Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders

This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 109; s. 104652
Hlavní autoři: Nikolopoulos, Stefanos, Kalogeris, Ioannis, Papadopoulos, Vissarion
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2022
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a feed forward neural network to establish a mapping from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values. Then, by applying the convolutional autoencoder, a low-dimensional vector representation of the high dimensional solution matrices is provided by the encoder, while the reconstruction map is obtained by the decoder. Using the latent vectors given by the encoder, a feed forward neural network is efficiently trained to map points from the parametric space to the compressed version of the respective solution matrices. This way, the proposed surrogate model is capable of predicting the entire time history response simultaneously with remarkable computational gains and very high accuracy. The elaborated methodology is demonstrated on the stochastic analysis of time-dependent partial differential equations solved with the Monte Carlo method. [Display omitted] •A novel surrogate method is proposed for parametric prediction of dynamic systems.•Convolutional autoencoders are used to obtain low dimensional nonlinear manifolds.•The framework utilizes two levels of neural networks to build the surrogate.•The surrogate exhibits high accuracy and achieves drastic cost reduction.•It is highly applicable to problems that require multiple model evaluations.
AbstractList This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by parametrized time-dependent partial differential equations. Specifically, the proposed method utilizes a convolutional autoencoder in conjunction with a feed forward neural network to establish a mapping from the problem’s parametric space to its solution space. For this purpose, training data are collected by solving the high-fidelity model via finite elements for a reduced set of parameter values. Then, by applying the convolutional autoencoder, a low-dimensional vector representation of the high dimensional solution matrices is provided by the encoder, while the reconstruction map is obtained by the decoder. Using the latent vectors given by the encoder, a feed forward neural network is efficiently trained to map points from the parametric space to the compressed version of the respective solution matrices. This way, the proposed surrogate model is capable of predicting the entire time history response simultaneously with remarkable computational gains and very high accuracy. The elaborated methodology is demonstrated on the stochastic analysis of time-dependent partial differential equations solved with the Monte Carlo method. [Display omitted] •A novel surrogate method is proposed for parametric prediction of dynamic systems.•Convolutional autoencoders are used to obtain low dimensional nonlinear manifolds.•The framework utilizes two levels of neural networks to build the surrogate.•The surrogate exhibits high accuracy and achieves drastic cost reduction.•It is highly applicable to problems that require multiple model evaluations.
ArticleNumber 104652
Author Kalogeris, Ioannis
Papadopoulos, Vissarion
Nikolopoulos, Stefanos
Author_xml – sequence: 1
  givenname: Stefanos
  orcidid: 0000-0003-3896-1141
  surname: Nikolopoulos
  fullname: Nikolopoulos, Stefanos
  email: stefnikolopoulos@mail.ntua.gr
– sequence: 2
  givenname: Ioannis
  orcidid: 0000-0001-7237-3605
  surname: Kalogeris
  fullname: Kalogeris, Ioannis
  email: ikalog@central.ntua.gr
– sequence: 3
  givenname: Vissarion
  surname: Papadopoulos
  fullname: Papadopoulos, Vissarion
  email: vpapado@central.ntua.gr
BookMark eNqFkM1OwzAQhC1UJNrCK6C8QIqdNI4tcQBV_EkVXOBsOc66cpXawXYqwYlHx6Fw4dLTamc132pmhibWWUDokuAFwYRebRdgN7LvpVkUuCBJXNKqOEFTwuoypzXlEzTFvCpywmt6hmYhbDHGJVvSKfp6djY3NvohmD1kYfDebWSEbOda6IzdZNr5rJde7iB68wltFs0O8hZ6sC3YON6ikV3WGq3BJ2Vc4H2Q0TgbssRNEOXs3nXDKKWrHKIDq9IHH87RqZZdgIvfOUdv93evq8d8_fLwtLpd56okRcyVZpzxBheUsbKQRJZUV40uaaVbVi45xlAQkJxVXGvNlG6ahmIKmEvVQN2Uc0QPXOVdCB606L3ZSf8hCBZjj2Ir_noUY4_i0GMyXv8zKhN_wkUvTXfcfnOwQwq3N-BFUCaFh9Z4UFG0zhxDfAPhupse
CitedBy_id crossref_primary_10_1038_s44172_023_00084_1
crossref_primary_10_1016_j_cma_2023_116155
crossref_primary_10_1016_j_eiar_2024_107641
crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_1016_j_cma_2024_116793
crossref_primary_10_1016_j_probengmech_2023_103570
crossref_primary_10_1061_JSDCCC_SCENG_1799
crossref_primary_10_1016_j_compstruc_2024_107462
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1016_j_apm_2022_09_034
crossref_primary_10_1016_j_engappai_2023_106309
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1016_j_engappai_2023_107380
crossref_primary_10_1016_j_cmpb_2024_108466
crossref_primary_10_1016_j_engappai_2024_108055
crossref_primary_10_1007_s10915_022_02078_1
crossref_primary_10_1016_j_cam_2023_115271
crossref_primary_10_1063_5_0215223
crossref_primary_10_1016_j_biosystemseng_2023_04_002
crossref_primary_10_1063_5_0088070
crossref_primary_10_1016_j_cma_2023_116107
crossref_primary_10_1016_j_engstruct_2022_114020
crossref_primary_10_3389_fams_2022_879140
crossref_primary_10_1186_s40323_023_00244_0
crossref_primary_10_3390_app14135438
crossref_primary_10_1016_j_cma_2025_117790
crossref_primary_10_1016_j_engappai_2024_108656
crossref_primary_10_1016_j_engappai_2023_105945
crossref_primary_10_1038_s41467_024_49411_w
crossref_primary_10_1002_nme_7372
crossref_primary_10_1016_j_ast_2022_107629
crossref_primary_10_1007_s41365_023_01340_x
crossref_primary_10_1016_j_jmsy_2024_10_009
crossref_primary_10_1016_j_engappai_2024_107871
crossref_primary_10_1016_j_ijnonlinmec_2024_104803
crossref_primary_10_1016_j_neunet_2024_106761
crossref_primary_10_1371_journal_pcbi_1010988
Cites_doi 10.2514/1.35374
10.1016/j.jcp.2015.09.046
10.1016/j.jnnfm.2010.12.012
10.1177/0954410019890721
10.1002/nme.4371
10.1109/TCYB.2018.2886012
10.1016/j.cma.2016.12.033
10.1016/j.compstruc.2007.01.013
10.1016/j.compstruc.2019.05.015
10.3109/10826089809115863
10.1007/s10064-020-01922-8
10.1137/S0036142901389049
10.3182/20130904-3-FR-2041.00155
10.2514/1.C032062
10.1137/16M1061928
10.1016/j.jcp.2015.11.012
10.1109/9.29399
10.1016/j.ress.2016.01.003
10.1016/j.ress.2021.107734
10.2166/hydro.2020.098
10.1109/TAC.1981.1102568
10.1006/jmaa.2000.6994
10.1016/j.cam.2014.09.011
10.1016/j.jsv.2012.10.017
10.1002/nme.2309
10.1038/323533a0
10.1016/j.paerosci.2003.12.001
10.1002/nme.4820
10.1016/j.acha.2006.04.006
10.1109/TCOM.1983.1095851
10.1109/TIM.2018.2885608
10.1002/nme.6236
10.1016/j.cma.2020.113379
10.1002/2015WR016967
10.1162/089976603321780317
10.1002/nme.4490
10.1016/j.jcp.2018.02.037
10.1016/j.cma.2020.113568
10.1016/S0167-4730(02)00039-5
10.1016/j.compstruc.2004.07.008
10.1016/j.cma.2018.07.017
10.1016/j.compstruc.2020.106358
10.1007/s13137-021-00180-4
10.1137/16M1082469
10.1137/090776925
10.1137/S1064827502419154
10.1016/j.acha.2005.07.005
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104652
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104652
S0952197621004541
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-cf8989b0268832a1a36f5bf365fd834900e21ea9859fff8cfbbb606e09acbe7b3
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762976300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:33:45 EST 2025
Sat Nov 29 07:09:27 EST 2025
Fri Feb 23 02:39:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional autoencoders
Surrogate modeling
Feed forward neural networks
Monte Carlo simulation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-cf8989b0268832a1a36f5bf365fd834900e21ea9859fff8cfbbb606e09acbe7b3
ORCID 0000-0003-3896-1141
0000-0001-7237-3605
ParticipantIDs crossref_primary_10_1016_j_engappai_2021_104652
crossref_citationtrail_10_1016_j_engappai_2021_104652
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104652
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shahri, Moud (b58) 2021; 80
Masci, Meier, Ciresan, Schmidhuber (b39) 2011
Olsson, Sandberg, Dahlblom (b47) 2003; 25
Zhao, Han, Su, Yan (b69) 2019
Asheghi, Hosseini, Saneie, Shahri (b6) 2020; 22
Farhat, Chapman, Avery (b22) 2015; 102
Patro, Sahu (b52) 2015
Negri, Manzoni, Amsallem (b43) 2015; 303
Hasan, Choi, Neumann, Roy-Chowdhury, Davis (b25) 2016
Safonov, Chiang (b56) 1989; 34
Lucia, Beran, Silva (b38) 2004; 40
Wu, Xiong, Tang, Li, Song, Zhu (b61) 2021
Chaturantabut, Sorensen (b16) 2010
Mignolet, Przekop, Rizzi, Spottswood (b40) 2013; 332
Krizhevsky, A., Hinton, G., 2011. Using very deep autoencoders for content based image retrieval. In: Proc. 19th European Symp. On Artificial Neural Networks.
Parish, Duraisamy (b50) 2016; 305
Sengupta, Dey (b57) 2004; 82
Ye, Nikishova, Veen, Zun, Hoekstra (b65) 2021; 214
Belkin, Niyogi (b12) 2003; 15
Guo, Hesthaven (b23) 2018; 341
Moore (b41) 1981; 26
Wu, Peng, Zhang, Lin, Sheng (b60) 2019; 68
Chinesta, Ammar, Leygue, Keunings (b17) 2011; 166
Zienkiewicz, Taylor, Fox (b71) 2014
Kadeethum, Ballarin, Bouklas (b28) 2021; 12
Lombard, Matignon, Le Gorrec (b36) 2013; 46
Coifman, Lafon (b18) 2006; 21
Asher, Croke, Jakeman, Peeters (b7) 2015; 51
Burt, Adelson (b14) 1983; 31
Park, Jun, Baek, Cho, Yee, Lee (b51) 2013; 50
.
Sudret, Marelli, Wiart (b59) 2017
Ye, Zhi (b66) 2015; 278
Noh, Bathe (b45) 2019; 225
Rathinam, Petzold (b54) 2003; 41
Baker, Armaou, Christofides (b8) 2000; 252
Xu, Duraisamy (b64) 2020; 372
Amsallem, Zahr, Farhat (b5) 2012; 92
Jensen, Munoz, Papadimitriou, Millas (b27) 2016; 149
Lopez Pinaya, Vieira, Garcia-Dias, Mechelli (b37) 2020
Xiao, Fang, Pain, Navon (b63) 2017; 317
de Boer, van der Schoot, Bijl (b20) 2007; 85
Kadeethum, O’Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas (b29) 2021
Kingma, Ba (b32) 2017
Brady, Rojahn, Perez, Carydis, Shokos (b13) 1978
Ezvan, Batou, Soize, Gagliardini (b21) 2016; 59
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b1) 2015
Adelmann (b2) 2019; 7
Kolotouros, Pavlakos, Daniilidis (b33) 2019
Hesthaven, Ubbiali (b26) 2018; 363
Oyedotun, Dimililer (b49) 2016; 8
van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b48) 2016
Rumelhart, Hinton, Williams (b55) 1986; 323
Guo, Li, Iorio (b24) 2016
Zhang, Zha (b68) 2004; 26
Baur, Beattie, Benner, Gugercin (b10) 2011; 33
Nwankpa, Ijomah, Gachagan, Marshall (b46) 2018
Amsallem, Farhat (b4) 2008; 46
Yu, Yan, Guo (b67) 2019; 233
Bathe (b9) 2007
Kalogeris, Papadopoulos (b30) 2020; 121
Nguyen, Peraire (b44) 2008; 76
Multidisciplinary computational mechanics research group, M., 0000. MSolve.
Buscema (b15) 1998; 33
Kalogeris, Papadopoulos (b31) 2021; 376
de Almeida (b3) 2013; 94
Coifman, Lafon (b19) 2006; 21
Baydin, Pearlmutter, Radul, Siskind (b11) 2018; 18
Lataniotis, Marelli, Sudret (b35) 2018
Peherstorfer, Willcox, Gunzburger (b53) 2018; 60
Zhou, Peng (b70) 2020; 241
Wu, Zhou, Zhu, Wei, Ren, Sheng (b62) 2021; 51
10.1016/j.engappai.2021.104652_b34
Nwankpa (10.1016/j.engappai.2021.104652_b46) 2018
Abadi (10.1016/j.engappai.2021.104652_b1) 2015
Rumelhart (10.1016/j.engappai.2021.104652_b55) 1986; 323
Sengupta (10.1016/j.engappai.2021.104652_b57) 2004; 82
Sudret (10.1016/j.engappai.2021.104652_b59) 2017
Peherstorfer (10.1016/j.engappai.2021.104652_b53) 2018; 60
Coifman (10.1016/j.engappai.2021.104652_b19) 2006; 21
Kingma (10.1016/j.engappai.2021.104652_b32) 2017
Lombard (10.1016/j.engappai.2021.104652_b36) 2013; 46
Lopez Pinaya (10.1016/j.engappai.2021.104652_b37) 2020
Chinesta (10.1016/j.engappai.2021.104652_b17) 2011; 166
Lataniotis (10.1016/j.engappai.2021.104652_b35) 2018
Bathe (10.1016/j.engappai.2021.104652_b9) 2007
de Boer (10.1016/j.engappai.2021.104652_b20) 2007; 85
Zhou (10.1016/j.engappai.2021.104652_b70) 2020; 241
de Almeida (10.1016/j.engappai.2021.104652_b3) 2013; 94
Farhat (10.1016/j.engappai.2021.104652_b22) 2015; 102
Kadeethum (10.1016/j.engappai.2021.104652_b29) 2021
Burt (10.1016/j.engappai.2021.104652_b14) 1983; 31
Hasan (10.1016/j.engappai.2021.104652_b25) 2016
Rathinam (10.1016/j.engappai.2021.104652_b54) 2003; 41
Safonov (10.1016/j.engappai.2021.104652_b56) 1989; 34
Mignolet (10.1016/j.engappai.2021.104652_b40) 2013; 332
van den Oord (10.1016/j.engappai.2021.104652_b48) 2016
Negri (10.1016/j.engappai.2021.104652_b43) 2015; 303
Amsallem (10.1016/j.engappai.2021.104652_b5) 2012; 92
Ye (10.1016/j.engappai.2021.104652_b65) 2021; 214
Baur (10.1016/j.engappai.2021.104652_b10) 2011; 33
Coifman (10.1016/j.engappai.2021.104652_b18) 2006; 21
Ye (10.1016/j.engappai.2021.104652_b66) 2015; 278
Zhao (10.1016/j.engappai.2021.104652_b69) 2019
Guo (10.1016/j.engappai.2021.104652_b23) 2018; 341
Chaturantabut (10.1016/j.engappai.2021.104652_b16) 2010
Oyedotun (10.1016/j.engappai.2021.104652_b49) 2016; 8
Amsallem (10.1016/j.engappai.2021.104652_b4) 2008; 46
Patro (10.1016/j.engappai.2021.104652_b52) 2015
Park (10.1016/j.engappai.2021.104652_b51) 2013; 50
Asheghi (10.1016/j.engappai.2021.104652_b6) 2020; 22
Wu (10.1016/j.engappai.2021.104652_b61) 2021
Olsson (10.1016/j.engappai.2021.104652_b47) 2003; 25
Yu (10.1016/j.engappai.2021.104652_b67) 2019; 233
Jensen (10.1016/j.engappai.2021.104652_b27) 2016; 149
Moore (10.1016/j.engappai.2021.104652_b41) 1981; 26
Lucia (10.1016/j.engappai.2021.104652_b38) 2004; 40
Noh (10.1016/j.engappai.2021.104652_b45) 2019; 225
Masci (10.1016/j.engappai.2021.104652_b39) 2011
Asher (10.1016/j.engappai.2021.104652_b7) 2015; 51
Baydin (10.1016/j.engappai.2021.104652_b11) 2018; 18
Hesthaven (10.1016/j.engappai.2021.104652_b26) 2018; 363
Nguyen (10.1016/j.engappai.2021.104652_b44) 2008; 76
Ezvan (10.1016/j.engappai.2021.104652_b21) 2016; 59
Baker (10.1016/j.engappai.2021.104652_b8) 2000; 252
Kadeethum (10.1016/j.engappai.2021.104652_b28) 2021; 12
Xiao (10.1016/j.engappai.2021.104652_b63) 2017; 317
Zhang (10.1016/j.engappai.2021.104652_b68) 2004; 26
Brady (10.1016/j.engappai.2021.104652_b13) 1978
Wu (10.1016/j.engappai.2021.104652_b60) 2019; 68
Shahri (10.1016/j.engappai.2021.104652_b58) 2021; 80
Xu (10.1016/j.engappai.2021.104652_b64) 2020; 372
Guo (10.1016/j.engappai.2021.104652_b24) 2016
Adelmann (10.1016/j.engappai.2021.104652_b2) 2019; 7
Belkin (10.1016/j.engappai.2021.104652_b12) 2003; 15
Kolotouros (10.1016/j.engappai.2021.104652_b33) 2019
Parish (10.1016/j.engappai.2021.104652_b50) 2016; 305
Buscema (10.1016/j.engappai.2021.104652_b15) 1998; 33
Kalogeris (10.1016/j.engappai.2021.104652_b31) 2021; 376
Wu (10.1016/j.engappai.2021.104652_b62) 2021; 51
10.1016/j.engappai.2021.104652_b42
Kalogeris (10.1016/j.engappai.2021.104652_b30) 2020; 121
Zienkiewicz (10.1016/j.engappai.2021.104652_b71) 2014
References_xml – year: 2007
  ident: b9
  article-title: Finite Element Procedures
– volume: 68
  start-page: 3907
  year: 2019
  end-page: 3919
  ident: b60
  article-title: Pilots’ fatigue status recognition using deep contractive autoencoder network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 383
  year: 2019
  end-page: 416
  ident: b2
  article-title: On nonintrusive uncertainty quantification and surrogate model construction in particle accelerator modeling
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 85
  start-page: 784
  year: 2007
  end-page: 795
  ident: b20
  article-title: Mesh deformation based on radial basis function interpolation
  publication-title: Comput. Struct.
– reference: Krizhevsky, A., Hinton, G., 2011. Using very deep autoencoders for content based image retrieval. In: Proc. 19th European Symp. On Artificial Neural Networks.
– volume: 166
  start-page: 578
  year: 2011
  end-page: 592
  ident: b17
  article-title: An overview of the proper generalized decomposition with applications in computational rheology
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 214
  year: 2021
  ident: b65
  article-title: Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2014
  ident: b71
  article-title: The Finite Element Method For Solid And Structural Mechanics
– start-page: 1
  year: 2021
  end-page: 11
  ident: b61
  article-title: Detecting dynamic behavior of brain fatigue through 3-d-CNN-LSTM
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 31
  start-page: 532
  year: 1983
  end-page: 540
  ident: b14
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
– volume: 376
  year: 2021
  ident: b31
  article-title: Diffusion maps-aided neural networks for the solution of parametrized PDEs
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 278
  start-page: 197
  year: 2015
  end-page: 212
  ident: b66
  article-title: Discrete hessian eigenmaps method for dimensionality reduction
  publication-title: J. Comput. Appl. Math.
– volume: 76
  start-page: 27
  year: 2008
  end-page: 55
  ident: b44
  article-title: An efficient reduced-order modeling approach for non-linear parametrized partial differential equations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 21
  start-page: 5
  year: 2006
  end-page: 30
  ident: b18
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b11
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J. Mach. Learn. Res.
– volume: 317
  start-page: 868
  year: 2017
  end-page: 889
  ident: b63
  article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: Multidisciplinary computational mechanics research group, M., 0000. MSolve.
– volume: 241
  year: 2020
  ident: b70
  article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
  publication-title: Comput. Struct.
– year: 2018
  ident: b46
  article-title: Activation functions: Comparison of trends in practice and research for deep learning
– volume: 92
  start-page: 891
  year: 2012
  end-page: 916
  ident: b5
  article-title: Nonlinear model order reduction based on local reduced-order bases
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 149
  start-page: 204
  year: 2016
  end-page: 217
  ident: b27
  article-title: Model-reduction techniques for reliability-based design problems of complex structural systems
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 303
  start-page: 431
  year: 2015
  end-page: 454
  ident: b43
  article-title: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
  publication-title: J. Comput. Phys.
– start-page: 2737
  year: 2010
  end-page: 2764
  ident: b16
  article-title: Nonlinear model reduction via discrete empirical interpolation
– start-page: 52
  year: 2011
  end-page: 59
  ident: b39
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Proc. 21th International Conference On Artificial Neural Networks
– volume: 51
  start-page: 332
  year: 2021
  end-page: 345
  ident: b62
  article-title: Rotated sphere haar wavelet and deep contractive auto-encoder network with fuzzy Gaussian SVM for pilot’s pupil center detection
  publication-title: IEEE Trans. Cybern.
– year: 1978
  ident: b13
  article-title: Seismic Engineering Data Report: Romanian and Greek Records, 1972-77
– volume: 82
  start-page: 2693
  year: 2004
  end-page: 2703
  ident: b57
  article-title: Proper orthogonal decomposition of direct numerical simulation data of by-pass transition
  publication-title: Comput. Struct.
– volume: 60
  start-page: 550
  year: 2018
  end-page: 591
  ident: b53
  article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization
  publication-title: SIAM Rev.
– volume: 121
  start-page: 602
  year: 2020
  end-page: 620
  ident: b30
  article-title: Diffusion maps-based surrogate modeling: An alternative machine learning approach
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 5790
  year: 2019
  end-page: 5793
  ident: b69
  publication-title: Time Series Prediction Method Based on Convolutional Autoencoder and LSTM
– volume: 225
  year: 2019
  ident: b45
  article-title: For direct time integrations: A comparison of the newmark and
  publication-title: Comput. Struct.
– volume: 80
  start-page: 267
  year: 2021
  end-page: 284
  ident: b58
  article-title: Landslide susceptibility mapping using hybridized block modular intelligence model
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 793
  year: 2017
  end-page: 797
  ident: b59
  article-title: Surrogate models for uncertainty quantification: An overview
  publication-title: 2017 11th European Conference On Antennas And Propagation (EUCAP)
– start-page: 193
  year: 2020
  end-page: 208
  ident: b37
  article-title: Chapter 11 - autoencoders
  publication-title: Machine Learning
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  ident: b50
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– volume: 34
  start-page: 729
  year: 1989
  end-page: 733
  ident: b56
  article-title: A schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Automat. Control
– volume: 46
  start-page: 1803
  year: 2008
  end-page: 1813
  ident: b4
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: Am. Inst. Aeronaut. Astronaut.
– volume: 40
  start-page: 51
  year: 2004
  end-page: 117
  ident: b38
  article-title: Reduced-order modeling: new approaches for computational physics
  publication-title: Progr. Aerosp. Sci.
– volume: 94
  start-page: 961
  year: 2013
  end-page: 984
  ident: b3
  article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 233
  start-page: 5896
  year: 2019
  end-page: 5912
  ident: b67
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proc. Inst. Mech. Eng. G
– volume: 372
  year: 2020
  ident: b64
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 33
  start-page: 233
  year: 1998
  end-page: 270
  ident: b15
  article-title: Back propagation neural networks
  publication-title: Substance Use Misuse
– volume: 12
  year: 2021
  ident: b28
  article-title: Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation
  publication-title: Int. J. Geomath.
– volume: 21
  start-page: 31
  year: 2006
  end-page: 52
  ident: b19
  article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 51
  start-page: 5957
  year: 2015
  end-page: 5973
  ident: b7
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 1893
  year: 2003
  end-page: 1925
  ident: b54
  article-title: A new look at proper orthogonal decomposition
  publication-title: SIAM J. Numer. Anal.
– start-page: 481
  year: 2016
  end-page: 490
  ident: b24
  article-title: Convolutional neural networks for steady flow approximation
  publication-title: Proceedings Of The 22nd ACM SIGKDD International Conference On Knowledge Discovery And Data Mining
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: b26
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– start-page: 4496
  year: 2019
  end-page: 4505
  ident: b33
  article-title: Convolutional mesh regression for single-image human shape reconstruction
– volume: 26
  start-page: 17
  year: 1981
  end-page: 32
  ident: b41
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Automat. Control
– year: 2016
  ident: b48
  article-title: Wavenet: A generative model for raw audio
– volume: 332
  start-page: 2437
  year: 2013
  end-page: 2460
  ident: b40
  article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures
  publication-title: J. Sound Vib.
– volume: 252
  start-page: 230
  year: 2000
  end-page: 255
  ident: b8
  article-title: Nonlinear control of incompressible fluid flow: Application to Burgers’ equation and 2D channel flow
  publication-title: J. Math. Anal. Appl.
– volume: 33
  start-page: 2489
  year: 2011
  end-page: 2518
  ident: b10
  article-title: Interpolatory projection methods for parameterized model reduction
  publication-title: SIAM J. Sci. Comput.
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: b12
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
– volume: 59
  year: 2016
  ident: b21
  article-title: Multilevel model reduction for uncertainty quantification in computational structural dynamics
  publication-title: Comput. Mech.
– volume: 26
  start-page: 313
  year: 2004
  end-page: 338
  ident: b68
  article-title: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
  publication-title: SIAM J. Sci. Comput.
– volume: 50
  start-page: 1106
  year: 2013
  end-page: 1116
  ident: b51
  article-title: Reduced-order model with an artificial neural network for aerostructural design optimization
  publication-title: J. Aircraft
– year: 2015
  ident: b1
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– reference: .
– year: 2016
  ident: b25
  article-title: Learning temporal regularity in video sequences
  publication-title: Proc. IEEE Conf. On Computer Vision And Pattern Recognition
– volume: 102
  start-page: 1077
  year: 2015
  end-page: 1110
  ident: b22
  article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 8
  start-page: 19
  year: 2016
  end-page: 27
  ident: b49
  article-title: Pattern recognition: Invariance learning in convolutional auto encoder network
  publication-title: Int. J. Image Graph. Signal Process.
– volume: 22
  start-page: 562
  year: 2020
  end-page: 577
  ident: b6
  article-title: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application
  publication-title: J. Hydroinf.
– year: 2015
  ident: b52
  article-title: Normalization: A preprocessing stage
– volume: 46
  start-page: 406
  year: 2013
  end-page: 411
  ident: b36
  article-title: A fractional Burgers equation arising in nonlinear acoustics: theory and numerics
  publication-title: IFAC Proc. Vol.
– volume: 25
  start-page: 47
  year: 2003
  end-page: 68
  ident: b47
  article-title: On latin hypercube sampling for structural reliability analysis
  publication-title: Struct. Saf.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b55
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 341
  start-page: 807
  year: 2018
  end-page: 826
  ident: b23
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2018
  ident: b35
  article-title: Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach
– year: 2017
  ident: b32
  article-title: Adam: A method for stochastic optimization
– year: 2021
  ident: b29
  article-title: A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
– volume: 46
  start-page: 1803
  issue: 7
  year: 2008
  ident: 10.1016/j.engappai.2021.104652_b4
  article-title: Interpolation method for adapting reduced-order models and application to aeroelasticity
  publication-title: Am. Inst. Aeronaut. Astronaut.
  doi: 10.2514/1.35374
– volume: 303
  start-page: 431
  year: 2015
  ident: 10.1016/j.engappai.2021.104652_b43
  article-title: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.09.046
– volume: 166
  start-page: 578
  issue: 11
  year: 2011
  ident: 10.1016/j.engappai.2021.104652_b17
  article-title: An overview of the proper generalized decomposition with applications in computational rheology
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2010.12.012
– year: 2016
  ident: 10.1016/j.engappai.2021.104652_b25
  article-title: Learning temporal regularity in video sequences
– volume: 233
  start-page: 5896
  issue: 16
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b67
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proc. Inst. Mech. Eng. G
  doi: 10.1177/0954410019890721
– volume: 92
  start-page: 891
  issue: 10
  year: 2012
  ident: 10.1016/j.engappai.2021.104652_b5
  article-title: Nonlinear model order reduction based on local reduced-order bases
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4371
– ident: 10.1016/j.engappai.2021.104652_b34
– volume: 51
  start-page: 332
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b62
  article-title: Rotated sphere haar wavelet and deep contractive auto-encoder network with fuzzy Gaussian SVM for pilot’s pupil center detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2886012
– volume: 317
  start-page: 868
  year: 2017
  ident: 10.1016/j.engappai.2021.104652_b63
  article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.12.033
– year: 2014
  ident: 10.1016/j.engappai.2021.104652_b71
– volume: 85
  start-page: 784
  issue: 11
  year: 2007
  ident: 10.1016/j.engappai.2021.104652_b20
  article-title: Mesh deformation based on radial basis function interpolation
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.013
– volume: 225
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b45
  article-title: For direct time integrations: A comparison of the newmark and ρinfty-bathe schemes
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.05.015
– year: 2015
  ident: 10.1016/j.engappai.2021.104652_b52
– volume: 33
  start-page: 233
  year: 1998
  ident: 10.1016/j.engappai.2021.104652_b15
  article-title: Back propagation neural networks
  publication-title: Substance Use Misuse
  doi: 10.3109/10826089809115863
– volume: 80
  start-page: 267
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b58
  article-title: Landslide susceptibility mapping using hybridized block modular intelligence model
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01922-8
– volume: 41
  start-page: 1893
  issue: 5
  year: 2003
  ident: 10.1016/j.engappai.2021.104652_b54
  article-title: A new look at proper orthogonal decomposition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901389049
– volume: 46
  start-page: 406
  issue: 23
  year: 2013
  ident: 10.1016/j.engappai.2021.104652_b36
  article-title: A fractional Burgers equation arising in nonlinear acoustics: theory and numerics
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20130904-3-FR-2041.00155
– start-page: 4496
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b33
  article-title: Convolutional mesh regression for single-image human shape reconstruction
– volume: 50
  start-page: 1106
  issue: 4
  year: 2013
  ident: 10.1016/j.engappai.2021.104652_b51
  article-title: Reduced-order model with an artificial neural network for aerostructural design optimization
  publication-title: J. Aircraft
  doi: 10.2514/1.C032062
– start-page: 193
  year: 2020
  ident: 10.1016/j.engappai.2021.104652_b37
  article-title: Chapter 11 - autoencoders
– start-page: 481
  year: 2016
  ident: 10.1016/j.engappai.2021.104652_b24
  article-title: Convolutional neural networks for steady flow approximation
– volume: 7
  start-page: 383
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b2
  article-title: On nonintrusive uncertainty quantification and surrogate model construction in particle accelerator modeling
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1061928
– volume: 305
  start-page: 758
  year: 2016
  ident: 10.1016/j.engappai.2021.104652_b50
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.012
– volume: 34
  start-page: 729
  issue: 7
  year: 1989
  ident: 10.1016/j.engappai.2021.104652_b56
  article-title: A schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.29399
– year: 2018
  ident: 10.1016/j.engappai.2021.104652_b46
– volume: 149
  start-page: 204
  year: 2016
  ident: 10.1016/j.engappai.2021.104652_b27
  article-title: Model-reduction techniques for reliability-based design problems of complex structural systems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2016.01.003
– volume: 214
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b65
  article-title: Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107734
– volume: 22
  start-page: 562
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2021.104652_b6
  article-title: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2020.098
– volume: 26
  start-page: 17
  issue: 1
  year: 1981
  ident: 10.1016/j.engappai.2021.104652_b41
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1981.1102568
– volume: 252
  start-page: 230
  issue: 1
  year: 2000
  ident: 10.1016/j.engappai.2021.104652_b8
  article-title: Nonlinear control of incompressible fluid flow: Application to Burgers’ equation and 2D channel flow
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.6994
– volume: 278
  start-page: 197
  year: 2015
  ident: 10.1016/j.engappai.2021.104652_b66
  article-title: Discrete hessian eigenmaps method for dimensionality reduction
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.09.011
– year: 1978
  ident: 10.1016/j.engappai.2021.104652_b13
– year: 2018
  ident: 10.1016/j.engappai.2021.104652_b35
– volume: 332
  start-page: 2437
  issue: 10
  year: 2013
  ident: 10.1016/j.engappai.2021.104652_b40
  article-title: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.10.017
– volume: 76
  start-page: 27
  issue: 1
  year: 2008
  ident: 10.1016/j.engappai.2021.104652_b44
  article-title: An efficient reduced-order modeling approach for non-linear parametrized partial differential equations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2309
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b61
  article-title: Detecting dynamic behavior of brain fatigue through 3-d-CNN-LSTM
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– ident: 10.1016/j.engappai.2021.104652_b42
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.engappai.2021.104652_b55
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 5790
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b69
– volume: 8
  start-page: 19
  year: 2016
  ident: 10.1016/j.engappai.2021.104652_b49
  article-title: Pattern recognition: Invariance learning in convolutional auto encoder network
  publication-title: Int. J. Image Graph. Signal Process.
– year: 2021
  ident: 10.1016/j.engappai.2021.104652_b29
– volume: 40
  start-page: 51
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2021.104652_b38
  article-title: Reduced-order modeling: new approaches for computational physics
  publication-title: Progr. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2003.12.001
– volume: 102
  start-page: 1077
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2021.104652_b22
  article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4820
– year: 2017
  ident: 10.1016/j.engappai.2021.104652_b32
– start-page: 52
  year: 2011
  ident: 10.1016/j.engappai.2021.104652_b39
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– volume: 21
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2021.104652_b18
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.006
– volume: 31
  start-page: 532
  issue: 4
  year: 1983
  ident: 10.1016/j.engappai.2021.104652_b14
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1983.1095851
– volume: 68
  start-page: 3907
  issue: 10
  year: 2019
  ident: 10.1016/j.engappai.2021.104652_b60
  article-title: Pilots’ fatigue status recognition using deep contractive autoencoder network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2885608
– volume: 121
  start-page: 602
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2021.104652_b30
  article-title: Diffusion maps-based surrogate modeling: An alternative machine learning approach
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6236
– volume: 372
  year: 2020
  ident: 10.1016/j.engappai.2021.104652_b64
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113379
– volume: 51
  start-page: 5957
  issue: 8
  year: 2015
  ident: 10.1016/j.engappai.2021.104652_b7
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016967
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.engappai.2021.104652_b12
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– start-page: 793
  year: 2017
  ident: 10.1016/j.engappai.2021.104652_b59
  article-title: Surrogate models for uncertainty quantification: An overview
– volume: 59
  year: 2016
  ident: 10.1016/j.engappai.2021.104652_b21
  article-title: Multilevel model reduction for uncertainty quantification in computational structural dynamics
  publication-title: Comput. Mech.
– volume: 94
  start-page: 961
  issue: 10
  year: 2013
  ident: 10.1016/j.engappai.2021.104652_b3
  article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4490
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.engappai.2021.104652_b26
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– year: 2016
  ident: 10.1016/j.engappai.2021.104652_b48
– volume: 376
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b31
  article-title: Diffusion maps-aided neural networks for the solution of parametrized PDEs
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113568
– volume: 25
  start-page: 47
  issue: 1
  year: 2003
  ident: 10.1016/j.engappai.2021.104652_b47
  article-title: On latin hypercube sampling for structural reliability analysis
  publication-title: Struct. Saf.
  doi: 10.1016/S0167-4730(02)00039-5
– volume: 82
  start-page: 2693
  issue: 31
  year: 2004
  ident: 10.1016/j.engappai.2021.104652_b57
  article-title: Proper orthogonal decomposition of direct numerical simulation data of by-pass transition
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.07.008
– volume: 341
  start-page: 807
  year: 2018
  ident: 10.1016/j.engappai.2021.104652_b23
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.07.017
– year: 2015
  ident: 10.1016/j.engappai.2021.104652_b1
– year: 2007
  ident: 10.1016/j.engappai.2021.104652_b9
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2021.104652_b11
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J. Mach. Learn. Res.
– start-page: 2737
  year: 2010
  ident: 10.1016/j.engappai.2021.104652_b16
– volume: 241
  year: 2020
  ident: 10.1016/j.engappai.2021.104652_b70
  article-title: Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106358
– volume: 12
  year: 2021
  ident: 10.1016/j.engappai.2021.104652_b28
  article-title: Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation
  publication-title: Int. J. Geomath.
  doi: 10.1007/s13137-021-00180-4
– volume: 60
  start-page: 550
  year: 2018
  ident: 10.1016/j.engappai.2021.104652_b53
  article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization
  publication-title: SIAM Rev.
  doi: 10.1137/16M1082469
– volume: 33
  start-page: 2489
  issue: 5
  year: 2011
  ident: 10.1016/j.engappai.2021.104652_b10
  article-title: Interpolatory projection methods for parameterized model reduction
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090776925
– volume: 26
  start-page: 313
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2021.104652_b68
  article-title: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502419154
– volume: 21
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2021.104652_b19
  article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.07.005
SSID ssj0003846
Score 2.5130553
Snippet This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104652
SubjectTerms Convolutional autoencoders
Deep learning
Feed forward neural networks
Monte Carlo simulation
Surrogate modeling
Title Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders
URI https://dx.doi.org/10.1016/j.engappai.2021.104652
Volume 109
WOSCitedRecordID wos000762976300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMXvhFjgHzghjzy0TT2cUJDwKGatIF6i-zERh3FKWlSTTvxR_EH8vyVpDBpIMQlah25TvN-cZ6f3_v9EHpZsZhLyRTJsnRKwCOGR6pUGZmVYsoVi5WshBWbyOdzuliw08nkR6iF2a5yrenlJVv_V1NDGxjblM7-hbn7H4UG-AxGhyOYHY5_ZPh5rclSm1oKkxS06ZqmNqEyp3kT8iYN4_dXI6Z1BQ6n0ZcnQQ23Nefapd27cdop9ov81vmkuc7X6eqt_xuGbaBra8OIWfl8-j7WP7Advhpvldvsg8amKVnRkBEv6LBR8gXm5XXdrVwi4FkrFdf1sPdkok6GZ9rOcrWRXurPnYIHUI36fgJ08SYg0Mc4YHncJ3m5wFsovhkynVwEMyExyz2Ttpu_aZ4Sk7W7M8FbAobfXxYubnFxJPVnuAV8eQRDx3bT25Hq_kLEfWYGNOMlsSUuhDX3fpJnDObS_eP3J4sPvQeQUlcgFi5wVJl-_WjXO0UjR-f8HrrjVyj42CHrPppI_QDd9asV7N8FG2gKgiCh7SH6voM93GMPB-xhwB4eYw_vYg977OEx9nCPPWyxh3ewh8fYe4Q-vj05f_OOeIkPUqZx0pJSGflSESUzCq8WHvN0pjKh0lmmKppOWRTJJJac0YwppWiphBCw5JYR46WQuUgfoz1da_kE4TzmuVl_05KrKU2pqEpw7SU4sDKKRKwOUBbucVF6_nsjw7IqQqLjRRFsUxjbFM42B-h132_tGGBu7MGCCQvvxzr_tADk3dD36T_0PUS3h4fnGdoDa8vn6Fa5bZeb5oUH6U9PltSi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+surrogate+modeling+for+parametrized+time-dependent+partial+differential+equations+using+convolutional+autoencoders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Nikolopoulos%2C+Stefanos&rft.au=Kalogeris%2C+Ioannis&rft.au=Papadopoulos%2C+Vissarion&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=109&rft_id=info:doi/10.1016%2Fj.engappai.2021.104652&rft.externalDocID=S0952197621004541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon