Multi-lead model-based ECG signal denoising by guided filter

The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG denoising, especially for Dynamic Electrocardiography (DCG). In this paper, a multi-lead model-based ECG signal denoising method is proposed, i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 79; s. 34 - 44
Hlavní autoři: Hao, Huaqing, Liu, Ming, Xiong, Peng, Du, Haiman, Zhang, Hong, Lin, Feng, Hou, Zengguang, Liu, Xiuling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2019
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG denoising, especially for Dynamic Electrocardiography (DCG). In this paper, a multi-lead model-based ECG signal denoising method is proposed, in which a guided filter is inherently adapted to denoise ECG signal. For each person, a patient-specific statistical model will be constructed by sparse autoencoder (SAE) which can effectively preserve the detailed signal features. Thus, the guided signal producing by the statistical model can perform well in the guided filter. Especially, even the sudden morphological changes, the denoised ECG signals can still be conserved. The results on the 12-lead Arrhythmia Database and the MIT-BIH Arrhythmia Database demonstrate that the signal-to-noise ratio (SNR) improvement of the proposed method can reach as high as 21.54 dB, and the mean squared error (MSE) is less than 0.0401. Besides achievement of minimum signal distortion in comparisons with the major of the current denoising algorithms for complex noise environment, the proposed method demonstrate robustness in the complex interferences, especially in tracing the sudden morphological changes of ECG signals. Due to the remarkable superiority in preserving diagnostic and detail features of ECG signals, the proposed method can handle ECG signals with abnormal heart beats, and then can improve the accuracy detection of the disease.
AbstractList The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG denoising, especially for Dynamic Electrocardiography (DCG). In this paper, a multi-lead model-based ECG signal denoising method is proposed, in which a guided filter is inherently adapted to denoise ECG signal. For each person, a patient-specific statistical model will be constructed by sparse autoencoder (SAE) which can effectively preserve the detailed signal features. Thus, the guided signal producing by the statistical model can perform well in the guided filter. Especially, even the sudden morphological changes, the denoised ECG signals can still be conserved. The results on the 12-lead Arrhythmia Database and the MIT-BIH Arrhythmia Database demonstrate that the signal-to-noise ratio (SNR) improvement of the proposed method can reach as high as 21.54 dB, and the mean squared error (MSE) is less than 0.0401. Besides achievement of minimum signal distortion in comparisons with the major of the current denoising algorithms for complex noise environment, the proposed method demonstrate robustness in the complex interferences, especially in tracing the sudden morphological changes of ECG signals. Due to the remarkable superiority in preserving diagnostic and detail features of ECG signals, the proposed method can handle ECG signals with abnormal heart beats, and then can improve the accuracy detection of the disease.
Author Hou, Zengguang
Liu, Ming
Xiong, Peng
Du, Haiman
Liu, Xiuling
Zhang, Hong
Hao, Huaqing
Lin, Feng
Author_xml – sequence: 1
  givenname: Huaqing
  surname: Hao
  fullname: Hao, Huaqing
  organization: Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, China
– sequence: 2
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  email: liuming@hbu.cn
  organization: Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, China
– sequence: 3
  givenname: Peng
  surname: Xiong
  fullname: Xiong, Peng
  organization: Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, China
– sequence: 4
  givenname: Haiman
  surname: Du
  fullname: Du, Haiman
  organization: Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, China
– sequence: 5
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Affiliated Hospital of Hebei University, Baoding, China
– sequence: 6
  givenname: Feng
  surname: Lin
  fullname: Lin, Feng
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 7
  givenname: Zengguang
  surname: Hou
  fullname: Hou, Zengguang
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 8
  givenname: Xiuling
  surname: Liu
  fullname: Liu, Xiuling
  email: liuxiuling121@hotmail.com
  organization: Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, China
BookMark eNqFkMFqwzAMhs3oYG23Vxh5gWSykzgJ9LBRum7Qsct2No6tBJXUKXY66Nsvpd1ll56EkL4f6ZuxiesdMvbIIeHA5dM2Qdfq_V5TIoCXCRcJQHbDprws0lgWspqwKVS5iHlVyDs2C2ELAGmZySlbfBy6geIOtY12vcUurnVAG62W6yhQ63QXWXQ9BXJtVB-j9kB2HDfUDejv2W2ju4APlzpn36-rr-VbvPlcvy9fNrFJuRhiI_O0whLrvMKshgIaLDLk0NRYSiNszgWYsR_XoGx03lQlwniQLLhOcynSOVucc43vQ_DYKEODHqh3g9fUKQ7qZEJt1Z8JdTKhuFCjiRGX__C9p532x-vg8xnE8bkfQq-CIXQGLXk0g7I9XYv4BbJIflU
CitedBy_id crossref_primary_10_3390_app14104081
crossref_primary_10_1016_j_cmpb_2020_105856
crossref_primary_10_3390_e25020332
crossref_primary_10_1016_j_bspc_2019_101824
crossref_primary_10_1016_j_bspc_2021_103131
crossref_primary_10_1108_JEDT_05_2021_0252
crossref_primary_10_3390_app12146957
crossref_primary_10_1007_s10916_019_1443_x
crossref_primary_10_3390_s24144578
crossref_primary_10_1016_j_ymssp_2020_107202
crossref_primary_10_1007_s00371_024_03538_5
crossref_primary_10_1016_j_compbiomed_2022_106115
crossref_primary_10_1016_j_adhoc_2020_102398
crossref_primary_10_1109_TIM_2021_3104394
crossref_primary_10_1016_j_cmpb_2024_108249
crossref_primary_10_1155_2020_8889483
crossref_primary_10_1007_s12204_023_2591_1
crossref_primary_10_1049_ipr2_12918
crossref_primary_10_3390_s20020341
crossref_primary_10_1007_s10489_022_03182_3
crossref_primary_10_1016_j_bbe_2021_09_001
crossref_primary_10_1016_j_ins_2021_02_040
crossref_primary_10_1007_s13534_025_00507_2
Cites_doi 10.3390/s100606063
10.1016/j.ins.2017.11.026
10.1016/j.ijcard.2011.10.106
10.1109/TPAMI.2012.213
10.1088/0967-3334/37/12/2214
10.1063/1.4960411
10.1098/rspa.1998.0193
10.1109/TBME.2016.2626519
10.1109/TIFS.2015.2446438
10.1109/JBHI.2016.2582340
10.1109/TBME.2015.2422378
10.1214/aoms/1177729694
10.1109/51.932724
10.1016/j.cjca.2015.06.028
10.1109/TBME.2010.2051440
10.1109/TBME.2010.2046324
10.1109/TPAMI.2017.2730871
10.1109/5.29327
10.1016/j.ijcard.2016.09.026
10.1161/01.CIR.101.23.e215
10.1109/TBME.2017.2675543
10.1109/TSP.2013.2288675
10.1109/TBME.2013.2238938
10.1109/JBHI.2017.2706298
10.1016/j.neunet.2012.05.003
10.1049/htl.2016.0097
10.1109/TBME.2012.2228482
10.1109/TBME.2012.2234456
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2018.12.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 44
ExternalDocumentID 10_1016_j_engappai_2018_12_004
S0952197618302550
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-c6539e8eb59e4b070fe74e10fbe86c2d5120ce1065308fa5f98e0ead671a35623
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459524300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 02:17:58 EST 2025
Tue Nov 18 21:01:22 EST 2025
Fri Feb 23 02:28:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Electrocardiograph (ECG) denoising
Multi-lead model-based ECG signal
Guided filter
Sparse autoencoder
00-01
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-c6539e8eb59e4b070fe74e10fbe86c2d5120ce1065308fa5f98e0ead671a35623
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2018_12_004
crossref_primary_10_1016_j_engappai_2018_12_004
elsevier_sciencedirect_doi_10_1016_j_engappai_2018_12_004
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kullback, Leibler (b17) 1951; 22
Zhu, Li (b36) 2017; 4
Warmerdam (b31) 2016; 64
Bowry (b3) 2015; 31
Liu (b19) 2017; 9
Xiong (b33) 2016; 37
Chang (b4) 2010; 10
He, Sun, Tang (b12) 2013; 35
Wecke (b32) 2013; 166
Yang (b35) 2017; 4
Hesar, Mohebbi (b13) 2016; 21
Jain (b16) 2017; pp
Xu (b34) 2016; 35
Hesar, Mohebbi (b14) 2018; pp
Goldberger (b10) 2000; 101
Huang (b15) 1998; 454
Varon (b29) 2015; 62
Sameni, Clifford (b27) 2007; 2007
Smital (b28) 2013; 60
Nguyen, Kim (b24) 2016
Danandeh, Mohebbi (b5) 2017; 21
Lemme (b18) 2012; 33
Andreotti (b2) 2017; 64
Alyasseri (b1) 2018; 429
Gao (b8) 2015; 10
Mijović (b21) 2010; 57
Oster (b26) 2010; 57
Han, Xu (b11) 2016; 87
Moody, Mark (b22) 2001; 20
Mcaloon (b20) 2016; 224
Moody (b23) 1984; 11
Niknazar (b25) 2013; 60
Dragomiretskiy, Zosso (b7) 2014; 62
Vullings (b30) 2013; 60
Geselowitz (b9) 1989; 77
De (b6) 2018; 40
Chang (10.1016/j.engappai.2018.12.004_b4) 2010; 10
Hesar (10.1016/j.engappai.2018.12.004_b13) 2016; 21
Goldberger (10.1016/j.engappai.2018.12.004_b10) 2000; 101
Sameni (10.1016/j.engappai.2018.12.004_b27) 2007; 2007
Andreotti (10.1016/j.engappai.2018.12.004_b2) 2017; 64
Huang (10.1016/j.engappai.2018.12.004_b15) 1998; 454
Vullings (10.1016/j.engappai.2018.12.004_b30) 2013; 60
Varon (10.1016/j.engappai.2018.12.004_b29) 2015; 62
Yang (10.1016/j.engappai.2018.12.004_b35) 2017; 4
Dragomiretskiy (10.1016/j.engappai.2018.12.004_b7) 2014; 62
Niknazar (10.1016/j.engappai.2018.12.004_b25) 2013; 60
Mijović (10.1016/j.engappai.2018.12.004_b21) 2010; 57
Han (10.1016/j.engappai.2018.12.004_b11) 2016; 87
Kullback (10.1016/j.engappai.2018.12.004_b17) 1951; 22
Mcaloon (10.1016/j.engappai.2018.12.004_b20) 2016; 224
He (10.1016/j.engappai.2018.12.004_b12) 2013; 35
De (10.1016/j.engappai.2018.12.004_b6) 2018; 40
Warmerdam (10.1016/j.engappai.2018.12.004_b31) 2016; 64
Xu (10.1016/j.engappai.2018.12.004_b34) 2016; 35
Smital (10.1016/j.engappai.2018.12.004_b28) 2013; 60
Moody (10.1016/j.engappai.2018.12.004_b22) 2001; 20
Jain (10.1016/j.engappai.2018.12.004_b16) 2017; pp
Xiong (10.1016/j.engappai.2018.12.004_b33) 2016; 37
Danandeh (10.1016/j.engappai.2018.12.004_b5) 2017; 21
Nguyen (10.1016/j.engappai.2018.12.004_b24) 2016
Zhu (10.1016/j.engappai.2018.12.004_b36) 2017; 4
Gao (10.1016/j.engappai.2018.12.004_b8) 2015; 10
Wecke (10.1016/j.engappai.2018.12.004_b32) 2013; 166
Liu (10.1016/j.engappai.2018.12.004_b19) 2017; 9
Bowry (10.1016/j.engappai.2018.12.004_b3) 2015; 31
Alyasseri (10.1016/j.engappai.2018.12.004_b1) 2018; 429
Hesar (10.1016/j.engappai.2018.12.004_b14) 2018; pp
Moody (10.1016/j.engappai.2018.12.004_b23) 1984; 11
Oster (10.1016/j.engappai.2018.12.004_b26) 2010; 57
Lemme (10.1016/j.engappai.2018.12.004_b18) 2012; 33
Geselowitz (10.1016/j.engappai.2018.12.004_b9) 1989; 77
References_xml – volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b22
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 57
  start-page: 1628
  year: 2010
  end-page: 1638
  ident: b26
  article-title: Nonlinear Bayesian filtering for denoising of electrocardiograms acquired in a magnetic resonance environment
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b15
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Royal. Soc.
– volume: 77
  start-page: 857
  year: 1989
  end-page: 876
  ident: b9
  article-title: On the theory of the electrocardiogram
  publication-title: Proc. IEEE.
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: b10
  article-title: PhysioBank, physioToolkit, and physioNet
  publication-title: Circulation
– volume: 33
  start-page: 194
  year: 2012
  end-page: 203
  ident: b18
  article-title: Online learning and generalization of parts-based image representations by non-negative sparse autoencoders
  publication-title: Neural Netw.
– volume: 10
  start-page: 6063
  year: 2010
  end-page: 6080
  ident: b4
  article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition
  publication-title: Sensors
– volume: 40
  start-page: 1770
  year: 2018
  end-page: 1784
  ident: b6
  article-title: Transduction on directed graphs via absorbing random walks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: b34
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 8
  ident: b35
  article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression
  publication-title: INT J. Mach. Learn. Cyb.
– volume: 64
  start-page: 2793
  year: 2017
  end-page: 2802
  ident: b2
  article-title: Non-Invasive fetal ECG signal quality assessment for multichannel heart rate estimation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b17
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b7
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 35
  start-page: 1397
  year: 2013
  end-page: 1409
  ident: b12
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 134
  year: 2017
  end-page: 137
  ident: b36
  article-title: Electrocardiograph signal denoising based on sparse decomposition
  publication-title: Healthc. Technol. Lett.
– volume: 31
  start-page: 1151
  year: 2015
  end-page: 1159
  ident: b3
  article-title: The burden of cardiovascular disease in low and middle income countries: Epidemiology and management
  publication-title: Can. J. Cardiol.
– volume: 64
  start-page: 1852
  year: 2016
  end-page: 1861
  ident: b31
  article-title: A fixed-lag Kalman smoother to filter power line interference in electrocardiogram recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 37
  start-page: 2214
  year: 2016
  end-page: 2230
  ident: b33
  article-title: A stacked contractive denoising auto-encoder for ECG signal denoising
  publication-title: Physiol. Meas.
– volume: 224
  start-page: 256
  year: 2016
  end-page: 264
  ident: b20
  article-title: The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data
  publication-title: Int. J. Cardiol.
– volume: 11
  start-page: 381
  year: 1984
  end-page: 384
  ident: b23
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Comput. Cardiol.
– volume: 21
  start-page: 635
  year: 2016
  end-page: 644
  ident: b13
  article-title: ECG denoising using marginalized particle extended Kalman filter with an automatic particle weighting strategy
  publication-title: IEEE J. Biomed. Health.
– volume: 60
  start-page: 1345
  year: 2013
  end-page: 1352
  ident: b25
  article-title: Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 62
  start-page: 2269
  year: 2015
  end-page: 2278
  ident: b29
  article-title: A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 60
  start-page: 437
  year: 2013
  end-page: 445
  ident: b28
  article-title: Adaptive wavelet Wiener filtering of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 87
  start-page: 1
  year: 2016
  end-page: 6
  ident: b11
  article-title: Electrocardiogram signal denoising based on a new improved wavelet thresholding
  publication-title: Rev. Sci. Instrum.
– volume: pp
  start-page: 1
  year: 2018
  end-page: 12
  ident: b14
  article-title: A multi rate marginalized particle extended Kalman filter for P and T wave segmentation in ECG signals
  publication-title: IEEE J. Biomed. Health.
– volume: 57
  start-page: 2188
  year: 2010
  end-page: 2196
  ident: b21
  article-title: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: pp
  start-page: 1
  year: 2017
  end-page: 7
  ident: b16
  article-title: Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising
  publication-title: IEEE J. Biomed. Health. Inform.
– volume: 166
  start-page: 152
  year: 2013
  end-page: 157
  ident: b32
  article-title: Vectorcardiography shows cardiac memory and repolarization heterogeneity after ablation of accessory pathways not apparent on ECG
  publication-title: Int. J. Cardiol.
– volume: 21
  start-page: 1581
  year: 2017
  end-page: 1592
  ident: b5
  article-title: An adaptive particle weighting strategy for ECG denoising using marginalized particle extended Kalman filter: An evaluation in arrhythmia contexts
  publication-title: IEEE J. Biomed. Health.
– volume: 2007
  start-page: 1
  year: 2007
  end-page: 14
  ident: b27
  article-title: Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals
  publication-title: Eurasip. J. Adv. Sig. Pr.
– volume: 429
  start-page: 229
  year: 2018
  end-page: 246
  ident: b1
  article-title: Hybridizing
  publication-title: Inform. Sci.
– volume: 60
  start-page: 1580
  year: 2013
  end-page: 1588
  ident: b30
  article-title: Novel Bayesian vectorcardiographic loop alignment for improved monitoring of ECG and fetal movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 13
  ident: b19
  article-title: Constructing a guided filter by exploiting the Butterworth filter for ECG signal enhancement
  publication-title: J. Med. Biol. Eng.
– volume: 10
  start-page: 2108
  year: 2015
  end-page: 2118
  ident: b8
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 499
  year: 2016
  end-page: 511
  ident: b24
  article-title: Adaptive ECG Denoising Using Genetic Algorithm-Based Thresholding and Ensemble Empirical Mode Decomposition, 373
– volume: 10
  start-page: 6063
  issue: 6
  year: 2010
  ident: 10.1016/j.engappai.2018.12.004_b4
  article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s100606063
– volume: 429
  start-page: 229
  year: 2018
  ident: 10.1016/j.engappai.2018.12.004_b1
  article-title: Hybridizing β-hill climbing with wavelet transform for denoising ECG signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.11.026
– volume: 166
  start-page: 152
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2018.12.004_b32
  article-title: Vectorcardiography shows cardiac memory and repolarization heterogeneity after ablation of accessory pathways not apparent on ECG
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2011.10.106
– volume: 35
  start-page: 1397
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2018.12.004_b12
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– volume: 37
  start-page: 2214
  issue: 12
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b33
  article-title: A stacked contractive denoising auto-encoder for ECG signal denoising
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2214
– volume: 87
  start-page: 1
  issue: 8
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b11
  article-title: Electrocardiogram signal denoising based on a new improved wavelet thresholding
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4960411
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.engappai.2018.12.004_b15
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Royal. Soc.
  doi: 10.1098/rspa.1998.0193
– volume: 64
  start-page: 1852
  issue: 8
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b31
  article-title: A fixed-lag Kalman smoother to filter power line interference in electrocardiogram recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2626519
– volume: 10
  start-page: 2108
  issue: 10
  year: 2015
  ident: 10.1016/j.engappai.2018.12.004_b8
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2446438
– volume: 21
  start-page: 635
  issue: 3
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b13
  article-title: ECG denoising using marginalized particle extended Kalman filter with an automatic particle weighting strategy
  publication-title: IEEE J. Biomed. Health.
  doi: 10.1109/JBHI.2016.2582340
– volume: 2007
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2018.12.004_b27
  article-title: Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals
  publication-title: Eurasip. J. Adv. Sig. Pr.
– volume: pp
  start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.engappai.2018.12.004_b14
  article-title: A multi rate marginalized particle extended Kalman filter for P and T wave segmentation in ECG signals
  publication-title: IEEE J. Biomed. Health.
– volume: 62
  start-page: 2269
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2018.12.004_b29
  article-title: A novel algorithm for the automatic detection of sleep apnea from single-lead ECG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2422378
– volume: pp
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b16
  article-title: Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising
  publication-title: IEEE J. Biomed. Health. Inform.
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.engappai.2018.12.004_b17
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 11
  start-page: 381
  year: 1984
  ident: 10.1016/j.engappai.2018.12.004_b23
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Comput. Cardiol.
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.engappai.2018.12.004_b22
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b34
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 1151
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2018.12.004_b3
  article-title: The burden of cardiovascular disease in low and middle income countries: Epidemiology and management
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2015.06.028
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b35
  article-title: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression
  publication-title: INT J. Mach. Learn. Cyb.
– volume: 57
  start-page: 2188
  issue: 9
  year: 2010
  ident: 10.1016/j.engappai.2018.12.004_b21
  article-title: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051440
– volume: 57
  start-page: 1628
  issue: 7
  year: 2010
  ident: 10.1016/j.engappai.2018.12.004_b26
  article-title: Nonlinear Bayesian filtering for denoising of electrocardiograms acquired in a magnetic resonance environment
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2046324
– volume: 40
  start-page: 1770
  issue: 7
  year: 2018
  ident: 10.1016/j.engappai.2018.12.004_b6
  article-title: Transduction on directed graphs via absorbing random walks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2730871
– volume: 77
  start-page: 857
  issue: 6
  year: 1989
  ident: 10.1016/j.engappai.2018.12.004_b9
  article-title: On the theory of the electrocardiogram
  publication-title: Proc. IEEE.
  doi: 10.1109/5.29327
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b19
  article-title: Constructing a guided filter by exploiting the Butterworth filter for ECG signal enhancement
  publication-title: J. Med. Biol. Eng.
– volume: 224
  start-page: 256
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b20
  article-title: The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.09.026
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.engappai.2018.12.004_b10
  article-title: PhysioBank, physioToolkit, and physioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 64
  start-page: 2793
  issue: 12
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b2
  article-title: Non-Invasive fetal ECG signal quality assessment for multichannel heart rate estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2675543
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2018.12.004_b7
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 60
  start-page: 1580
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2018.12.004_b30
  article-title: Novel Bayesian vectorcardiographic loop alignment for improved monitoring of ECG and fetal movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2238938
– volume: 21
  start-page: 1581
  issue: 6
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b5
  article-title: An adaptive particle weighting strategy for ECG denoising using marginalized particle extended Kalman filter: An evaluation in arrhythmia contexts
  publication-title: IEEE J. Biomed. Health.
  doi: 10.1109/JBHI.2017.2706298
– start-page: 499
  year: 2016
  ident: 10.1016/j.engappai.2018.12.004_b24
– volume: 33
  start-page: 194
  issue: 9
  year: 2012
  ident: 10.1016/j.engappai.2018.12.004_b18
  article-title: Online learning and generalization of parts-based image representations by non-negative sparse autoencoders
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.05.003
– volume: 4
  start-page: 134
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2018.12.004_b36
  article-title: Electrocardiograph signal denoising based on sparse decomposition
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0097
– volume: 60
  start-page: 437
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2018.12.004_b28
  article-title: Adaptive wavelet Wiener filtering of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2228482
– volume: 60
  start-page: 1345
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2018.12.004_b25
  article-title: Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2234456
SSID ssj0003846
Score 2.3979535
Snippet The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Electrocardiograph (ECG) denoising
Guided filter
Multi-lead model-based ECG signal
Sparse autoencoder
Title Multi-lead model-based ECG signal denoising by guided filter
URI https://dx.doi.org/10.1016/j.engappai.2018.12.004
Volume 79
WOSCitedRecordID wos000459524300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcq2IEL-0Qw2OTDbpW3JE5qW-KCWLdumhAHJvUWxYmNgkqA0lblv-f5K4k2NOCwS9S-xK6T9-t7L8_vA6FPmjIlq0yTjFUjAqCoCM8YJTo2xeIElXFhq-v_YicnfDoVp4PBXciFWc1Y0_D1Wlz_V1YDDZhtUmefwe52UiDAZ2A6HIHtcHwS421KLZkB71ybG2IUVTUcH38fmmANsymjmqva-gjA9jxf1hWc1vUsBOoGP31XqXDY3-a2kQNzG2JkG370anp24sw6YCfL4iZoRhPzUy9doH5HmtY-IvhUdcSv9rJJUV965HqnhMmDClFZrXcxIbFwrV2CoHVdY7yk9C5Mp3NdCci_pLlzLFx8hiXAfRa1icTj1nsbpZ3-Cnv2f6i1NtgwxLFd5GGe3MyTx0luK8luJiwTINM3j36Mpz9bNU65y_IKd9JLL394RQ9bNj1r5ewV2vavGfjIweM1GqjmDXrpXzmwF-i3QApdPQLtLTrsAIR7AMIAIOwAhFsAYXmHHYCwA9A79Pvb-Ox4QnyPDVLSOFmQ0pQmVlzJTKhUgvzXiqUqjrRUfFQmFdiDUQnf4bKI6yLTgqsIFjBicUGN7byDNpqrRu2a7P8oYQJOcapTkAGSVpGMaEFlmZacqj2UheeTl74AvemDMsv_zaE99KUdd-1KsDw6QoTHn3tD0hmIOSDrkbHvn_1r-2ir-wscoI3FfKk-oBflalHfzj96WN0DbfmX1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-lead+model-based+ECG+signal+denoising+by+guided+filter&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Hao%2C+Huaqing&rft.au=Liu%2C+Ming&rft.au=Xiong%2C+Peng&rft.au=Du%2C+Haiman&rft.date=2019-03-01&rft.issn=0952-1976&rft.volume=79&rft.spage=34&rft.epage=44&rft_id=info:doi/10.1016%2Fj.engappai.2018.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2018_12_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon