Study on intelligent and visualization method of ultrasonic testing of composite materials based on deep learning

•The DiMP object tracking model is improved by using Wasserstein distance to realize the visual localization of the ultrasonic probe.•A 1DCNN classification network is designed to classify one-dimensional ultrasonic signals.•A data connection is proposed to make the two models work together.•The pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied acoustics Ročník 207; s. 109363
Hlavní autoři: Hu, Qichun, Wei, Xiaolong, Guo, Hanyi, Xu, Haojun, Li, Caizhi, He, Weifeng, Pei, Binbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2023
Témata:
ISSN:0003-682X, 1872-910X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The DiMP object tracking model is improved by using Wasserstein distance to realize the visual localization of the ultrasonic probe.•A 1DCNN classification network is designed to classify one-dimensional ultrasonic signals.•A data connection is proposed to make the two models work together.•The proposed method is embedded in the control framework of ultrasonic A-scan equipment, and preliminary engineering applications are carried out. Intelligent ultrasonic testing technology of composite materials can greatly reduce the dependence on people and improve the efficiency of ultrasonic testing. The combination of ultrasonic testing and visual positioning technology can realize strong robust visual interpretation of ultrasonic testing results. In this paper, the DiMP tracking model is improved by using the Wasserstein distance, and the intelligent tracking and positioning of ultrasonic probe is realized. At the same time, an ultrasonic signal classification network based on 1DCNN depth neural network is built to realize the intelligent detection of ultrasonic signals, and an effective data connection mode is designed to make the two networks work together, so that the intelligent interpretation and visual display of internal defects of composite materials can be realized. The experimental results show that the interpretation accuracy of the method proposed in this paper reaches 98.74%, and the Kappa coefficient reaches 0.97. The comparison results with other models show that the improved model in this paper is more excellent, and the AUC and Precision values are increased by 6.4% and 8.32% respectively compared with the benchmark.
AbstractList •The DiMP object tracking model is improved by using Wasserstein distance to realize the visual localization of the ultrasonic probe.•A 1DCNN classification network is designed to classify one-dimensional ultrasonic signals.•A data connection is proposed to make the two models work together.•The proposed method is embedded in the control framework of ultrasonic A-scan equipment, and preliminary engineering applications are carried out. Intelligent ultrasonic testing technology of composite materials can greatly reduce the dependence on people and improve the efficiency of ultrasonic testing. The combination of ultrasonic testing and visual positioning technology can realize strong robust visual interpretation of ultrasonic testing results. In this paper, the DiMP tracking model is improved by using the Wasserstein distance, and the intelligent tracking and positioning of ultrasonic probe is realized. At the same time, an ultrasonic signal classification network based on 1DCNN depth neural network is built to realize the intelligent detection of ultrasonic signals, and an effective data connection mode is designed to make the two networks work together, so that the intelligent interpretation and visual display of internal defects of composite materials can be realized. The experimental results show that the interpretation accuracy of the method proposed in this paper reaches 98.74%, and the Kappa coefficient reaches 0.97. The comparison results with other models show that the improved model in this paper is more excellent, and the AUC and Precision values are increased by 6.4% and 8.32% respectively compared with the benchmark.
ArticleNumber 109363
Author He, Weifeng
Pei, Binbin
Xu, Haojun
Li, Caizhi
Wei, Xiaolong
Guo, Hanyi
Hu, Qichun
Author_xml – sequence: 1
  givenname: Qichun
  surname: Hu
  fullname: Hu, Qichun
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
– sequence: 2
  givenname: Xiaolong
  orcidid: 0000-0001-6119-1400
  surname: Wei
  fullname: Wei, Xiaolong
  email: wei18892022001@163.com
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
– sequence: 3
  givenname: Hanyi
  surname: Guo
  fullname: Guo, Hanyi
  organization: Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
– sequence: 4
  givenname: Haojun
  surname: Xu
  fullname: Xu, Haojun
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
– sequence: 5
  givenname: Caizhi
  surname: Li
  fullname: Li, Caizhi
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
– sequence: 6
  givenname: Weifeng
  surname: He
  fullname: He, Weifeng
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
– sequence: 7
  givenname: Binbin
  surname: Pei
  fullname: Pei, Binbin
  organization: Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, Shaanxi 710038, China
BookMark eNqFUMtOwzAQtFCRaAu_gPwDKU6cOLHEAVTxkipxoIfeLMfeFFeJHWy3Uvl6EgoXLpxWO7Mz2pkZmlhnAaHrlCxSkrKb3UL2Url9iIuMZHQAOWX0DE3TqswSnpLNBE0JITRhVba5QLMQdsNKsqKYoo-3uNdH7Cw2NkLbmi3YiKXV-GDCXrbmU0YzsB3Ed6exa_C-jV4GZ43CEUI0djuiynW9CyYC7mQEb2QbcC0D6NFaA_S4BentcH2JzpuBhaufOUfrx4f18jlZvT69LO9XiaJpFhNVMuCQZVTLsuI5l0Vd67zJy5KUvGQ8V0XRkKrmBa8YYZoCZ0VJG1brhjYpnaPbk63yLgQPjVAmfmcZ3jetSIkY2xM78dueGNsTp_YGOfsj773ppD_-L7w7CWHIdjDgRVAGrAJtPKgotDP_WXwBH6qTNw
CitedBy_id crossref_primary_10_1016_j_apacoust_2023_109557
crossref_primary_10_1177_16878132251347390
crossref_primary_10_1007_s10853_024_10191_9
crossref_primary_10_1007_s40996_024_01646_9
crossref_primary_10_1016_j_conbuildmat_2023_134229
crossref_primary_10_1088_1742_6596_2990_1_012022
crossref_primary_10_1177_14759217241267821
crossref_primary_10_3390_app14114619
crossref_primary_10_1016_j_apacoust_2024_110037
crossref_primary_10_2478_amns_2024_3044
crossref_primary_10_1016_j_ymssp_2025_112724
crossref_primary_10_1016_j_ymssp_2025_113306
crossref_primary_10_1016_j_measurement_2025_117059
crossref_primary_10_1016_j_ndteint_2024_103101
crossref_primary_10_1080_10589759_2024_2378901
crossref_primary_10_1016_j_apacoust_2023_109768
Cites_doi 10.1080/15376494.2020.1759164
10.1109/CVPR42600.2020.00721
10.1162/neco.1997.9.8.1735
10.1109/TPAMI.2019.2957464
10.1109/EIT.2017.8053371
10.1177/1687814020913761
10.1007/s10921-010-0086-0
10.1109/CVPR42600.2020.00661
10.1109/CVPR.2019.00479
10.1109/CVPR42600.2020.00716
10.1016/j.neucom.2016.11.066
10.1109/ULTSYM.2017.8091947
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2023.109363
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID 10_1016_j_apacoust_2023_109363
S0003682X23001615
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-c76e9e223da78949a5bbd4f4770797694c55f08b9598606d3e96573f6bdf3f13
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974654100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-682X
IngestDate Sat Nov 29 07:34:19 EST 2025
Tue Nov 18 22:19:32 EST 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PrDiMP
Deep learning
Composite materials
D3S
DiMP
Non-destructive testing
Ultrasonic flaw detection
ATOM
KCF
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-c76e9e223da78949a5bbd4f4770797694c55f08b9598606d3e96573f6bdf3f13
ORCID 0000-0001-6119-1400
ParticipantIDs crossref_citationtrail_10_1016_j_apacoust_2023_109363
crossref_primary_10_1016_j_apacoust_2023_109363
elsevier_sciencedirect_doi_10_1016_j_apacoust_2023_109363
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Liu, Li, Yang (b0010) 2019; 62
Williams, Zipser (b0110) 1998; 1
Bang, Park, Jeon (b0040) 2020; 112405
Wang, Zhang, Bertinetto, Hu, Torr (b0085) 2018
Lecun, Bengio (b0125) 1995
Sambath, Nagaraj, Selvakumar (b0015) 2011; 30
Bhat, Danelljan, Gool, Timofte (b0060) 2019
Bo L, Yan J, Wei W, Zheng Z, Hu X. High Performance Visual Tracking with Siamese Region Proposal Network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Wang, Zhong, Lee, Fancey, Mi (b0005) 2020; 12
Tianyou, Yanping, Xiaojun (b0045) 2020; 47
doi: 10.1109/CVPR42600.2020.00721 (2020).
Hochreiter, Schmidhuber (b0115) 1997; 9
Arjovsky, Bottou (b0095) 2017; 1050
Wang B, Saniie J. Ultrasonic target echo detection using neural network. In: 2017 IEEE International Conference on Electro Information Technology (EIT).
He, Zhang, Ren, Sun (b0105) 2016
Lin, Maire, Belongie, Hays, Zitnick (b0130) 2014
Meng, Chua, Wouterson, Ong (b0030) 2017
Bertinetto, Valmadre, Henriques, Vedaldi, Torr (b0075) 2016
Henriques, Rui, Martins, Batista (b0090) 2014
Diener, Janke, Schultz (b0140) 2018; 1–7
Lukezic A, Matas J, Kristan M. D3S – A Discriminative Single Shot Segmentation Tracker. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Khan, Kim (b0035) 2022; 29
Arjovsky, Chintala, Bottou (b0100) 2017
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Houlsby N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. doi:10.48550/arXiv.2010.11929 (2020).
Huang L, Zhao X, Huang K. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. doi:10.1109/TPAMI.2019.2957464 (2018).
Wang B, Saniie J. Ultrasonic flaw detection based on temporal and spectral signals applied to neural network. In: 2017 IEEE International Ultrasonics Symposium (IUS).
Danelljan M, Bhat G, Khan FS, Felsberg M. ATOM: Accurate Tracking by Overlap Maximization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.48550/arXiv.1811.07628.
Danelljan M, Gool LV, Timofte R. Probabilistic Regression for Visual Tracking.
Voigtlaender P, Luiten J, Torr P, Leibe B, Siam R-CNN: Visual Tracking by Re-Detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR42600.2020.00661.
Meng (10.1016/j.apacoust.2023.109363_b0030) 2017
Hochreiter (10.1016/j.apacoust.2023.109363_b0115) 1997; 9
10.1016/j.apacoust.2023.109363_b0025
10.1016/j.apacoust.2023.109363_b0065
10.1016/j.apacoust.2023.109363_b0120
10.1016/j.apacoust.2023.109363_b0020
Khan (10.1016/j.apacoust.2023.109363_b0035) 2022; 29
Diener (10.1016/j.apacoust.2023.109363_b0140) 2018; 1–7
Tianyou (10.1016/j.apacoust.2023.109363_b0045) 2020; 47
10.1016/j.apacoust.2023.109363_b0080
He (10.1016/j.apacoust.2023.109363_b0105) 2016
Bang (10.1016/j.apacoust.2023.109363_b0040) 2020; 112405
Williams (10.1016/j.apacoust.2023.109363_b0110) 1998; 1
Wang (10.1016/j.apacoust.2023.109363_b0005) 2020; 12
Liu (10.1016/j.apacoust.2023.109363_b0010) 2019; 62
10.1016/j.apacoust.2023.109363_b0135
Lecun (10.1016/j.apacoust.2023.109363_b0125) 1995
10.1016/j.apacoust.2023.109363_b0055
Sambath (10.1016/j.apacoust.2023.109363_b0015) 2011; 30
Bhat (10.1016/j.apacoust.2023.109363_b0060) 2019
Bertinetto (10.1016/j.apacoust.2023.109363_b0075) 2016
10.1016/j.apacoust.2023.109363_b0050
Arjovsky (10.1016/j.apacoust.2023.109363_b0095) 2017; 1050
10.1016/j.apacoust.2023.109363_b0070
Wang (10.1016/j.apacoust.2023.109363_b0085) 2018
Lin (10.1016/j.apacoust.2023.109363_b0130) 2014
Arjovsky (10.1016/j.apacoust.2023.109363_b0100) 2017
Henriques (10.1016/j.apacoust.2023.109363_b0090) 2014
References_xml – year: 2017
  ident: b0030
  article-title: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks
  publication-title: Neurocomputing
– volume: 30
  start-page: 20
  year: 2011
  end-page: 28
  ident: b0015
  article-title: Automatic Defect Classification in Ultrasonic NDT Using Artificial Intelligence
  publication-title: J Nondestr Eval
– reference: Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Houlsby N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. doi:10.48550/arXiv.2010.11929 (2020).
– reference: Wang B, Saniie J. Ultrasonic flaw detection based on temporal and spectral signals applied to neural network. In: 2017 IEEE International Ultrasonics Symposium (IUS).
– reference: Danelljan M, Gool LV, Timofte R. Probabilistic Regression for Visual Tracking.
– year: 2016
  ident: b0075
  article-title: Fully-Convolutional Siamese Networks for Object Tracking
– volume: 1–7
  year: 2018
  ident: b0140
  publication-title: Deep Neural Netw
– reference: Danelljan M, Bhat G, Khan FS, Felsberg M. ATOM: Accurate Tracking by Overlap Maximization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.48550/arXiv.1811.07628.
– year: 2014
  ident: b0130
  article-title: Microsoft COCO: Common Objects in Context
– volume: 29
  start-page: 230
  year: 2022
  end-page: 240
  ident: b0035
  article-title: Classification and prediction of multidamages in smart composite laminates using discriminant analysis
  publication-title: Mech Adv Mater Struct
– volume: 112405
  year: 2020
  ident: b0040
  article-title: Defect identification of composites via thermography and deep learning techniques
  publication-title: Compos Struct
– year: 2018
  ident: b0085
  article-title: Fast Online Object Tracking and Segmentation: A Unifying Approach
  publication-title: Computer Vision Pattern Recognition
– reference: Bo L, Yan J, Wei W, Zheng Z, Hu X. High Performance Visual Tracking with Siamese Region Proposal Network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
– volume: 1
  year: 1998
  ident: b0110
  article-title: A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
  publication-title: Neural Comput
– reference: Wang B, Saniie J. Ultrasonic target echo detection using neural network. In: 2017 IEEE International Conference on Electro Information Technology (EIT).
– reference: , doi: 10.1109/CVPR42600.2020.00721 (2020).
– year: 2019
  ident: b0060
  article-title: Learning Discriminative Model Prediction for Tracking
  publication-title: Computer Vision Pattern Recognition
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0115
  article-title: Long Short-Term Memory
  publication-title: Neural Comput
– reference: Huang L, Zhao X, Huang K. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. doi:10.1109/TPAMI.2019.2957464 (2018).
– year: 2017
  ident: b0100
  publication-title: Wasserstein GAN
– year: 2014
  ident: b0090
  article-title: High-Speed Tracking with Kernelized Correlation Filters
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 1995
  ident: b0125
  article-title: Convolutional Networks for Images
  publication-title: Speech, and Time-Series. The Handbook of Brain Theory and Neural Networks
– volume: 12
  year: 2020
  ident: b0005
  article-title: Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review
  publication-title: Adv Mech Eng
– volume: 62
  start-page: 14
  year: 2019
  ident: b0010
  article-title: Review of nondestructive testing and evaluation techniques for aviation composites
  publication-title: Aeronaut Manuf Technol
– volume: 47
  start-page: 80
  year: 2020
  end-page: 87
  ident: b0045
  article-title: An automatic positioning method of ultrasonic probe guided by visual touch
  publication-title: J Xidian University
– reference: Voigtlaender P, Luiten J, Torr P, Leibe B, Siam R-CNN: Visual Tracking by Re-Detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR42600.2020.00661.
– volume: 1050
  year: 2017
  ident: b0095
  article-title: Towards Principled Methods for Training Generative Adversarial Networks
  publication-title: Stat
– year: 2016
  ident: b0105
  article-title: Deep Residual Learning for Image Recognition
– reference: Lukezic A, Matas J, Kristan M. D3S – A Discriminative Single Shot Segmentation Tracker. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
– volume: 29
  start-page: 230
  year: 2022
  ident: 10.1016/j.apacoust.2023.109363_b0035
  article-title: Classification and prediction of multidamages in smart composite laminates using discriminant analysis
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2020.1759164
– ident: 10.1016/j.apacoust.2023.109363_b0065
  doi: 10.1109/CVPR42600.2020.00721
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.apacoust.2023.109363_b0115
  article-title: Long Short-Term Memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.apacoust.2023.109363_b0135
  doi: 10.1109/TPAMI.2019.2957464
– volume: 1050
  year: 2017
  ident: 10.1016/j.apacoust.2023.109363_b0095
  article-title: Towards Principled Methods for Training Generative Adversarial Networks
  publication-title: Stat
– ident: 10.1016/j.apacoust.2023.109363_b0080
– year: 2019
  ident: 10.1016/j.apacoust.2023.109363_b0060
  article-title: Learning Discriminative Model Prediction for Tracking
  publication-title: Computer Vision Pattern Recognition
– ident: 10.1016/j.apacoust.2023.109363_b0020
  doi: 10.1109/EIT.2017.8053371
– year: 2018
  ident: 10.1016/j.apacoust.2023.109363_b0085
  article-title: Fast Online Object Tracking and Segmentation: A Unifying Approach
  publication-title: Computer Vision Pattern Recognition
– year: 1995
  ident: 10.1016/j.apacoust.2023.109363_b0125
  article-title: Convolutional Networks for Images
  publication-title: Speech, and Time-Series. The Handbook of Brain Theory and Neural Networks
– year: 2014
  ident: 10.1016/j.apacoust.2023.109363_b0130
– volume: 62
  start-page: 14
  year: 2019
  ident: 10.1016/j.apacoust.2023.109363_b0010
  article-title: Review of nondestructive testing and evaluation techniques for aviation composites
  publication-title: Aeronaut Manuf Technol
– volume: 1
  year: 1998
  ident: 10.1016/j.apacoust.2023.109363_b0110
  article-title: A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
  publication-title: Neural Comput
– volume: 47
  start-page: 80
  year: 2020
  ident: 10.1016/j.apacoust.2023.109363_b0045
  article-title: An automatic positioning method of ultrasonic probe guided by visual touch
  publication-title: J Xidian University
– year: 2016
  ident: 10.1016/j.apacoust.2023.109363_b0105
– volume: 12
  year: 2020
  ident: 10.1016/j.apacoust.2023.109363_b0005
  article-title: Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020913761
– volume: 30
  start-page: 20
  year: 2011
  ident: 10.1016/j.apacoust.2023.109363_b0015
  article-title: Automatic Defect Classification in Ultrasonic NDT Using Artificial Intelligence
  publication-title: J Nondestr Eval
  doi: 10.1007/s10921-010-0086-0
– ident: 10.1016/j.apacoust.2023.109363_b0050
  doi: 10.1109/CVPR42600.2020.00661
– ident: 10.1016/j.apacoust.2023.109363_b0055
  doi: 10.1109/CVPR.2019.00479
– ident: 10.1016/j.apacoust.2023.109363_b0070
  doi: 10.1109/CVPR42600.2020.00716
– year: 2017
  ident: 10.1016/j.apacoust.2023.109363_b0030
  article-title: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.066
– volume: 1–7
  year: 2018
  ident: 10.1016/j.apacoust.2023.109363_b0140
  publication-title: Deep Neural Netw
– ident: 10.1016/j.apacoust.2023.109363_b0025
  doi: 10.1109/ULTSYM.2017.8091947
– year: 2017
  ident: 10.1016/j.apacoust.2023.109363_b0100
  publication-title: Wasserstein GAN
– ident: 10.1016/j.apacoust.2023.109363_b0120
– volume: 112405
  year: 2020
  ident: 10.1016/j.apacoust.2023.109363_b0040
  article-title: Defect identification of composites via thermography and deep learning techniques
  publication-title: Compos Struct
– year: 2016
  ident: 10.1016/j.apacoust.2023.109363_b0075
– year: 2014
  ident: 10.1016/j.apacoust.2023.109363_b0090
  article-title: High-Speed Tracking with Kernelized Correlation Filters
  publication-title: IEEE Trans Pattern Anal Mach Intell
SSID ssj0000255
Score 2.4211185
Snippet •The DiMP object tracking model is improved by using Wasserstein distance to realize the visual localization of the ultrasonic probe.•A 1DCNN classification...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109363
SubjectTerms Composite materials
Deep learning
Non-destructive testing
Ultrasonic flaw detection
Title Study on intelligent and visualization method of ultrasonic testing of composite materials based on deep learning
URI https://dx.doi.org/10.1016/j.apacoust.2023.109363
Volume 207
WOSCitedRecordID wos000974654100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-910X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000255
  issn: 0003-682X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKBxIcEAwmxi_5wA1lpE4cx8cJDQ0OE2iVyC1KHBtSVWlpkmr89zz_SjIxaSDEJaosPbv1-_r8xXrvewi9CVVZFozEgZKEBnFKoqAUtAg4LeIyZAVXqjLNJtjFRZpl_PNs9tPXwuzXrGnSqyu-_a-uhjFwti6d_Qt3D5PCAHwGp8MT3A7PP3L8pZWJbowShFXbtFnk-7rVFZS27tK1jtZcsV93u6I1nXA6rblh06B1rrlO6NIJrp393m_1kVfpqSspt77hxLcpv_WkFuKsaRPWjrDRzvxSi-_9AMev0qQSZHUBEdjNo1OBenN9ew5hqvZjWW-HNitn7i4qyCQt0N6e-QqaMV3JRuQoSFLTUh3OIxuEU0YgCIfZNEoT2xz3t4hvLx9WJ0AtzC870UsbkSwXOK-raV8aBR5YD169DNu9gw4Iozydo4PTj2fZp_EYJ5T6dovaYFJefvNqNzObCVtZPkIP3WsGPrXweIxmsjlEDybik4fonkn-Fe0T9MNABm8aPIEMBsjga5DBFjJ4o_AIGewgo0cHyOABMthARk-tIYM9ZJ6i5Yez5fvzwLXiCES0IF0gWCK5BCpZFSzlMS9oWVaxipkWWGQJjwWlKkxLruX-w6SKJE8oi1RSVipSi-gIzZtNI58hXAJVgjNhAfOwuOK8gM0TIpVgRIgMy2NE_S7mwsnU624p69znI65yv_u53v3c7v4xejfYba1Qy60W3Dspd3TT0sgcsHWL7fN_sH2B7o9_j5do3u16-QrdFfuubnevHQx_Abx-rVo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+intelligent+and+visualization+method+of+ultrasonic+testing+of+composite+materials+based+on+deep+learning&rft.jtitle=Applied+acoustics&rft.au=Hu%2C+Qichun&rft.au=Wei%2C+Xiaolong&rft.au=Guo%2C+Hanyi&rft.au=Xu%2C+Haojun&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=207&rft_id=info:doi/10.1016%2Fj.apacoust.2023.109363&rft.externalDocID=S0003682X23001615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon