Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders
This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 109; p. 104652 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2022
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a feed forward neural network to establish a mapping from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values. Then, by applying the convolutional autoencoder, a low-dimensional vector representation of the high dimensional solution matrices is provided by the encoder, while the reconstruction map is obtained by the decoder. Using the latent vectors given by the encoder, a feed forward neural network is efficiently trained to map points from the parametric space to the compressed version of the respective solution matrices. This way, the proposed surrogate model is capable of predicting the entire time history response simultaneously with remarkable computational gains and very high accuracy. The elaborated methodology is demonstrated on the stochastic analysis of time-dependent partial differential equations solved with the Monte Carlo method.
[Display omitted]
•A novel surrogate method is proposed for parametric prediction of dynamic systems.•Convolutional autoencoders are used to obtain low dimensional nonlinear manifolds.•The framework utilizes two levels of neural networks to build the surrogate.•The surrogate exhibits high accuracy and achieves drastic cost reduction.•It is highly applicable to problems that require multiple model evaluations. |
|---|---|
| AbstractList | This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a feed forward neural network to establish a mapping from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values. Then, by applying the convolutional autoencoder, a low-dimensional vector representation of the high dimensional solution matrices is provided by the encoder, while the reconstruction map is obtained by the decoder. Using the latent vectors given by the encoder, a feed forward neural network is efficiently trained to map points from the parametric space to the compressed version of the respective solution matrices. This way, the proposed surrogate model is capable of predicting the entire time history response simultaneously with remarkable computational gains and very high accuracy. The elaborated methodology is demonstrated on the stochastic analysis of time-dependent partial differential equations solved with the Monte Carlo method.
[Display omitted]
•A novel surrogate method is proposed for parametric prediction of dynamic systems.•Convolutional autoencoders are used to obtain low dimensional nonlinear manifolds.•The framework utilizes two levels of neural networks to build the surrogate.•The surrogate exhibits high accuracy and achieves drastic cost reduction.•It is highly applicable to problems that require multiple model evaluations. |
| ArticleNumber | 104652 |
| Author | Kalogeris, Ioannis Papadopoulos, Vissarion Nikolopoulos, Stefanos |
| Author_xml | – sequence: 1 givenname: Stefanos orcidid: 0000-0003-3896-1141 surname: Nikolopoulos fullname: Nikolopoulos, Stefanos email: stefnikolopoulos@mail.ntua.gr – sequence: 2 givenname: Ioannis orcidid: 0000-0001-7237-3605 surname: Kalogeris fullname: Kalogeris, Ioannis email: ikalog@central.ntua.gr – sequence: 3 givenname: Vissarion surname: Papadopoulos fullname: Papadopoulos, Vissarion email: vpapado@central.ntua.gr |
| BookMark | eNqFkM1OwzAQhC1UJNrCK6C8QIqdNI4tcQBV_EkVXOBsOc66cpXawXYqwYlHx6Fw4dLTamc132pmhibWWUDokuAFwYRebRdgN7LvpVkUuCBJXNKqOEFTwuoypzXlEzTFvCpywmt6hmYhbDHGJVvSKfp6djY3NvohmD1kYfDebWSEbOda6IzdZNr5rJde7iB68wltFs0O8hZ6sC3YON6ikV3WGq3BJ2Vc4H2Q0TgbssRNEOXs3nXDKKWrHKIDq9IHH87RqZZdgIvfOUdv93evq8d8_fLwtLpd56okRcyVZpzxBheUsbKQRJZUV40uaaVbVi45xlAQkJxVXGvNlG6ahmIKmEvVQN2Uc0QPXOVdCB606L3ZSf8hCBZjj2Ir_noUY4_i0GMyXv8zKhN_wkUvTXfcfnOwQwq3N-BFUCaFh9Z4UFG0zhxDfAPhupse |
| CitedBy_id | crossref_primary_10_1038_s44172_023_00084_1 crossref_primary_10_1016_j_cma_2023_116155 crossref_primary_10_1016_j_eiar_2024_107641 crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_1016_j_cma_2024_116793 crossref_primary_10_1016_j_probengmech_2023_103570 crossref_primary_10_1061_JSDCCC_SCENG_1799 crossref_primary_10_1016_j_compstruc_2024_107462 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420 crossref_primary_10_1016_j_apm_2022_09_034 crossref_primary_10_1016_j_engappai_2023_106309 crossref_primary_10_1016_j_engappai_2023_105978 crossref_primary_10_1016_j_engappai_2023_107380 crossref_primary_10_1016_j_cmpb_2024_108466 crossref_primary_10_1016_j_engappai_2024_108055 crossref_primary_10_1007_s10915_022_02078_1 crossref_primary_10_1016_j_cam_2023_115271 crossref_primary_10_1063_5_0215223 crossref_primary_10_1016_j_biosystemseng_2023_04_002 crossref_primary_10_1063_5_0088070 crossref_primary_10_1016_j_cma_2023_116107 crossref_primary_10_1016_j_engstruct_2022_114020 crossref_primary_10_3389_fams_2022_879140 crossref_primary_10_1186_s40323_023_00244_0 crossref_primary_10_3390_app14135438 crossref_primary_10_1016_j_cma_2025_117790 crossref_primary_10_1016_j_engappai_2024_108656 crossref_primary_10_1016_j_engappai_2023_105945 crossref_primary_10_1038_s41467_024_49411_w crossref_primary_10_1002_nme_7372 crossref_primary_10_1016_j_ast_2022_107629 crossref_primary_10_1007_s41365_023_01340_x crossref_primary_10_1016_j_jmsy_2024_10_009 crossref_primary_10_1016_j_engappai_2024_107871 crossref_primary_10_1016_j_ijnonlinmec_2024_104803 crossref_primary_10_1016_j_neunet_2024_106761 crossref_primary_10_1371_journal_pcbi_1010988 |
| Cites_doi | 10.2514/1.35374 10.1016/j.jcp.2015.09.046 10.1016/j.jnnfm.2010.12.012 10.1177/0954410019890721 10.1002/nme.4371 10.1109/TCYB.2018.2886012 10.1016/j.cma.2016.12.033 10.1016/j.compstruc.2007.01.013 10.1016/j.compstruc.2019.05.015 10.3109/10826089809115863 10.1007/s10064-020-01922-8 10.1137/S0036142901389049 10.3182/20130904-3-FR-2041.00155 10.2514/1.C032062 10.1137/16M1061928 10.1016/j.jcp.2015.11.012 10.1109/9.29399 10.1016/j.ress.2016.01.003 10.1016/j.ress.2021.107734 10.2166/hydro.2020.098 10.1109/TAC.1981.1102568 10.1006/jmaa.2000.6994 10.1016/j.cam.2014.09.011 10.1016/j.jsv.2012.10.017 10.1002/nme.2309 10.1038/323533a0 10.1016/j.paerosci.2003.12.001 10.1002/nme.4820 10.1016/j.acha.2006.04.006 10.1109/TCOM.1983.1095851 10.1109/TIM.2018.2885608 10.1002/nme.6236 10.1016/j.cma.2020.113379 10.1002/2015WR016967 10.1162/089976603321780317 10.1002/nme.4490 10.1016/j.jcp.2018.02.037 10.1016/j.cma.2020.113568 10.1016/S0167-4730(02)00039-5 10.1016/j.compstruc.2004.07.008 10.1016/j.cma.2018.07.017 10.1016/j.compstruc.2020.106358 10.1007/s13137-021-00180-4 10.1137/16M1082469 10.1137/090776925 10.1137/S1064827502419154 10.1016/j.acha.2005.07.005 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2021.104652 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2021_104652 S0952197621004541 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-cf8989b0268832a1a36f5bf365fd834900e21ea9859fff8cfbbb606e09acbe7b3 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762976300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:33:45 EST 2025 Sat Nov 29 07:09:27 EST 2025 Fri Feb 23 02:39:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Convolutional autoencoders Surrogate modeling Feed forward neural networks Monte Carlo simulation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-cf8989b0268832a1a36f5bf365fd834900e21ea9859fff8cfbbb606e09acbe7b3 |
| ORCID | 0000-0003-3896-1141 0000-0001-7237-3605 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2021_104652 crossref_citationtrail_10_1016_j_engappai_2021_104652 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104652 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shahri, Moud (b58) 2021; 80 Masci, Meier, Ciresan, Schmidhuber (b39) 2011 Olsson, Sandberg, Dahlblom (b47) 2003; 25 Zhao, Han, Su, Yan (b69) 2019 Asheghi, Hosseini, Saneie, Shahri (b6) 2020; 22 Farhat, Chapman, Avery (b22) 2015; 102 Patro, Sahu (b52) 2015 Negri, Manzoni, Amsallem (b43) 2015; 303 Hasan, Choi, Neumann, Roy-Chowdhury, Davis (b25) 2016 Safonov, Chiang (b56) 1989; 34 Lucia, Beran, Silva (b38) 2004; 40 Wu, Xiong, Tang, Li, Song, Zhu (b61) 2021 Chaturantabut, Sorensen (b16) 2010 Mignolet, Przekop, Rizzi, Spottswood (b40) 2013; 332 Krizhevsky, A., Hinton, G., 2011. Using very deep autoencoders for content based image retrieval. In: Proc. 19th European Symp. On Artificial Neural Networks. Parish, Duraisamy (b50) 2016; 305 Sengupta, Dey (b57) 2004; 82 Ye, Nikishova, Veen, Zun, Hoekstra (b65) 2021; 214 Belkin, Niyogi (b12) 2003; 15 Guo, Hesthaven (b23) 2018; 341 Moore (b41) 1981; 26 Wu, Peng, Zhang, Lin, Sheng (b60) 2019; 68 Chinesta, Ammar, Leygue, Keunings (b17) 2011; 166 Zienkiewicz, Taylor, Fox (b71) 2014 Kadeethum, Ballarin, Bouklas (b28) 2021; 12 Lombard, Matignon, Le Gorrec (b36) 2013; 46 Coifman, Lafon (b18) 2006; 21 Asher, Croke, Jakeman, Peeters (b7) 2015; 51 Burt, Adelson (b14) 1983; 31 Park, Jun, Baek, Cho, Yee, Lee (b51) 2013; 50 . Sudret, Marelli, Wiart (b59) 2017 Ye, Zhi (b66) 2015; 278 Noh, Bathe (b45) 2019; 225 Rathinam, Petzold (b54) 2003; 41 Baker, Armaou, Christofides (b8) 2000; 252 Xu, Duraisamy (b64) 2020; 372 Amsallem, Zahr, Farhat (b5) 2012; 92 Jensen, Munoz, Papadimitriou, Millas (b27) 2016; 149 Lopez Pinaya, Vieira, Garcia-Dias, Mechelli (b37) 2020 Xiao, Fang, Pain, Navon (b63) 2017; 317 de Boer, van der Schoot, Bijl (b20) 2007; 85 Kadeethum, O’Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas (b29) 2021 Kingma, Ba (b32) 2017 Brady, Rojahn, Perez, Carydis, Shokos (b13) 1978 Ezvan, Batou, Soize, Gagliardini (b21) 2016; 59 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b1) 2015 Adelmann (b2) 2019; 7 Kolotouros, Pavlakos, Daniilidis (b33) 2019 Hesthaven, Ubbiali (b26) 2018; 363 Oyedotun, Dimililer (b49) 2016; 8 van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b48) 2016 Rumelhart, Hinton, Williams (b55) 1986; 323 Guo, Li, Iorio (b24) 2016 Zhang, Zha (b68) 2004; 26 Baur, Beattie, Benner, Gugercin (b10) 2011; 33 Nwankpa, Ijomah, Gachagan, Marshall (b46) 2018 Amsallem, Farhat (b4) 2008; 46 Yu, Yan, Guo (b67) 2019; 233 Bathe (b9) 2007 Kalogeris, Papadopoulos (b30) 2020; 121 Nguyen, Peraire (b44) 2008; 76 Multidisciplinary computational mechanics research group, M., 0000. MSolve. Buscema (b15) 1998; 33 Kalogeris, Papadopoulos (b31) 2021; 376 de Almeida (b3) 2013; 94 Coifman, Lafon (b19) 2006; 21 Baydin, Pearlmutter, Radul, Siskind (b11) 2018; 18 Lataniotis, Marelli, Sudret (b35) 2018 Peherstorfer, Willcox, Gunzburger (b53) 2018; 60 Zhou, Peng (b70) 2020; 241 Wu, Zhou, Zhu, Wei, Ren, Sheng (b62) 2021; 51 10.1016/j.engappai.2021.104652_b34 Nwankpa (10.1016/j.engappai.2021.104652_b46) 2018 Abadi (10.1016/j.engappai.2021.104652_b1) 2015 Rumelhart (10.1016/j.engappai.2021.104652_b55) 1986; 323 Sengupta (10.1016/j.engappai.2021.104652_b57) 2004; 82 Sudret (10.1016/j.engappai.2021.104652_b59) 2017 Peherstorfer (10.1016/j.engappai.2021.104652_b53) 2018; 60 Coifman (10.1016/j.engappai.2021.104652_b19) 2006; 21 Kingma (10.1016/j.engappai.2021.104652_b32) 2017 Lombard (10.1016/j.engappai.2021.104652_b36) 2013; 46 Lopez Pinaya (10.1016/j.engappai.2021.104652_b37) 2020 Chinesta (10.1016/j.engappai.2021.104652_b17) 2011; 166 Lataniotis (10.1016/j.engappai.2021.104652_b35) 2018 Bathe (10.1016/j.engappai.2021.104652_b9) 2007 de Boer (10.1016/j.engappai.2021.104652_b20) 2007; 85 Zhou (10.1016/j.engappai.2021.104652_b70) 2020; 241 de Almeida (10.1016/j.engappai.2021.104652_b3) 2013; 94 Farhat (10.1016/j.engappai.2021.104652_b22) 2015; 102 Kadeethum (10.1016/j.engappai.2021.104652_b29) 2021 Burt (10.1016/j.engappai.2021.104652_b14) 1983; 31 Hasan (10.1016/j.engappai.2021.104652_b25) 2016 Rathinam (10.1016/j.engappai.2021.104652_b54) 2003; 41 Safonov (10.1016/j.engappai.2021.104652_b56) 1989; 34 Mignolet (10.1016/j.engappai.2021.104652_b40) 2013; 332 van den Oord (10.1016/j.engappai.2021.104652_b48) 2016 Negri (10.1016/j.engappai.2021.104652_b43) 2015; 303 Amsallem (10.1016/j.engappai.2021.104652_b5) 2012; 92 Ye (10.1016/j.engappai.2021.104652_b65) 2021; 214 Baur (10.1016/j.engappai.2021.104652_b10) 2011; 33 Coifman (10.1016/j.engappai.2021.104652_b18) 2006; 21 Ye (10.1016/j.engappai.2021.104652_b66) 2015; 278 Zhao (10.1016/j.engappai.2021.104652_b69) 2019 Guo (10.1016/j.engappai.2021.104652_b23) 2018; 341 Chaturantabut (10.1016/j.engappai.2021.104652_b16) 2010 Oyedotun (10.1016/j.engappai.2021.104652_b49) 2016; 8 Amsallem (10.1016/j.engappai.2021.104652_b4) 2008; 46 Patro (10.1016/j.engappai.2021.104652_b52) 2015 Park (10.1016/j.engappai.2021.104652_b51) 2013; 50 Asheghi (10.1016/j.engappai.2021.104652_b6) 2020; 22 Wu (10.1016/j.engappai.2021.104652_b61) 2021 Olsson (10.1016/j.engappai.2021.104652_b47) 2003; 25 Yu (10.1016/j.engappai.2021.104652_b67) 2019; 233 Jensen (10.1016/j.engappai.2021.104652_b27) 2016; 149 Moore (10.1016/j.engappai.2021.104652_b41) 1981; 26 Lucia (10.1016/j.engappai.2021.104652_b38) 2004; 40 Noh (10.1016/j.engappai.2021.104652_b45) 2019; 225 Masci (10.1016/j.engappai.2021.104652_b39) 2011 Asher (10.1016/j.engappai.2021.104652_b7) 2015; 51 Baydin (10.1016/j.engappai.2021.104652_b11) 2018; 18 Hesthaven (10.1016/j.engappai.2021.104652_b26) 2018; 363 Nguyen (10.1016/j.engappai.2021.104652_b44) 2008; 76 Ezvan (10.1016/j.engappai.2021.104652_b21) 2016; 59 Baker (10.1016/j.engappai.2021.104652_b8) 2000; 252 Kadeethum (10.1016/j.engappai.2021.104652_b28) 2021; 12 Xiao (10.1016/j.engappai.2021.104652_b63) 2017; 317 Zhang (10.1016/j.engappai.2021.104652_b68) 2004; 26 Brady (10.1016/j.engappai.2021.104652_b13) 1978 Wu (10.1016/j.engappai.2021.104652_b60) 2019; 68 Shahri (10.1016/j.engappai.2021.104652_b58) 2021; 80 Xu (10.1016/j.engappai.2021.104652_b64) 2020; 372 Guo (10.1016/j.engappai.2021.104652_b24) 2016 Adelmann (10.1016/j.engappai.2021.104652_b2) 2019; 7 Belkin (10.1016/j.engappai.2021.104652_b12) 2003; 15 Kolotouros (10.1016/j.engappai.2021.104652_b33) 2019 Parish (10.1016/j.engappai.2021.104652_b50) 2016; 305 Buscema (10.1016/j.engappai.2021.104652_b15) 1998; 33 Kalogeris (10.1016/j.engappai.2021.104652_b31) 2021; 376 Wu (10.1016/j.engappai.2021.104652_b62) 2021; 51 10.1016/j.engappai.2021.104652_b42 Kalogeris (10.1016/j.engappai.2021.104652_b30) 2020; 121 Zienkiewicz (10.1016/j.engappai.2021.104652_b71) 2014 |
| References_xml | – year: 2007 ident: b9 article-title: Finite Element Procedures – volume: 68 start-page: 3907 year: 2019 end-page: 3919 ident: b60 article-title: Pilots’ fatigue status recognition using deep contractive autoencoder network publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 383 year: 2019 end-page: 416 ident: b2 article-title: On nonintrusive uncertainty quantification and surrogate model construction in particle accelerator modeling publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 85 start-page: 784 year: 2007 end-page: 795 ident: b20 article-title: Mesh deformation based on radial basis function interpolation publication-title: Comput. Struct. – reference: Krizhevsky, A., Hinton, G., 2011. Using very deep autoencoders for content based image retrieval. In: Proc. 19th European Symp. On Artificial Neural Networks. – volume: 166 start-page: 578 year: 2011 end-page: 592 ident: b17 article-title: An overview of the proper generalized decomposition with applications in computational rheology publication-title: J. Non-Newton. Fluid Mech. – volume: 214 year: 2021 ident: b65 article-title: Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model publication-title: Reliab. Eng. Syst. Saf. – year: 2014 ident: b71 article-title: The Finite Element Method For Solid And Structural Mechanics – start-page: 1 year: 2021 end-page: 11 ident: b61 article-title: Detecting dynamic behavior of brain fatigue through 3-d-CNN-LSTM publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 31 start-page: 532 year: 1983 end-page: 540 ident: b14 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. – volume: 376 year: 2021 ident: b31 article-title: Diffusion maps-aided neural networks for the solution of parametrized PDEs publication-title: Comput. Methods Appl. Mech. Eng. – volume: 278 start-page: 197 year: 2015 end-page: 212 ident: b66 article-title: Discrete hessian eigenmaps method for dimensionality reduction publication-title: J. Comput. Appl. Math. – volume: 76 start-page: 27 year: 2008 end-page: 55 ident: b44 article-title: An efficient reduced-order modeling approach for non-linear parametrized partial differential equations publication-title: Internat. J. Numer. Methods Engrg. – volume: 21 start-page: 5 year: 2006 end-page: 30 ident: b18 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b11 article-title: Automatic differentiation in machine learning: A survey publication-title: J. Mach. Learn. Res. – volume: 317 start-page: 868 year: 2017 end-page: 889 ident: b63 article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications publication-title: Comput. Methods Appl. Mech. Engrg. – reference: Multidisciplinary computational mechanics research group, M., 0000. MSolve. – volume: 241 year: 2020 ident: b70 article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis publication-title: Comput. Struct. – year: 2018 ident: b46 article-title: Activation functions: Comparison of trends in practice and research for deep learning – volume: 92 start-page: 891 year: 2012 end-page: 916 ident: b5 article-title: Nonlinear model order reduction based on local reduced-order bases publication-title: Internat. J. Numer. Methods Engrg. – volume: 149 start-page: 204 year: 2016 end-page: 217 ident: b27 article-title: Model-reduction techniques for reliability-based design problems of complex structural systems publication-title: Reliab. Eng. Syst. Saf. – volume: 303 start-page: 431 year: 2015 end-page: 454 ident: b43 article-title: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation publication-title: J. Comput. Phys. – start-page: 2737 year: 2010 end-page: 2764 ident: b16 article-title: Nonlinear model reduction via discrete empirical interpolation – start-page: 52 year: 2011 end-page: 59 ident: b39 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: Proc. 21th International Conference On Artificial Neural Networks – volume: 51 start-page: 332 year: 2021 end-page: 345 ident: b62 article-title: Rotated sphere haar wavelet and deep contractive auto-encoder network with fuzzy Gaussian SVM for pilot’s pupil center detection publication-title: IEEE Trans. Cybern. – year: 1978 ident: b13 article-title: Seismic Engineering Data Report: Romanian and Greek Records, 1972-77 – volume: 82 start-page: 2693 year: 2004 end-page: 2703 ident: b57 article-title: Proper orthogonal decomposition of direct numerical simulation data of by-pass transition publication-title: Comput. Struct. – volume: 60 start-page: 550 year: 2018 end-page: 591 ident: b53 article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization publication-title: SIAM Rev. – volume: 121 start-page: 602 year: 2020 end-page: 620 ident: b30 article-title: Diffusion maps-based surrogate modeling: An alternative machine learning approach publication-title: Internat. J. Numer. Methods Engrg. – start-page: 5790 year: 2019 end-page: 5793 ident: b69 publication-title: Time Series Prediction Method Based on Convolutional Autoencoder and LSTM – volume: 225 year: 2019 ident: b45 article-title: For direct time integrations: A comparison of the newmark and publication-title: Comput. Struct. – volume: 80 start-page: 267 year: 2021 end-page: 284 ident: b58 article-title: Landslide susceptibility mapping using hybridized block modular intelligence model publication-title: Bull. Eng. Geol. Environ. – start-page: 793 year: 2017 end-page: 797 ident: b59 article-title: Surrogate models for uncertainty quantification: An overview publication-title: 2017 11th European Conference On Antennas And Propagation (EUCAP) – start-page: 193 year: 2020 end-page: 208 ident: b37 article-title: Chapter 11 - autoencoders publication-title: Machine Learning – volume: 305 start-page: 758 year: 2016 end-page: 774 ident: b50 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. – volume: 34 start-page: 729 year: 1989 end-page: 733 ident: b56 article-title: A schur method for balanced-truncation model reduction publication-title: IEEE Trans. Automat. Control – volume: 46 start-page: 1803 year: 2008 end-page: 1813 ident: b4 article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity publication-title: Am. Inst. Aeronaut. Astronaut. – volume: 40 start-page: 51 year: 2004 end-page: 117 ident: b38 article-title: Reduced-order modeling: new approaches for computational physics publication-title: Progr. Aerosp. Sci. – volume: 94 start-page: 961 year: 2013 end-page: 984 ident: b3 article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics publication-title: Internat. J. Numer. Methods Engrg. – volume: 233 start-page: 5896 year: 2019 end-page: 5912 ident: b67 article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review publication-title: Proc. Inst. Mech. Eng. G – volume: 372 year: 2020 ident: b64 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 33 start-page: 233 year: 1998 end-page: 270 ident: b15 article-title: Back propagation neural networks publication-title: Substance Use Misuse – volume: 12 year: 2021 ident: b28 article-title: Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation publication-title: Int. J. Geomath. – volume: 21 start-page: 31 year: 2006 end-page: 52 ident: b19 article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions publication-title: Appl. Comput. Harmon. Anal. – volume: 51 start-page: 5957 year: 2015 end-page: 5973 ident: b7 article-title: A review of surrogate models and their application to groundwater modeling publication-title: Water Resour. Res. – volume: 41 start-page: 1893 year: 2003 end-page: 1925 ident: b54 article-title: A new look at proper orthogonal decomposition publication-title: SIAM J. Numer. Anal. – start-page: 481 year: 2016 end-page: 490 ident: b24 article-title: Convolutional neural networks for steady flow approximation publication-title: Proceedings Of The 22nd ACM SIGKDD International Conference On Knowledge Discovery And Data Mining – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: b26 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. – start-page: 4496 year: 2019 end-page: 4505 ident: b33 article-title: Convolutional mesh regression for single-image human shape reconstruction – volume: 26 start-page: 17 year: 1981 end-page: 32 ident: b41 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Automat. Control – year: 2016 ident: b48 article-title: Wavenet: A generative model for raw audio – volume: 332 start-page: 2437 year: 2013 end-page: 2460 ident: b40 article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures publication-title: J. Sound Vib. – volume: 252 start-page: 230 year: 2000 end-page: 255 ident: b8 article-title: Nonlinear control of incompressible fluid flow: Application to Burgers’ equation and 2D channel flow publication-title: J. Math. Anal. Appl. – volume: 33 start-page: 2489 year: 2011 end-page: 2518 ident: b10 article-title: Interpolatory projection methods for parameterized model reduction publication-title: SIAM J. Sci. Comput. – volume: 15 start-page: 1373 year: 2003 end-page: 1396 ident: b12 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. – volume: 59 year: 2016 ident: b21 article-title: Multilevel model reduction for uncertainty quantification in computational structural dynamics publication-title: Comput. Mech. – volume: 26 start-page: 313 year: 2004 end-page: 338 ident: b68 article-title: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment publication-title: SIAM J. Sci. Comput. – volume: 50 start-page: 1106 year: 2013 end-page: 1116 ident: b51 article-title: Reduced-order model with an artificial neural network for aerostructural design optimization publication-title: J. Aircraft – year: 2015 ident: b1 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – reference: . – year: 2016 ident: b25 article-title: Learning temporal regularity in video sequences publication-title: Proc. IEEE Conf. On Computer Vision And Pattern Recognition – volume: 102 start-page: 1077 year: 2015 end-page: 1110 ident: b22 article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models publication-title: Internat. J. Numer. Methods Engrg. – volume: 8 start-page: 19 year: 2016 end-page: 27 ident: b49 article-title: Pattern recognition: Invariance learning in convolutional auto encoder network publication-title: Int. J. Image Graph. Signal Process. – volume: 22 start-page: 562 year: 2020 end-page: 577 ident: b6 article-title: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application publication-title: J. Hydroinf. – year: 2015 ident: b52 article-title: Normalization: A preprocessing stage – volume: 46 start-page: 406 year: 2013 end-page: 411 ident: b36 article-title: A fractional Burgers equation arising in nonlinear acoustics: theory and numerics publication-title: IFAC Proc. Vol. – volume: 25 start-page: 47 year: 2003 end-page: 68 ident: b47 article-title: On latin hypercube sampling for structural reliability analysis publication-title: Struct. Saf. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b55 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 341 start-page: 807 year: 2018 end-page: 826 ident: b23 article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2018 ident: b35 article-title: Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach – year: 2017 ident: b32 article-title: Adam: A method for stochastic optimization – year: 2021 ident: b29 article-title: A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks – volume: 46 start-page: 1803 issue: 7 year: 2008 ident: 10.1016/j.engappai.2021.104652_b4 article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity publication-title: Am. Inst. Aeronaut. Astronaut. doi: 10.2514/1.35374 – volume: 303 start-page: 431 year: 2015 ident: 10.1016/j.engappai.2021.104652_b43 article-title: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.09.046 – volume: 166 start-page: 578 issue: 11 year: 2011 ident: 10.1016/j.engappai.2021.104652_b17 article-title: An overview of the proper generalized decomposition with applications in computational rheology publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/j.jnnfm.2010.12.012 – year: 2016 ident: 10.1016/j.engappai.2021.104652_b25 article-title: Learning temporal regularity in video sequences – volume: 233 start-page: 5896 issue: 16 year: 2019 ident: 10.1016/j.engappai.2021.104652_b67 article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review publication-title: Proc. Inst. Mech. Eng. G doi: 10.1177/0954410019890721 – volume: 92 start-page: 891 issue: 10 year: 2012 ident: 10.1016/j.engappai.2021.104652_b5 article-title: Nonlinear model order reduction based on local reduced-order bases publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4371 – ident: 10.1016/j.engappai.2021.104652_b34 – volume: 51 start-page: 332 issue: 1 year: 2021 ident: 10.1016/j.engappai.2021.104652_b62 article-title: Rotated sphere haar wavelet and deep contractive auto-encoder network with fuzzy Gaussian SVM for pilot’s pupil center detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2886012 – volume: 317 start-page: 868 year: 2017 ident: 10.1016/j.engappai.2021.104652_b63 article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.12.033 – year: 2014 ident: 10.1016/j.engappai.2021.104652_b71 – volume: 85 start-page: 784 issue: 11 year: 2007 ident: 10.1016/j.engappai.2021.104652_b20 article-title: Mesh deformation based on radial basis function interpolation publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.013 – volume: 225 year: 2019 ident: 10.1016/j.engappai.2021.104652_b45 article-title: For direct time integrations: A comparison of the newmark and ρinfty-bathe schemes publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2019.05.015 – year: 2015 ident: 10.1016/j.engappai.2021.104652_b52 – volume: 33 start-page: 233 year: 1998 ident: 10.1016/j.engappai.2021.104652_b15 article-title: Back propagation neural networks publication-title: Substance Use Misuse doi: 10.3109/10826089809115863 – volume: 80 start-page: 267 year: 2021 ident: 10.1016/j.engappai.2021.104652_b58 article-title: Landslide susceptibility mapping using hybridized block modular intelligence model publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01922-8 – volume: 41 start-page: 1893 issue: 5 year: 2003 ident: 10.1016/j.engappai.2021.104652_b54 article-title: A new look at proper orthogonal decomposition publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901389049 – volume: 46 start-page: 406 issue: 23 year: 2013 ident: 10.1016/j.engappai.2021.104652_b36 article-title: A fractional Burgers equation arising in nonlinear acoustics: theory and numerics publication-title: IFAC Proc. Vol. doi: 10.3182/20130904-3-FR-2041.00155 – start-page: 4496 year: 2019 ident: 10.1016/j.engappai.2021.104652_b33 article-title: Convolutional mesh regression for single-image human shape reconstruction – volume: 50 start-page: 1106 issue: 4 year: 2013 ident: 10.1016/j.engappai.2021.104652_b51 article-title: Reduced-order model with an artificial neural network for aerostructural design optimization publication-title: J. Aircraft doi: 10.2514/1.C032062 – start-page: 193 year: 2020 ident: 10.1016/j.engappai.2021.104652_b37 article-title: Chapter 11 - autoencoders – start-page: 481 year: 2016 ident: 10.1016/j.engappai.2021.104652_b24 article-title: Convolutional neural networks for steady flow approximation – volume: 7 start-page: 383 year: 2019 ident: 10.1016/j.engappai.2021.104652_b2 article-title: On nonintrusive uncertainty quantification and surrogate model construction in particle accelerator modeling publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1061928 – volume: 305 start-page: 758 year: 2016 ident: 10.1016/j.engappai.2021.104652_b50 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.012 – volume: 34 start-page: 729 issue: 7 year: 1989 ident: 10.1016/j.engappai.2021.104652_b56 article-title: A schur method for balanced-truncation model reduction publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.29399 – year: 2018 ident: 10.1016/j.engappai.2021.104652_b46 – volume: 149 start-page: 204 year: 2016 ident: 10.1016/j.engappai.2021.104652_b27 article-title: Model-reduction techniques for reliability-based design problems of complex structural systems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.01.003 – volume: 214 year: 2021 ident: 10.1016/j.engappai.2021.104652_b65 article-title: Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107734 – volume: 22 start-page: 562 issue: 3 year: 2020 ident: 10.1016/j.engappai.2021.104652_b6 article-title: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application publication-title: J. Hydroinf. doi: 10.2166/hydro.2020.098 – volume: 26 start-page: 17 issue: 1 year: 1981 ident: 10.1016/j.engappai.2021.104652_b41 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1981.1102568 – volume: 252 start-page: 230 issue: 1 year: 2000 ident: 10.1016/j.engappai.2021.104652_b8 article-title: Nonlinear control of incompressible fluid flow: Application to Burgers’ equation and 2D channel flow publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.6994 – volume: 278 start-page: 197 year: 2015 ident: 10.1016/j.engappai.2021.104652_b66 article-title: Discrete hessian eigenmaps method for dimensionality reduction publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.09.011 – year: 1978 ident: 10.1016/j.engappai.2021.104652_b13 – year: 2018 ident: 10.1016/j.engappai.2021.104652_b35 – volume: 332 start-page: 2437 issue: 10 year: 2013 ident: 10.1016/j.engappai.2021.104652_b40 article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.10.017 – volume: 76 start-page: 27 issue: 1 year: 2008 ident: 10.1016/j.engappai.2021.104652_b44 article-title: An efficient reduced-order modeling approach for non-linear parametrized partial differential equations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2309 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2021.104652_b61 article-title: Detecting dynamic behavior of brain fatigue through 3-d-CNN-LSTM publication-title: IEEE Trans. Syst. Man Cybern. Syst. – ident: 10.1016/j.engappai.2021.104652_b42 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.engappai.2021.104652_b55 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 5790 year: 2019 ident: 10.1016/j.engappai.2021.104652_b69 – volume: 8 start-page: 19 year: 2016 ident: 10.1016/j.engappai.2021.104652_b49 article-title: Pattern recognition: Invariance learning in convolutional auto encoder network publication-title: Int. J. Image Graph. Signal Process. – year: 2021 ident: 10.1016/j.engappai.2021.104652_b29 – volume: 40 start-page: 51 issue: 1 year: 2004 ident: 10.1016/j.engappai.2021.104652_b38 article-title: Reduced-order modeling: new approaches for computational physics publication-title: Progr. Aerosp. Sci. doi: 10.1016/j.paerosci.2003.12.001 – volume: 102 start-page: 1077 issue: 5 year: 2015 ident: 10.1016/j.engappai.2021.104652_b22 article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4820 – year: 2017 ident: 10.1016/j.engappai.2021.104652_b32 – start-page: 52 year: 2011 ident: 10.1016/j.engappai.2021.104652_b39 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – volume: 21 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.engappai.2021.104652_b18 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.006 – volume: 31 start-page: 532 issue: 4 year: 1983 ident: 10.1016/j.engappai.2021.104652_b14 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1983.1095851 – volume: 68 start-page: 3907 issue: 10 year: 2019 ident: 10.1016/j.engappai.2021.104652_b60 article-title: Pilots’ fatigue status recognition using deep contractive autoencoder network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2885608 – volume: 121 start-page: 602 issue: 4 year: 2020 ident: 10.1016/j.engappai.2021.104652_b30 article-title: Diffusion maps-based surrogate modeling: An alternative machine learning approach publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6236 – volume: 372 year: 2020 ident: 10.1016/j.engappai.2021.104652_b64 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113379 – volume: 51 start-page: 5957 issue: 8 year: 2015 ident: 10.1016/j.engappai.2021.104652_b7 article-title: A review of surrogate models and their application to groundwater modeling publication-title: Water Resour. Res. doi: 10.1002/2015WR016967 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 10.1016/j.engappai.2021.104652_b12 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – start-page: 793 year: 2017 ident: 10.1016/j.engappai.2021.104652_b59 article-title: Surrogate models for uncertainty quantification: An overview – volume: 59 year: 2016 ident: 10.1016/j.engappai.2021.104652_b21 article-title: Multilevel model reduction for uncertainty quantification in computational structural dynamics publication-title: Comput. Mech. – volume: 94 start-page: 961 issue: 10 year: 2013 ident: 10.1016/j.engappai.2021.104652_b3 article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4490 – volume: 363 start-page: 55 year: 2018 ident: 10.1016/j.engappai.2021.104652_b26 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.02.037 – year: 2016 ident: 10.1016/j.engappai.2021.104652_b48 – volume: 376 year: 2021 ident: 10.1016/j.engappai.2021.104652_b31 article-title: Diffusion maps-aided neural networks for the solution of parametrized PDEs publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113568 – volume: 25 start-page: 47 issue: 1 year: 2003 ident: 10.1016/j.engappai.2021.104652_b47 article-title: On latin hypercube sampling for structural reliability analysis publication-title: Struct. Saf. doi: 10.1016/S0167-4730(02)00039-5 – volume: 82 start-page: 2693 issue: 31 year: 2004 ident: 10.1016/j.engappai.2021.104652_b57 article-title: Proper orthogonal decomposition of direct numerical simulation data of by-pass transition publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.07.008 – volume: 341 start-page: 807 year: 2018 ident: 10.1016/j.engappai.2021.104652_b23 article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.07.017 – year: 2015 ident: 10.1016/j.engappai.2021.104652_b1 – year: 2007 ident: 10.1016/j.engappai.2021.104652_b9 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2021.104652_b11 article-title: Automatic differentiation in machine learning: A survey publication-title: J. Mach. Learn. Res. – start-page: 2737 year: 2010 ident: 10.1016/j.engappai.2021.104652_b16 – volume: 241 year: 2020 ident: 10.1016/j.engappai.2021.104652_b70 article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106358 – volume: 12 year: 2021 ident: 10.1016/j.engappai.2021.104652_b28 article-title: Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation publication-title: Int. J. Geomath. doi: 10.1007/s13137-021-00180-4 – volume: 60 start-page: 550 year: 2018 ident: 10.1016/j.engappai.2021.104652_b53 article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization publication-title: SIAM Rev. doi: 10.1137/16M1082469 – volume: 33 start-page: 2489 issue: 5 year: 2011 ident: 10.1016/j.engappai.2021.104652_b10 article-title: Interpolatory projection methods for parameterized model reduction publication-title: SIAM J. Sci. Comput. doi: 10.1137/090776925 – volume: 26 start-page: 313 issue: 1 year: 2004 ident: 10.1016/j.engappai.2021.104652_b68 article-title: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502419154 – volume: 21 start-page: 31 issue: 1 year: 2006 ident: 10.1016/j.engappai.2021.104652_b19 article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.07.005 |
| SSID | ssj0003846 |
| Score | 2.5130553 |
| Snippet | This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104652 |
| SubjectTerms | Convolutional autoencoders Deep learning Feed forward neural networks Monte Carlo simulation Surrogate modeling |
| Title | Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders |
| URI | https://dx.doi.org/10.1016/j.engappai.2021.104652 |
| Volume | 109 |
| WOSCitedRecordID | wos000762976300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCOWBeQDN-SlTprEPq7QIuBQrbQL6i3Kw0ZdSlLSpFrtiR_FD2TGjySFlRaEuEStI9dt5qs9Hs98HyEvYU0q83ymGKyFUzaTs4iJOC5ZFBc6CwOBmttGbCKZz8ViIU8nkx--Fma7SqpKXF7K9X81NbSBsbF09i_M3X8oNMBrMDpcwexw_SPDz-uKLSuspcCkoE3XNDWGyqzmjc-bRMbvryimdQUOJ-rLM6-G2-K9dmnObqx2inmjvnUuaa5zdbrV1v0MZBvo2hoZMUuXT9_H-ge2w1fjo3KTfdCYNCUjGjLiBR0OSr7AvLyuu5VNBDxrlc6qejh7wqgT8kybWa5G6aX-3il4AOWo7ydAV9Z4BLoYB2yP-yQvG3jzxTdDppONYAaMy8Qxadv5WyQhw6zdnQneEDD8vljYuMXFkao-wyPIlkcwNDeH3pZU9xci7jMcEMcLuCEuhD33fpBEEubS_eP3J4sPvQcQClsg5r_gqDL9-tGud4pGjs75PXLH7VDosUXWfTJR1QNy1-1WqFsLNtDkBUF820PyfQd7tMce9dijgD06xh7dxR512KNj7NEee9Rgj-5gj46x94h8fHty_uYdcxIfrAh50LJCo3xpPg1iAUtLxrMw1lGuwzjSpQhncjpVAVeZFJHUWotC53kOW241lVmRqyQPH5O9qq7UE0J5ECSK61JmCoMGAjZinMNylHFVgtdaHJDIP-O0cPz3KMOySn2i40XqbZOibVJrmwPyuu-3tgwwN_aQ3oSp82Otf5oC8m7o-_Qf-h6S28Of5xnZA2ur5-RWsW2Xm-aFA-lPdCrTCQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+surrogate+modeling+for+parametrized+time-dependent+partial+differential+equations+using+convolutional+autoencoders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Nikolopoulos%2C+Stefanos&rft.au=Kalogeris%2C+Ioannis&rft.au=Papadopoulos%2C+Vissarion&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=109&rft_id=info:doi/10.1016%2Fj.engappai.2021.104652&rft.externalDocID=S0952197621004541 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |