Calibration of Manning’s roughness coefficients for shallow-water flows on complex bathymetries using optimization algorithms and surrogate neural network models

•The main features of a newly developed high-performance multi-GPU solver for the shallow-water equations are presented. This solver is used to build a database of highfidelity solutions.•A surrogate model based on an ensemble of neural networks is trained on the database.•Optimization algorithms ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & fluids Ročník 304; s. 106884
Hlavní autori: Metcheka Kengne, Igor Gildas, Delmas, Vincent, Soulaïmani, Azzeddine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.01.2026
Predmet:
ISSN:0045-7930
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The main features of a newly developed high-performance multi-GPU solver for the shallow-water equations are presented. This solver is used to build a database of highfidelity solutions.•A surrogate model based on an ensemble of neural networks is trained on the database.•Optimization algorithms are analyzed to identify the optimal Manning friction coefficients using the surrogate model. Notably, no convergence issue is observed and accurate solutions are obtained.•Hybrid Particle Swarm Optimization (HPSO) algorithm revealed robust and fast convergence.•The versatility of this approach makes it applicable to various domains. This paper presents an effective methodology for the automatic calibration of Manning’s roughness coefficients, which are crucial parameters for modeling shallow free-surface flows. Traditionally determined through empirical methods, these coefficients are subject to significant variability, making their determination challenging, especially in flow areas with complex bathymetry. The conventional trial-and-error approach, widely used to select these coefficients, is often tedious and time-consuming, particularly in applications constrained by time and data availability. The proposed methodology aims to determine the optimal values of Manning’s coefficients distributed over the flow domain while minimizing global discrepancies between simulations and field measurements. The calibration approach is formulated as an inverse optimization problem and addressed using metaheuristic optimization algorithms such as the Genetic Algorithm or Particle Swarm Optimization, combined with an ensemble model of deep neural networks. The database for training the neural networks is obtained using a newly developed finite volume-based shallow-water equations solver, parallelized on multiple GPUs, to generate large datasets of solutions for machine learning purposes. The performance of this approach is evaluated through various flow scenarios. Compared to conventional techniques, this methodology stands out for its simplicity, computational efficiency, and robustness. Additionally, Hybrid Particle Swarm Optimization (HPSO) proves to be particularly effective, notably for its speed. The developed codes are available at: https://github.com/ETS-GRANIT/CuteFlow.
AbstractList •The main features of a newly developed high-performance multi-GPU solver for the shallow-water equations are presented. This solver is used to build a database of highfidelity solutions.•A surrogate model based on an ensemble of neural networks is trained on the database.•Optimization algorithms are analyzed to identify the optimal Manning friction coefficients using the surrogate model. Notably, no convergence issue is observed and accurate solutions are obtained.•Hybrid Particle Swarm Optimization (HPSO) algorithm revealed robust and fast convergence.•The versatility of this approach makes it applicable to various domains. This paper presents an effective methodology for the automatic calibration of Manning’s roughness coefficients, which are crucial parameters for modeling shallow free-surface flows. Traditionally determined through empirical methods, these coefficients are subject to significant variability, making their determination challenging, especially in flow areas with complex bathymetry. The conventional trial-and-error approach, widely used to select these coefficients, is often tedious and time-consuming, particularly in applications constrained by time and data availability. The proposed methodology aims to determine the optimal values of Manning’s coefficients distributed over the flow domain while minimizing global discrepancies between simulations and field measurements. The calibration approach is formulated as an inverse optimization problem and addressed using metaheuristic optimization algorithms such as the Genetic Algorithm or Particle Swarm Optimization, combined with an ensemble model of deep neural networks. The database for training the neural networks is obtained using a newly developed finite volume-based shallow-water equations solver, parallelized on multiple GPUs, to generate large datasets of solutions for machine learning purposes. The performance of this approach is evaluated through various flow scenarios. Compared to conventional techniques, this methodology stands out for its simplicity, computational efficiency, and robustness. Additionally, Hybrid Particle Swarm Optimization (HPSO) proves to be particularly effective, notably for its speed. The developed codes are available at: https://github.com/ETS-GRANIT/CuteFlow.
ArticleNumber 106884
Author Metcheka Kengne, Igor Gildas
Delmas, Vincent
Soulaïmani, Azzeddine
Author_xml – sequence: 1
  givenname: Igor Gildas
  surname: Metcheka Kengne
  fullname: Metcheka Kengne, Igor Gildas
  organization: Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Notre-Dame Ouest, Montréal, H3C 1K3, QC, Canada
– sequence: 2
  givenname: Vincent
  orcidid: 0009-0007-4434-6627
  surname: Delmas
  fullname: Delmas, Vincent
  organization: Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux, CNRS, Bordeaux INP, Talence, F33400, France
– sequence: 3
  givenname: Azzeddine
  orcidid: 0000-0003-3082-2155
  surname: Soulaïmani
  fullname: Soulaïmani, Azzeddine
  email: azzeddine.soulaimani@etsmtl.ca
  organization: Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Notre-Dame Ouest, Montréal, H3C 1K3, QC, Canada
BookMark eNqFkDtuGzEQhlk4gF85Q3iBVbhc7koqDSEvwEYapyZmyaFEhUsKHG4Up8o1UvtmPokpKEibah7A_83gu2YXMUVk7F0rFq1oh_f7hUnTwYXZ24UUsq_bYbVSF-xKCNU3y3UnLtk10V7UuZPqij1vIPgxQ_Ep8uT4A8To4_bl9x_iOc3bXUQibhI6543HWIi7lDntIIR0bI5QMHNXW-IVcLoe8CcfoeyeJizZI_GZKpCnQ_GT_3U-BGGbsi-7iThEy2nOOW0rikecM4RayjHl73xKFgPdsjcOAuHbv_WGffv44XHzubn_-unL5u6-MV0rS2PA9bZXfQuD6JVrAcEOvRFuHBVitzJG9krZAY0cpAK1qoKsXMMoB7t2S9fdsOWZa3Iiyuj0IfsJ8pNuhT751Xv9z68--dVnvzV5d07Wb_GHx6zpJMug9RlN0Tb5_zJeAWgxlE8
Cites_doi 10.3390/w13131830
10.1016/j.envsoft.2006.12.003
10.2166/ws.2020.235
10.2166/hydro.2013.030
10.1016/S1001-6058(09)60051-2
10.1016/j.cpc.2021.108190
10.1137/S1064827595287997
10.1007/s12209-009-0078-2
10.1002/fld.801
10.1029/WR008i004p00956
10.1080/10618560410001710496
10.1016/j.advwatres.2014.11.009
10.1016/j.advwatres.2013.09.019
10.1016/j.jcp.2007.03.031
10.1016/j.jcp.2020.109854
10.1007/978-3-030-43651-3_42
10.1016/j.engappai.2022.105151
10.1137/S1064827503431090
10.1080/15715124.2017.1298605
10.1080/09715010.2017.1348263
10.1080/10618569908940814
10.1016/j.cma.2010.07.003
10.1137/070709359
10.1080/088395101750363966
10.1016/j.jcp.2022.111629
10.1007/978-981-19-1438-6_3
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compfluid.2025.106884
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compfluid_2025_106884
S0045793025003445
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
~HD
29F
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
T9H
VH1
WUQ
ID FETCH-LOGICAL-c312t-caf5d5451a6054f1aead65c0fbb4ee38cc2544d6ec2624a48025d29ab26d9f7f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612532400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Thu Nov 27 00:42:05 EST 2025
Sat Nov 29 17:08:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Manning roughness coefficient
CUDA
Metaheuristic optimization algorithms
Ensemble model
Neural networks
Multi-GPU
Calibration
Finite volumes
Shallow-water equations
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-caf5d5451a6054f1aead65c0fbb4ee38cc2544d6ec2624a48025d29ab26d9f7f3
ORCID 0000-0003-3082-2155
0009-0007-4434-6627
OpenAccessLink https://dx.doi.org/10.1016/j.compfluid.2025.106884
ParticipantIDs crossref_primary_10_1016_j_compfluid_2025_106884
elsevier_sciencedirect_doi_10_1016_j_compfluid_2025_106884
PublicationCentury 2000
PublicationDate 2026-01-15
PublicationDateYYYYMMDD 2026-01-15
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & fluids
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Delmas, Soulaïmani (bib0020) 2022; 471
Reshma, Reddy, Pratap, Agilan (bib0016) 2017; 24
Ziggaf, Boubekeur, kissami, Benkhaldoun, Mahi (bib0029) 2020
Joe, Kuo (bib0037) 2008; 30
Ding, Wang (bib0012) 2005; 19
Vidal, Moisan, Faure, Dartus (bib0003) 2007; 22
Agresta, Baioletti, Biscarini, Milani, Santucci (bib0018) 2021
Shahzadi, Soulaïmani (bib0041) 2021; 13
Tang, Xin, Dai, Xiao (bib0014) 2010; 22
Hagan, Demuth, Beale, De Jesús (bib0039) 2014
Jayakumar, Kumar (bib0017) 2017; 20
Ata, Pavan, Khelladi, Toro (bib0025) 2013; 62
Martínez-Aranda, Fernández-Pato, Echeverribar, Navas-Montilla, Morales-Hernández, Brufau (bib0028) 2022
Li, Geng, Mao (bib0007) 2020; 20
Soulaimani, Idrissi (bib0008) 1999; 12
Delmas (bib0019) 2020
Aslami, Rogers, Stansby, Bottacin-Busolin (bib0045) 2023; 1169
Gabriel, Fagg, Bosilca, Angskun, Dongarra, Squyres (bib0034) 2004
Goodfellow, Bengio, Courville (bib0038) 2016
Aureli, Dazzi, Maranzoni, Mignosa, Vacondio (bib0044) 2015; 76
Ata, Soulaimani (bib0026) 2005; 47
Suthar, Soulaimani (bib0032) 2018
Karypis, Kumar (bib0033) 1998; 20
Benkhaldoun, Elmahi, Seaïd (bib0030) 2010; 199
Poirier, Allmaras, McCarthy, Smith, Enomoto (bib0035) 1998; 39
Limerinos (bib0004) 1970
Yu, Tian, Zheng, Zhao (bib0013) 2009; 15
Yang, Wang, Tsung, Guo (bib0015) 2014; 16
Loukili, Soulaimani (bib0022) 2007; 8
Hameed Alwaeli L., Ali S.. Estimating of Manning’s roughness coefficient for hilla river through calibration using HEC-RAS model2013; 7:44–53.
Becker, Yeh (bib0009) 1972; 8
Toro (bib0024) 2009
Jacquier, Abdedou, Delmas, Soulaïmani (bib0036) 2021; 424
Kumar (bib0042) 2015
Boulomytis, Zuffo, Dalfré Filho, Imteaz (bib0006) 2017; 15
Zokagoa (bib0023) 2011
Audusse, Bouchut, Bristeau, Klein, Perthame (bib0027) 2004; 25
Ganaie, Hu, Malik, Tanveer, Suganthan (bib0040) 2022; 115
Nguyen, Fenton (bib0011) 2004
Yao, Peng, Yu, Zhang, Luo (bib0002) 2022; 37
Delmas, Soulaïmani (bib0021) 2022; 271
Noelle, Xing, Shu (bib0031) 2007; 226
Lal (bib0010) 1995; 121
Ramesh, Datta, Bhallamudi, Narayana (bib0001) 2000; 126
Xu, Li, Wu (bib0043) 2001; 15
Delmas (10.1016/j.compfluid.2025.106884_bib0021) 2022; 271
Poirier (10.1016/j.compfluid.2025.106884_bib0035) 1998; 39
Ata (10.1016/j.compfluid.2025.106884_bib0026) 2005; 47
Yao (10.1016/j.compfluid.2025.106884_bib0002) 2022; 37
Becker (10.1016/j.compfluid.2025.106884_bib0009) 1972; 8
Xu (10.1016/j.compfluid.2025.106884_bib0043) 2001; 15
Agresta (10.1016/j.compfluid.2025.106884_bib0018) 2021
Limerinos (10.1016/j.compfluid.2025.106884_bib0004) 1970
Boulomytis (10.1016/j.compfluid.2025.106884_bib0006) 2017; 15
Karypis (10.1016/j.compfluid.2025.106884_bib0033) 1998; 20
Vidal (10.1016/j.compfluid.2025.106884_bib0003) 2007; 22
Lal (10.1016/j.compfluid.2025.106884_bib0010) 1995; 121
Reshma (10.1016/j.compfluid.2025.106884_bib0016) 2017; 24
Zokagoa (10.1016/j.compfluid.2025.106884_bib0023) 2011
Delmas (10.1016/j.compfluid.2025.106884_bib0020) 2022; 471
Goodfellow (10.1016/j.compfluid.2025.106884_bib0038) 2016
Suthar (10.1016/j.compfluid.2025.106884_bib0032) 2018
Yu (10.1016/j.compfluid.2025.106884_bib0013) 2009; 15
Benkhaldoun (10.1016/j.compfluid.2025.106884_bib0030) 2010; 199
Kumar (10.1016/j.compfluid.2025.106884_bib0042) 2015
Yang (10.1016/j.compfluid.2025.106884_bib0015) 2014; 16
Noelle (10.1016/j.compfluid.2025.106884_bib0031) 2007; 226
Li (10.1016/j.compfluid.2025.106884_bib0007) 2020; 20
Toro (10.1016/j.compfluid.2025.106884_bib0024) 2009
Ata (10.1016/j.compfluid.2025.106884_bib0025) 2013; 62
Loukili (10.1016/j.compfluid.2025.106884_bib0022) 2007; 8
Jacquier (10.1016/j.compfluid.2025.106884_bib0036) 2021; 424
Martínez-Aranda (10.1016/j.compfluid.2025.106884_bib0028) 2022
Delmas (10.1016/j.compfluid.2025.106884_bib0019) 2020
10.1016/j.compfluid.2025.106884_bib0005
Tang (10.1016/j.compfluid.2025.106884_bib0014) 2010; 22
Ramesh (10.1016/j.compfluid.2025.106884_bib0001) 2000; 126
Gabriel (10.1016/j.compfluid.2025.106884_bib0034) 2004
Aslami (10.1016/j.compfluid.2025.106884_bib0045) 2023; 1169
Nguyen (10.1016/j.compfluid.2025.106884_bib0011) 2004
Shahzadi (10.1016/j.compfluid.2025.106884_bib0041) 2021; 13
Joe (10.1016/j.compfluid.2025.106884_bib0037) 2008; 30
Audusse (10.1016/j.compfluid.2025.106884_bib0027) 2004; 25
Jayakumar (10.1016/j.compfluid.2025.106884_bib0017) 2017; 20
Ganaie (10.1016/j.compfluid.2025.106884_bib0040) 2022; 115
Soulaimani (10.1016/j.compfluid.2025.106884_bib0008) 1999; 12
Ding (10.1016/j.compfluid.2025.106884_bib0012) 2005; 19
Hagan (10.1016/j.compfluid.2025.106884_bib0039) 2014
Ziggaf (10.1016/j.compfluid.2025.106884_bib0029) 2020
Aureli (10.1016/j.compfluid.2025.106884_bib0044) 2015; 76
References_xml – volume: 16
  start-page: 772
  year: 2014
  end-page: 783
  ident: bib0015
  article-title: Applying micro-genetic algorithm in the one-dimensional unsteady hydraulic model for parameter optimization
  publication-title: J Hydroinf
– start-page: 97
  year: 2004
  end-page: 104
  ident: bib0034
  article-title: Open MPI: goals, concept, and design of a next generation MPI implementation
  publication-title: Proceedings, 11th European PVM/MPI Users’ group meeting
– volume: 271
  year: 2022
  ident: bib0021
  article-title: Multi-GPU implementation of a time-explicit finite volume solver using CUDA and a CUDA-aware version of openMPI with application to shallow water flows
  publication-title: Comput Phys Commun
– volume: 39
  start-page: 98
  year: 1998
  end-page: 3007
  ident: bib0035
  article-title: The CGNS system
  publication-title: AIAA Paper
– volume: 15
  start-page: 601
  year: 2001
  end-page: 631
  ident: bib0043
  article-title: A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move
  publication-title: Appl Artif Intell
– volume: 15
  start-page: 199
  year: 2017
  end-page: 206
  ident: bib0006
  article-title: Estimation and calibration of Manning’s roughness coefficients for ungauged watersheds on coastal floodplains
  publication-title: Int J River Basin Manage
– volume: 20
  year: 2017
  ident: bib0017
  article-title: Automated calibration of a two-dimensional overland flow model by estimating manning’s roughness coefficient using genetic algorithm
  publication-title: J Hydroinf
– volume: 121
  year: 1995
  ident: bib0010
  article-title: Calibration of riverbed roughness
  publication-title: J Hydraul Eng -asce - J HYDRAUL ENG-ASCE
– year: 2020
  ident: bib0019
  publication-title: Implémentation multi-GPU d’un code en volumes finis pour le calcul de haute per formance des écoulements à sur face libre
– reference: Hameed Alwaeli L., Ali S.. Estimating of Manning’s roughness coefficient for hilla river through calibration using HEC-RAS model2013; 7:44–53.
– year: 2016
  ident: bib0038
  article-title: Deep learning
– volume: 19
  start-page: 3
  year: 2005
  end-page: 13
  ident: bib0012
  article-title: Identification of Manning’s roughness coefficients in channel network using adjoint analysis
  publication-title: Int J Comut Fluid Dyn
– volume: 424
  year: 2021
  ident: bib0036
  article-title: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: application to flood modeling
  publication-title: J Comput Phys
– volume: 76
  start-page: 29
  year: 2015
  end-page: 42
  ident: bib0044
  article-title: Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure
  publication-title: Adv Water Resour
– volume: 20
  year: 2020
  ident: bib0007
  article-title: Calibration method for Manning’s roughness coefficient for a river flume model
  publication-title: Water Supply
– volume: 37
  year: 2022
  ident: bib0002
  article-title: Optimal inversion of Manning’s roughness in unsteady open flow simulations using adaptive parallel genetic algorithm
  publication-title: Water Resour Manage
– volume: 8
  start-page: 956
  year: 1972
  end-page: 965
  ident: bib0009
  article-title: Identification of parameters in unsteady open channel flows
  publication-title: Water Resour Res
– year: 2009
  ident: bib0024
  article-title: Riemann solvers and numerical methods for fluid dynamics: a practical introduction
– year: 1970
  ident: bib0004
  article-title: Determination of the manning coefficient for measured bed roughness in natural channels
– volume: 30
  start-page: 2635
  year: 2008
  end-page: 2654
  ident: bib0037
  article-title: Constructing sobol sequences with better two-dimensional projections
  publication-title: SIAM J Sci Comput
– volume: 126
  year: 2000
  ident: bib0001
  article-title: Optimal estimation of roughness in open-channel flows
  publication-title: J Hydraul Eng-asce - J HYDRAUL ENG-ASCE
– volume: 471
  year: 2022
  ident: bib0020
  article-title: Parallel high-order resolution of the shallow-water equations on real large-scale meshes with complex bathymetries
  publication-title: J Comput Phys
– volume: 1169
  year: 2023
  ident: bib0045
  article-title: Complex dam break simulation using the 2-D depth-averaged SPH flow model: a validation for tsunami application
  publication-title: IOP Conf Series: Earth and Environ Sci
– volume: 115
  year: 2022
  ident: bib0040
  article-title: Ensemble deep learning: a review
  publication-title: Eng Appl Artif Intell
– volume: 22
  start-page: 1628
  year: 2007
  end-page: 1640
  ident: bib0003
  article-title: River model calibration, from guidelines to operational support tools
  publication-title: Environmental Modelling and Software
– year: 2011
  ident: bib0023
  publication-title: Modélisation numérique des écoulements à surface libre avec bancs couvrants-découvrants par les volumes finis et la décomposition orthogonale aux valeurs propres
– year: 2014
  ident: bib0039
  article-title: Neural network design
– volume: 226
  start-page: 29
  year: 2007
  end-page: 58
  ident: bib0031
  article-title: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water
  publication-title: J Comput Phys
– volume: 20
  start-page: 359
  year: 1998
  end-page: 392
  ident: bib0033
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM J Sci Comput
– volume: 25
  start-page: 2050
  year: 2004
  end-page: 2065
  ident: bib0027
  article-title: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
  publication-title: SIAM J Sci Comput
– volume: 62
  start-page: 155
  year: 2013
  end-page: 172
  ident: bib0025
  article-title: A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications
  publication-title: Adv Water Resour
– volume: 8
  start-page: 1
  year: 2007
  end-page: 14
  ident: bib0022
  article-title: Numerical tracking of shallow water waves by theunstructured finite volume WAF approximation
  publication-title: Int J Comput Methods Eng Mech
– year: 2018
  ident: bib0032
  article-title: Parallelization of shallow water equations solver cuteflow
  publication-title: Tech. Rep.
– volume: 199
  start-page: 3324
  year: 2010
  end-page: 3335
  ident: bib0030
  article-title: A new finite volume method for flux-gradient and source-term balancing in shallow water equations
  publication-title: Comput Methods Appl Mech Eng
– start-page: 795
  year: 2021
  end-page: 811
  ident: bib0018
  article-title: Evolutionary algorithms for roughness coefficient estimation in river flow analyses
  publication-title: Applications of evolutionary computation
– volume: 12
  start-page: 29
  year: 1999
  end-page: 48
  ident: bib0008
  article-title: Identification of the friction coefficient in shallow-water flows using optimal control theory
  publication-title: Int J Comut Fluid Dyn
– start-page: 67
  year: 2022
  end-page: 137
  ident: bib0028
  article-title: Finite volume models and efficient simulation tools (EST) for shallow flows
– volume: 15
  start-page: 452
  year: 2009
  end-page: 456
  ident: bib0013
  article-title: Calibration of pipe roughness coefficient based on manning formula and genetic algorithm
  publication-title: Trans Tianjin Univ
– start-page: 455
  year: 2020
  end-page: 465
  ident: bib0029
  article-title: The FVC scheme on unstructured meshes for the two-dimensional shallow water equations
  publication-title: Finite volumes for complex applications IX - Methods, theoretical aspects, examples
– volume: 47
  start-page: 139
  year: 2005
  end-page: 159
  ident: bib0026
  article-title: A stabilized SPH method for inviscid shallow water flows
  publication-title: Int J Numer Methods Fluids
– year: 2015
  ident: bib0042
  article-title: Optimization algorithms and applications
– year: 2004
  ident: bib0011
  article-title: Identification of roughness in open channels
  publication-title: Proc. of 6th international conference on hydro-science and engineering, Brisbane, Australia
– volume: 24
  start-page: 53
  year: 2017
  end-page: 60
  ident: bib0016
  article-title: Single- and two- step optimization of infiltration parameters and manning’s roughness coefficients for a watershed using a multi-objective genetic algorithm
  publication-title: ISH J Hydraul Eng
– volume: 13
  year: 2021
  ident: bib0041
  article-title: Deep neural network and polynomial chaos expansion-based surrogate models for sensitivity and uncertainty propagation: an application to a rockfill dam
  publication-title: Water
– volume: 22
  start-page: 246
  year: 2010
  end-page: 253
  ident: bib0014
  article-title: Parameter identification for modeling river network using a genetic algorithm
  publication-title: J Hydrodyn
– volume: 13
  issue: 13
  year: 2021
  ident: 10.1016/j.compfluid.2025.106884_bib0041
  article-title: Deep neural network and polynomial chaos expansion-based surrogate models for sensitivity and uncertainty propagation: an application to a rockfill dam
  publication-title: Water
  doi: 10.3390/w13131830
– volume: 22
  start-page: 1628
  year: 2007
  ident: 10.1016/j.compfluid.2025.106884_bib0003
  article-title: River model calibration, from guidelines to operational support tools
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2006.12.003
– volume: 20
  year: 2020
  ident: 10.1016/j.compfluid.2025.106884_bib0007
  article-title: Calibration method for Manning’s roughness coefficient for a river flume model
  publication-title: Water Supply
  doi: 10.2166/ws.2020.235
– year: 1970
  ident: 10.1016/j.compfluid.2025.106884_bib0004
– year: 2004
  ident: 10.1016/j.compfluid.2025.106884_bib0011
  article-title: Identification of roughness in open channels
– volume: 16
  start-page: 772
  year: 2014
  ident: 10.1016/j.compfluid.2025.106884_bib0015
  article-title: Applying micro-genetic algorithm in the one-dimensional unsteady hydraulic model for parameter optimization
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.030
– volume: 121
  year: 1995
  ident: 10.1016/j.compfluid.2025.106884_bib0010
  article-title: Calibration of riverbed roughness
  publication-title: J Hydraul Eng -asce - J HYDRAUL ENG-ASCE
– start-page: 795
  year: 2021
  ident: 10.1016/j.compfluid.2025.106884_bib0018
  article-title: Evolutionary algorithms for roughness coefficient estimation in river flow analyses
– year: 2018
  ident: 10.1016/j.compfluid.2025.106884_bib0032
  article-title: Parallelization of shallow water equations solver cuteflow
– year: 2014
  ident: 10.1016/j.compfluid.2025.106884_bib0039
– volume: 22
  start-page: 246
  issue: 2
  year: 2010
  ident: 10.1016/j.compfluid.2025.106884_bib0014
  article-title: Parameter identification for modeling river network using a genetic algorithm
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(09)60051-2
– volume: 37
  year: 2022
  ident: 10.1016/j.compfluid.2025.106884_bib0002
  article-title: Optimal inversion of Manning’s roughness in unsteady open flow simulations using adaptive parallel genetic algorithm
  publication-title: Water Resour Manage
– volume: 271
  year: 2022
  ident: 10.1016/j.compfluid.2025.106884_bib0021
  article-title: Multi-GPU implementation of a time-explicit finite volume solver using CUDA and a CUDA-aware version of openMPI with application to shallow water flows
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2021.108190
– volume: 126
  year: 2000
  ident: 10.1016/j.compfluid.2025.106884_bib0001
  article-title: Optimal estimation of roughness in open-channel flows
  publication-title: J Hydraul Eng-asce - J HYDRAUL ENG-ASCE
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  ident: 10.1016/j.compfluid.2025.106884_bib0033
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827595287997
– year: 2015
  ident: 10.1016/j.compfluid.2025.106884_bib0042
– volume: 15
  start-page: 452
  year: 2009
  ident: 10.1016/j.compfluid.2025.106884_bib0013
  article-title: Calibration of pipe roughness coefficient based on manning formula and genetic algorithm
  publication-title: Trans Tianjin Univ
  doi: 10.1007/s12209-009-0078-2
– volume: 39
  start-page: 98
  year: 1998
  ident: 10.1016/j.compfluid.2025.106884_bib0035
  article-title: The CGNS system
  publication-title: AIAA Paper
– volume: 47
  start-page: 139
  year: 2005
  ident: 10.1016/j.compfluid.2025.106884_bib0026
  article-title: A stabilized SPH method for inviscid shallow water flows
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.801
– start-page: 97
  year: 2004
  ident: 10.1016/j.compfluid.2025.106884_bib0034
  article-title: Open MPI: goals, concept, and design of a next generation MPI implementation
– year: 2016
  ident: 10.1016/j.compfluid.2025.106884_bib0038
– volume: 8
  start-page: 956
  issue: 4
  year: 1972
  ident: 10.1016/j.compfluid.2025.106884_bib0009
  article-title: Identification of parameters in unsteady open channel flows
  publication-title: Water Resour Res
  doi: 10.1029/WR008i004p00956
– volume: 19
  start-page: 3
  year: 2005
  ident: 10.1016/j.compfluid.2025.106884_bib0012
  article-title: Identification of Manning’s roughness coefficients in channel network using adjoint analysis
  publication-title: Int J Comut Fluid Dyn
  doi: 10.1080/10618560410001710496
– volume: 76
  start-page: 29
  year: 2015
  ident: 10.1016/j.compfluid.2025.106884_bib0044
  article-title: Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2014.11.009
– year: 2009
  ident: 10.1016/j.compfluid.2025.106884_bib0024
– volume: 62
  start-page: 155
  year: 2013
  ident: 10.1016/j.compfluid.2025.106884_bib0025
  article-title: A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2013.09.019
– volume: 226
  start-page: 29
  year: 2007
  ident: 10.1016/j.compfluid.2025.106884_bib0031
  article-title: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.03.031
– volume: 424
  year: 2021
  ident: 10.1016/j.compfluid.2025.106884_bib0036
  article-title: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: application to flood modeling
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109854
– year: 2011
  ident: 10.1016/j.compfluid.2025.106884_bib0023
– start-page: 455
  year: 2020
  ident: 10.1016/j.compfluid.2025.106884_bib0029
  article-title: The FVC scheme on unstructured meshes for the two-dimensional shallow water equations
  doi: 10.1007/978-3-030-43651-3_42
– volume: 115
  year: 2022
  ident: 10.1016/j.compfluid.2025.106884_bib0040
  article-title: Ensemble deep learning: a review
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105151
– volume: 25
  start-page: 2050
  issue: 6
  year: 2004
  ident: 10.1016/j.compfluid.2025.106884_bib0027
  article-title: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827503431090
– volume: 15
  start-page: 199
  issue: 2
  year: 2017
  ident: 10.1016/j.compfluid.2025.106884_bib0006
  article-title: Estimation and calibration of Manning’s roughness coefficients for ungauged watersheds on coastal floodplains
  publication-title: Int J River Basin Manage
  doi: 10.1080/15715124.2017.1298605
– year: 2020
  ident: 10.1016/j.compfluid.2025.106884_bib0019
– volume: 24
  start-page: 53
  issue: 1
  year: 2017
  ident: 10.1016/j.compfluid.2025.106884_bib0016
  article-title: Single- and two- step optimization of infiltration parameters and manning’s roughness coefficients for a watershed using a multi-objective genetic algorithm
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2017.1348263
– volume: 12
  start-page: 29
  year: 1999
  ident: 10.1016/j.compfluid.2025.106884_bib0008
  article-title: Identification of the friction coefficient in shallow-water flows using optimal control theory
  publication-title: Int J Comut Fluid Dyn
  doi: 10.1080/10618569908940814
– volume: 199
  start-page: 3324
  issue: 49
  year: 2010
  ident: 10.1016/j.compfluid.2025.106884_bib0030
  article-title: A new finite volume method for flux-gradient and source-term balancing in shallow water equations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.07.003
– volume: 30
  start-page: 2635
  issue: 5
  year: 2008
  ident: 10.1016/j.compfluid.2025.106884_bib0037
  article-title: Constructing sobol sequences with better two-dimensional projections
  publication-title: SIAM J Sci Comput
  doi: 10.1137/070709359
– volume: 15
  start-page: 601
  issue: 6
  year: 2001
  ident: 10.1016/j.compfluid.2025.106884_bib0043
  article-title: A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move
  publication-title: Appl Artif Intell
  doi: 10.1080/088395101750363966
– volume: 20
  year: 2017
  ident: 10.1016/j.compfluid.2025.106884_bib0017
  article-title: Automated calibration of a two-dimensional overland flow model by estimating manning’s roughness coefficient using genetic algorithm
  publication-title: J Hydroinf
– volume: 471
  year: 2022
  ident: 10.1016/j.compfluid.2025.106884_bib0020
  article-title: Parallel high-order resolution of the shallow-water equations on real large-scale meshes with complex bathymetries
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111629
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.compfluid.2025.106884_bib0022
  article-title: Numerical tracking of shallow water waves by theunstructured finite volume WAF approximation
  publication-title: Int J Comput Methods Eng Mech
– volume: 1169
  year: 2023
  ident: 10.1016/j.compfluid.2025.106884_bib0045
  article-title: Complex dam break simulation using the 2-D depth-averaged SPH flow model: a validation for tsunami application
  publication-title: IOP Conf Series: Earth and Environ Sci
– ident: 10.1016/j.compfluid.2025.106884_bib0005
– start-page: 67
  year: 2022
  ident: 10.1016/j.compfluid.2025.106884_bib0028
  doi: 10.1007/978-981-19-1438-6_3
SSID ssj0004324
Score 2.4502056
Snippet •The main features of a newly developed high-performance multi-GPU solver for the shallow-water equations are presented. This solver is used to build a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106884
SubjectTerms Calibration
CUDA
Ensemble model
Finite volumes
Manning roughness coefficient
Metaheuristic optimization algorithms
Multi-GPU
Neural networks
Shallow-water equations
Title Calibration of Manning’s roughness coefficients for shallow-water flows on complex bathymetries using optimization algorithms and surrogate neural network models
URI https://dx.doi.org/10.1016/j.compfluid.2025.106884
Volume 304
WOSCitedRecordID wos001612532400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004324
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3LbtNAFIZHoWUBC8RVlEs1C3aWUezxlV0ELbRSK6QWlJ019swUF18iO25DV7wGa56AV-JJOHOx40IlQIhNZFnxOPH5cvL7-FwQegYSnoiIOLaIRWSDAqc29afcdkTMmYiEJxyqhk2Eh4fRfB6_nUy-9bUwZ0VYVdFqFS_-q6lhHxhbls7-hbmHRWEHbIPR4RXMDq9_ZHhZbZU2gxI80EOJ-qSGuLXUYB7l4bKaqw4SqspN5hu2crRKfW6fU9k7UcCmepqg8s75ykpBLn4q1Qyu1upUlKEGl1OaWk6LFid1ky8_lLrxc9s1TS3DdJbsmgksVDrnXI_face6uB8u0SoURdHlbBD7B4qsj1TWEJ3oAOwenMd6nReMDu96xYtSF6e9z6tslM5zVHcFVfkAu6UeYGXNLi44Y31GgYl5uCrmoas-dSCuL8ZZZz4p5-7J7pvmMY9x7kQPN_7lj0LHLE6lnRfqSz2H8_iwP4j0yLqfunAfydXl4iAZZZdE_xradEM_Bke6Odvbme-vi3GJq1t_m09zKanwytNdLYlGMuf4Nrpl7k_wTHN1B014dRfdHHWtvIe-jgjDtcCGsO-fv7R4YAuP2cLAFr7EFlZsYVjAsIXHbGHFFh6zhddsYWALD2xhzRY2bGHN1n30bnfn-OUb28z6sDPiuEs7o8JnoOYdCvfX0kGAhwv8bCrS1OOcRFkme-mxgGdu4HrUi-DyMTemqRuwWISCPEAbVV3xhwgHhKbEZ2HKMuq5PKUxJ8RhHjieyKOEbqFpf7mThW7pkvS5jqfJYKFEWijRFtpCL3qzJEaZasWZAE-_O_jRvxz8GN1Y_wCeoI1l0_Gn6Hp2tszbZtuw9wPR9sYI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration+of+Manning%E2%80%99s+roughness+coefficients+for+shallow-water+flows+on+complex+bathymetries+using+optimization+algorithms+and+surrogate+neural+network+models&rft.jtitle=Computers+%26+fluids&rft.au=Metcheka+Kengne%2C+Igor+Gildas&rft.au=Delmas%2C+Vincent&rft.au=Soula%C3%AFmani%2C+Azzeddine&rft.date=2026-01-15&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.volume=304&rft_id=info:doi/10.1016%2Fj.compfluid.2025.106884&rft.externalDocID=S0045793025003445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon