhbvAREBfwfQFBv92sB0SFxLiLSFxA26bXv6B4tCStpDw9kLQjRtXZ_WdnPMNSC_EgITcMRgxYOJ-M4oWdcCwGnHg4xFjUtayR_oAfFI1wJprMsh5AwBCQN0ny0XS9suHFbUxlBQ7msveHWls6XT5STudVkjtPh102SekO13W1OiMjsZAdSq-9dbrju7Wx-xtplss6-huyFWru4y3Pzkki5fnxeytmn-8vs-m88rWjJfKtmjQSMGdtK07TUWNraxRigkaI13DYSIeODBjGgNiDEIjgpTO8VpwqIfk8VJrU8w5YausL7r48xPtO8VAna2ojfq1os5W1MXKCRd_8F3yW52O_4NPFxBP3w4ek8rWY7DofEJblIv-v4pvBWCGaA |
| CitedBy_id | crossref_primary_10_3390_jmse13050879 crossref_primary_10_1002_rob_70006 crossref_primary_10_3390_jmse13040644 crossref_primary_10_1080_17445302_2024_2424311 |
| Cites_doi | 10.1023/B:AURO.0000033970.96785.f2 10.1109/ACCESS.2020.2977609 10.3901/JME.2018.24.166 10.1016/j.oceaneng.2019.106726 10.1109/ACCESS.2019.2937978 10.1016/j.oceaneng.2021.110348 10.1109/TCST.2016.2601624 10.1016/j.oceaneng.2009.10.004 10.1016/j.oceaneng.2018.06.068 10.3182/20120919-3-IT-2046.00068 10.1016/j.conengprac.2022.105406 10.1007/s10846-018-0830-8 10.1016/j.ifacol.2017.08.907 10.1016/j.oceaneng.2023.113634 10.1007/s12555-020-0514-6 10.1109/TASE.2019.2925657 10.1109/TSMC.2019.2931771 10.1016/S1474-6670(17)37809-6 10.1109/TITS.2023.3256094 10.1007/s12204-021-2359-4 10.1016/j.oceaneng.2022.112797 10.1016/j.ejcon.2022.100616 10.1016/j.oceaneng.2020.107874 10.3182/20110828-6-IT-1002.03720 10.1016/j.oceaneng.2020.107302 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2024.117737 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2024_117737 S0029801824010746 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-cfebeb762d7cfd177eaef73e769ebb7d820965201bb8b06406aee077dd236203 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 03:32:56 EST 2025 Tue Nov 18 22:18:36 EST 2025 Fri May 16 00:30:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autonomous underwater vehicle(AUV) Artificial physics(AP) Path tracking Large curvature Line of sight(LOS) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-cfebeb762d7cfd177eaef73e769ebb7d820965201bb8b06406aee077dd236203 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2024_117737 crossref_primary_10_1016_j_oceaneng_2024_117737 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_117737 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mehrez, Worthmann, Mann, Gosine, Faulwasser (b16) 2017; 50 Liu, Chen, Li (b13) 2022; 20 Spears, Spears, Hamann, Heil (b30) 2004; 17 Chen, Zhang, Nie, Tang, Zhu (b3) 2020; 8 Wan, Su, Zhang, Shi, AbouOmar (b33) 2020; 205 Liu (b12) 2022; 245 Faulwasser, Kern, Findeisen (b5) 2009 Qin, Du, Li (b21) 2023; 24 Zhao, Zhou, Zhu (b39) 2018; 54 Bellingham (b1) 2009 Liu, Yang (b14) 2022; 6 Wan, He, Wang, Yan, Shen (b32) 2019; 7 Nie, Lin (b18) 2020; 195 Lekkas, Fossen (b11) 2012; 45 Gao, Wan (b9) 2022; 30 Yang, Yan, Liu, Ye, Du, Zhong (b35) 2022; 266 Wan, He, Shen, Liu, Ding, Gao (b31) 2018; 164 Qin, Du (b20) 2023; 271 Ye, Ma, Chen (b36) 2022; 36 Qiu, Wang, Fan (b22) 2020; 214 Jeon, Lee, Kim, Kum (b10) 2019 Fossen, Breivik, Skjetne (b8) 2003; 36 Shi, Zhang, Yang (b26) 2021; 26 Faulwasser, Weber, Zometa, Findeisen (b6) 2016; 25 Wang, Zhang, Shen (b34) 2016; 38 Cenerini, Mehrez, Han, Jeon, Melek (b2) 2023; 132 Zhao, Liu, Zhao (b38) 2022 Spears, Gordon (b29) 1999 Shojaei (b27) 2022; 65 Ratnoo, Sujit, Kothari (b24) 2011; 44 Yu, Guo, Yu (b37) 2019; 16 Micaelli, Samson (b17) 1993 Elmokadem, Zribi, Youcef-Toumi (b4) 2019; 95 SNAME (b28) 1950 Liu, Zhao, Li (b15) 2021 Shi (b25) 1981 Fossen (b7) 2011 Qu, Cai, Xu (b23) 2019; 51 Oh, Sun (b19) 2010; 37 Bellingham (10.1016/j.oceaneng.2024.117737_b1) 2009 Shi (10.1016/j.oceaneng.2024.117737_b25) 1981 Yang (10.1016/j.oceaneng.2024.117737_b35) 2022; 266 Oh (10.1016/j.oceaneng.2024.117737_b19) 2010; 37 Spears (10.1016/j.oceaneng.2024.117737_b30) 2004; 17 Qin (10.1016/j.oceaneng.2024.117737_b21) 2023; 24 Lekkas (10.1016/j.oceaneng.2024.117737_b11) 2012; 45 Wan (10.1016/j.oceaneng.2024.117737_b33) 2020; 205 Fossen (10.1016/j.oceaneng.2024.117737_b7) 2011 Ye (10.1016/j.oceaneng.2024.117737_b36) 2022; 36 Fossen (10.1016/j.oceaneng.2024.117737_b8) 2003; 36 Wang (10.1016/j.oceaneng.2024.117737_b34) 2016; 38 Faulwasser (10.1016/j.oceaneng.2024.117737_b5) 2009 Qu (10.1016/j.oceaneng.2024.117737_b23) 2019; 51 Spears (10.1016/j.oceaneng.2024.117737_b29) 1999 Chen (10.1016/j.oceaneng.2024.117737_b3) 2020; 8 Qiu (10.1016/j.oceaneng.2024.117737_b22) 2020; 214 Wan (10.1016/j.oceaneng.2024.117737_b31) 2018; 164 Faulwasser (10.1016/j.oceaneng.2024.117737_b6) 2016; 25 Liu (10.1016/j.oceaneng.2024.117737_b13) 2022; 20 Wan (10.1016/j.oceaneng.2024.117737_b32) 2019; 7 Ratnoo (10.1016/j.oceaneng.2024.117737_b24) 2011; 44 Cenerini (10.1016/j.oceaneng.2024.117737_b2) 2023; 132 Yu (10.1016/j.oceaneng.2024.117737_b37) 2019; 16 Elmokadem (10.1016/j.oceaneng.2024.117737_b4) 2019; 95 Shi (10.1016/j.oceaneng.2024.117737_b26) 2021; 26 SNAME (10.1016/j.oceaneng.2024.117737_b28) 1950 Liu (10.1016/j.oceaneng.2024.117737_b15) 2021 Zhao (10.1016/j.oceaneng.2024.117737_b39) 2018; 54 Liu (10.1016/j.oceaneng.2024.117737_b14) 2022; 6 Jeon (10.1016/j.oceaneng.2024.117737_b10) 2019 Liu (10.1016/j.oceaneng.2024.117737_b12) 2022; 245 Qin (10.1016/j.oceaneng.2024.117737_b20) 2023; 271 Gao (10.1016/j.oceaneng.2024.117737_b9) 2022; 30 Nie (10.1016/j.oceaneng.2024.117737_b18) 2020; 195 Zhao (10.1016/j.oceaneng.2024.117737_b38) 2022 Shojaei (10.1016/j.oceaneng.2024.117737_b27) 2022; 65 Mehrez (10.1016/j.oceaneng.2024.117737_b16) 2017; 50 Micaelli (10.1016/j.oceaneng.2024.117737_b17) 1993 |
| References_xml | – start-page: 473 year: 2009 end-page: 484 ident: b1 article-title: Platforms: Autonomous underwater vehicles publication-title: Encyclopedia of Ocean Sciences (Second Edition) – volume: 214 year: 2020 ident: b22 article-title: Predictor LOS-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation publication-title: Ocean Eng. – volume: 45 start-page: 398 year: 2012 end-page: 403 ident: b11 article-title: A time-varying lookahead distance guidance law for path following publication-title: IFAC Proc. Vol. – volume: 36 start-page: 11 year: 2022 end-page: 19 ident: b36 article-title: Research on MFAC large curvature lateral control method for unmanned vehicles on unstructured roads publication-title: J. Chongqing Univ. Technol. (Nat. Sci.) – volume: 245 year: 2022 ident: b12 article-title: Improved ELOS based path following control for underactuated surface vessels with roll constraint publication-title: Ocean Eng. – volume: 20 start-page: 1166 year: 2022 end-page: 1178 ident: b13 article-title: Disturbance observer-based LQR tracking control for unmanned autonomous helicopter slung-load system publication-title: Int. J. Control Autom. Syst. – volume: 205 year: 2020 ident: b33 article-title: An improved integral light-of-sight guidance law for path following of unmanned surface vehicles publication-title: Ocean Eng. – volume: 50 start-page: 9852 year: 2017 end-page: 9857 ident: b16 article-title: Predictive path following of mobile robots without terminal stabilizing constraints publication-title: IFAC-PapersOnLine – volume: 54 start-page: 166 year: 2018 end-page: 173 ident: b39 article-title: Preview distance adaptive optimization for the path tracking control of unmanned vehicle publication-title: J. Mech. Eng. – volume: 8 start-page: 45457 year: 2020 end-page: 45467 ident: b3 article-title: Adaptive sliding mode control design for nonlinear unmanned surface vessel using RBFNN and disturbance-observer publication-title: IEEE Access – volume: 25 start-page: 1505 year: 2016 end-page: 1511 ident: b6 article-title: Implementation of nonlinear model predictive path-following control for an industrial robot publication-title: IEEE Trans. Control Syst. Technol. – start-page: 7928 year: 2021 end-page: 7933 ident: b15 article-title: Node gain-based cooperative fault-tolerant tracking control of multi-helicopter systems publication-title: 2021 China Automation Congress – volume: 6 year: 2022 ident: b14 article-title: Adaptive path tracking controller for intelligent driving vehicles for large curvature paths publication-title: SAE Int. J. Connect. Autom. Veh. – volume: 38 start-page: 329 year: 2016 end-page: 336 ident: b34 article-title: A virtual force based path following approach for unmanned aerial vehicles – volume: 195 year: 2020 ident: b18 article-title: FAILOS guidance law based adaptive fuzzy finite-time path following control for underactuated MSV publication-title: Ocean Eng. – start-page: 1 year: 1950 end-page: 5 ident: b28 article-title: Nomenclature for treating the motion of a submerged body through a fluid publication-title: Soc. Nav. Archit. Mar. Eng. Tech. Res. Bull. – volume: 164 start-page: 672 year: 2018 end-page: 682 ident: b31 article-title: Heading multi-mode control based on soft-switching for autonomous underwater vehicle publication-title: Ocean Eng. – start-page: 8642 year: 2009 end-page: 8647 ident: b5 article-title: Model predictive path-following for constrained nonlinear systems publication-title: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference – volume: 17 start-page: 137 year: 2004 end-page: 162 ident: b30 article-title: Distributed, physics-based control of swarms of vehicles publication-title: Auton. Robots – volume: 65 year: 2022 ident: b27 article-title: A prescribed performance PID control of robotic cars with only posture measurements considering path curvature publication-title: Eur. J. Control – year: 1981 ident: b25 article-title: Dictionary of Ship Hydrodynamics – volume: 24 start-page: 8809 year: 2023 end-page: 8819 ident: b21 article-title: Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation publication-title: Trans. Intell. Transp. Syst. – volume: 30 start-page: 429 year: 2022 end-page: 440 ident: b9 article-title: Waypoint-tracking control of a benthic AUV based on model-free adaptive control method publication-title: J. Underw. Unmanned Syst. – start-page: 281 year: 1999 end-page: 288 ident: b29 article-title: Using artificial physics to control agents publication-title: Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No. PR00446) – volume: 44 start-page: 12985 year: 2011 end-page: 12990 ident: b24 article-title: Adaptive optimal path following for high wind flights publication-title: IFAC Proc. Vol. – start-page: 5980 year: 2022 end-page: 5985 ident: b38 article-title: Adaptive sliding mode-based fault-tolerant tracking control of multi-USV systems publication-title: 2022 34th Chinese Control and Decision Conference – start-page: 1543 year: 2019 end-page: 1548 ident: b10 article-title: Path tracking control of autonomous vehicles using augmented lqg with curvature disturbance model publication-title: 2019 19th International Conference on Control, Automation and Systems – volume: 266 year: 2022 ident: b35 article-title: An improved stanley guidance law for large curvature path following of unmanned surface vehicle publication-title: Ocean Eng. – volume: 36 start-page: 211 year: 2003 end-page: 216 ident: b8 article-title: Line-of-sight path following of underactuated marine craft publication-title: IFAC Proc. Vol. – volume: 7 start-page: 124828 year: 2019 end-page: 124843 ident: b32 article-title: Fractional-order PID motion control for AUV using cloud-model-based quantum genetic algorithm publication-title: IEEE Access – volume: 132 year: 2023 ident: b2 article-title: Model predictive path following control without terminal constraints for holonomic mobile robots publication-title: Control Eng. Pract. – volume: 26 start-page: 690 year: 2021 end-page: 698 ident: b26 article-title: Curvature adaptive control based path following for automatic driving vehicles in private area publication-title: J. Shanghai Jiaotong Univ. (Sci.) – volume: 16 start-page: 1500 year: 2019 end-page: 1511 ident: b37 article-title: Finite-time PLOS-based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 51 start-page: 4183 year: 2019 end-page: 4192 ident: b23 article-title: Curved path following for unmanned surface vehicles with heading amendment publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 37 start-page: 289 year: 2010 end-page: 295 ident: b19 article-title: Path following of underactuated marine surface vessels using line-of-sight based model predictive control publication-title: Ocean Eng. – volume: 95 start-page: 1113 year: 2019 end-page: 1132 ident: b4 article-title: Control for dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles using sliding mode control publication-title: J. Intell. Robot. Syst. – year: 1993 ident: b17 article-title: Trajectory Tracking for Unicycle-Type and Two-Steering-Wheels Mobile Robots – year: 2011 ident: b7 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control – volume: 271 year: 2023 ident: b20 article-title: Minimum-learning-parameter-based adaptive finite-time trajectory tracking event-triggered control for underactuated surface vessels with parametric uncertainties publication-title: Ocean Eng. – volume: 30 start-page: 429 issue: 4 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b9 article-title: Waypoint-tracking control of a benthic AUV based on model-free adaptive control method publication-title: J. Underw. Unmanned Syst. – volume: 17 start-page: 137 issue: 2–3 year: 2004 ident: 10.1016/j.oceaneng.2024.117737_b30 article-title: Distributed, physics-based control of swarms of vehicles publication-title: Auton. Robots doi: 10.1023/B:AURO.0000033970.96785.f2 – volume: 8 start-page: 45457 year: 2020 ident: 10.1016/j.oceaneng.2024.117737_b3 article-title: Adaptive sliding mode control design for nonlinear unmanned surface vessel using RBFNN and disturbance-observer publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977609 – volume: 54 start-page: 166 issue: 24 year: 2018 ident: 10.1016/j.oceaneng.2024.117737_b39 article-title: Preview distance adaptive optimization for the path tracking control of unmanned vehicle publication-title: J. Mech. Eng. doi: 10.3901/JME.2018.24.166 – volume: 195 year: 2020 ident: 10.1016/j.oceaneng.2024.117737_b18 article-title: FAILOS guidance law based adaptive fuzzy finite-time path following control for underactuated MSV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106726 – volume: 7 start-page: 124828 year: 2019 ident: 10.1016/j.oceaneng.2024.117737_b32 article-title: Fractional-order PID motion control for AUV using cloud-model-based quantum genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937978 – volume: 245 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b12 article-title: Improved ELOS based path following control for underactuated surface vessels with roll constraint publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110348 – start-page: 1543 year: 2019 ident: 10.1016/j.oceaneng.2024.117737_b10 article-title: Path tracking control of autonomous vehicles using augmented lqg with curvature disturbance model – start-page: 5980 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b38 article-title: Adaptive sliding mode-based fault-tolerant tracking control of multi-USV systems – start-page: 473 year: 2009 ident: 10.1016/j.oceaneng.2024.117737_b1 article-title: Platforms: Autonomous underwater vehicles – volume: 36 start-page: 11 issue: 2 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b36 article-title: Research on MFAC large curvature lateral control method for unmanned vehicles on unstructured roads publication-title: J. Chongqing Univ. Technol. (Nat. Sci.) – start-page: 7928 year: 2021 ident: 10.1016/j.oceaneng.2024.117737_b15 article-title: Node gain-based cooperative fault-tolerant tracking control of multi-helicopter systems – volume: 25 start-page: 1505 issue: 4 year: 2016 ident: 10.1016/j.oceaneng.2024.117737_b6 article-title: Implementation of nonlinear model predictive path-following control for an industrial robot publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2601624 – volume: 37 start-page: 289 issue: 2–3 year: 2010 ident: 10.1016/j.oceaneng.2024.117737_b19 article-title: Path following of underactuated marine surface vessels using line-of-sight based model predictive control publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2009.10.004 – start-page: 281 year: 1999 ident: 10.1016/j.oceaneng.2024.117737_b29 article-title: Using artificial physics to control agents – volume: 164 start-page: 672 year: 2018 ident: 10.1016/j.oceaneng.2024.117737_b31 article-title: Heading multi-mode control based on soft-switching for autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.06.068 – volume: 45 start-page: 398 issue: 27 year: 2012 ident: 10.1016/j.oceaneng.2024.117737_b11 article-title: A time-varying lookahead distance guidance law for path following publication-title: IFAC Proc. Vol. doi: 10.3182/20120919-3-IT-2046.00068 – start-page: 1 issue: 1950 year: 1950 ident: 10.1016/j.oceaneng.2024.117737_b28 article-title: Nomenclature for treating the motion of a submerged body through a fluid publication-title: Soc. Nav. Archit. Mar. Eng. Tech. Res. Bull. – volume: 132 year: 2023 ident: 10.1016/j.oceaneng.2024.117737_b2 article-title: Model predictive path following control without terminal constraints for holonomic mobile robots publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2022.105406 – volume: 38 start-page: 329 year: 2016 ident: 10.1016/j.oceaneng.2024.117737_b34 article-title: A virtual force based path following approach for unmanned aerial vehicles – volume: 95 start-page: 1113 year: 2019 ident: 10.1016/j.oceaneng.2024.117737_b4 article-title: Control for dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles using sliding mode control publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-018-0830-8 – volume: 50 start-page: 9852 issue: 1 year: 2017 ident: 10.1016/j.oceaneng.2024.117737_b16 article-title: Predictive path following of mobile robots without terminal stabilizing constraints publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.907 – volume: 271 year: 2023 ident: 10.1016/j.oceaneng.2024.117737_b20 article-title: Minimum-learning-parameter-based adaptive finite-time trajectory tracking event-triggered control for underactuated surface vessels with parametric uncertainties publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113634 – volume: 20 start-page: 1166 issue: 4 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b13 article-title: Disturbance observer-based LQR tracking control for unmanned autonomous helicopter slung-load system publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-020-0514-6 – year: 1981 ident: 10.1016/j.oceaneng.2024.117737_b25 – start-page: 8642 year: 2009 ident: 10.1016/j.oceaneng.2024.117737_b5 article-title: Model predictive path-following for constrained nonlinear systems – year: 1993 ident: 10.1016/j.oceaneng.2024.117737_b17 – volume: 16 start-page: 1500 issue: 4 year: 2019 ident: 10.1016/j.oceaneng.2024.117737_b37 article-title: Finite-time PLOS-based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2925657 – volume: 51 start-page: 4183 issue: 7 year: 2019 ident: 10.1016/j.oceaneng.2024.117737_b23 article-title: Curved path following for unmanned surface vehicles with heading amendment publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2931771 – volume: 36 start-page: 211 issue: 21 year: 2003 ident: 10.1016/j.oceaneng.2024.117737_b8 article-title: Line-of-sight path following of underactuated marine craft publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)37809-6 – volume: 24 start-page: 8809 issue: 8 year: 2023 ident: 10.1016/j.oceaneng.2024.117737_b21 article-title: Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation publication-title: Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3256094 – year: 2011 ident: 10.1016/j.oceaneng.2024.117737_b7 – volume: 26 start-page: 690 year: 2021 ident: 10.1016/j.oceaneng.2024.117737_b26 article-title: Curvature adaptive control based path following for automatic driving vehicles in private area publication-title: J. Shanghai Jiaotong Univ. (Sci.) doi: 10.1007/s12204-021-2359-4 – volume: 266 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b35 article-title: An improved stanley guidance law for large curvature path following of unmanned surface vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112797 – volume: 65 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b27 article-title: A prescribed performance PID control of robotic cars with only posture measurements considering path curvature publication-title: Eur. J. Control doi: 10.1016/j.ejcon.2022.100616 – volume: 214 year: 2020 ident: 10.1016/j.oceaneng.2024.117737_b22 article-title: Predictor LOS-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107874 – volume: 6 issue: 12-06-02-0013 year: 2022 ident: 10.1016/j.oceaneng.2024.117737_b14 article-title: Adaptive path tracking controller for intelligent driving vehicles for large curvature paths publication-title: SAE Int. J. Connect. Autom. Veh. – volume: 44 start-page: 12985 issue: 1 year: 2011 ident: 10.1016/j.oceaneng.2024.117737_b24 article-title: Adaptive optimal path following for high wind flights publication-title: IFAC Proc. Vol. doi: 10.3182/20110828-6-IT-1002.03720 – volume: 205 year: 2020 ident: 10.1016/j.oceaneng.2024.117737_b33 article-title: An improved integral light-of-sight guidance law for path following of unmanned surface vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107302 |
| SSID | ssj0006603 |
| Score | 2.4139156 |
| Snippet | To enhance the performance of underwater robot path tracking, an AUV path tracking method based on artificial physics (PTM-AP) is proposed. To ensure smooth... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117737 |
| SubjectTerms | Artificial physics(AP) Autonomous underwater vehicle(AUV) Large curvature Line of sight(LOS) Path tracking |
| Title | Tracking control study of AUV large curvature path based on artificial physics method |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2024.117737 |
| Volume | 303 |
| WOSCitedRecordID | wos001229309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMbKG3a0jwadOhtcerXStZxE1KSHNJCN4lvxpJl2CTYYR8lPz8zetgmDaSlhAVjxMpG-j5J49HoG0K-qiyJtJRpAB9eYZCymsNdooKIR6UNvEhtsgl-dpblufjpsnQuTDoB3jTZ3Z24fVaooQzAxqOz_wB391AogHsAHa4AO1z_Dvh5qa7tUVobhb7wutGT84vRDUZ-j9QKXbG4d4AZiUe4lFW4bYCPc5IS1uWxcCmmhzbsD4Xee90LGXrQ8hUCls_KdjkoPTYu04O294nPLAX7v1w6p_W0dWXODRGnXciq84358zF9MJI9KyBwDcyG821iRA3-nLutG-Fqv8VWQCP28TVmU9nKwjzQxf5l1OPh2WCTYFQpe0nWYz4WMDuvT06O8tNuQWYsTHykD1YYHBR__G2P2ygDu2P6jrx1Hwx0YoF-T17oZpO8GchIbpINg4jTHv9Azj0DqGMANQygbU2BAdQwgHYMoMgAahhA24b2DKCOAdQy4COZfj-aHh4HLntGoJIoXgaqhvEpYa2ruKoraJcudc0TzZmAwckrMP0Eg7EYSZlJ3M9lpdYh51UVg1ETJp_IWtM2-jOhMpVllFZMj4VMIy1EXJXwq7Myi8cJC7fI2HdXoZyyPCY4uSl8COFV4bu5wG4ubDdvkW9dvVurrfJkDeHRKJyFaC2_Akj0RN3t_6i7Q173nN8la8v5Sn8hr9Tv5Wwx33N8uweqTo7l |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+control+study+of+AUV+large+curvature+path+based+on+artificial+physics+method&rft.jtitle=Ocean+engineering&rft.au=Xu%2C+Xiaoting&rft.au=He%2C+Bo&rft.au=Dai%2C+Ning&rft.au=Wang%2C+Tong&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=303&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.117737&rft.externalDocID=S0029801824010746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |