Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm

The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keu...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 223; p. 108694
Main Authors: Wang, Yanxu, Yin, Zegao, Liu, Yong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2021
Subjects:
ISSN:0029-8018, 1873-5258
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keulegan–Carpenter (KC) number in the literature, and the influences of other wave and vegetation parameters on CD were often ignored. The difference in formulas is largely attributable to inconsistent uses of characteristic velocity and length scales in the definitions of Re and KC. By considering the vegetation and hydrodynamic characteristics in this study, new Re and KC numbers were redefined using the mean pore velocity and vegetation-related hydraulic radius. Besides, a genetic programming algorithm was adopted to develop a robust relationship between CD and possible dimensionless variables based on extensive experimental data. Ultimately, a new CD predictor that has a similar form to that of the classical expression was obtained without any prespecified forms before searching. It turns out that the new predictor depends on not only the new KC number but also the submergence ratio and Ursell number. Compared with the existing predictors, the proposed CD predictor exhibits a considerable improvement in predictive ability for a wider parameter space. •Genetic programming algorithm is adopted to study the bulk drag coefficient.•Re and KC numbers are redefined using mean pore velocity and vegetation-related hydraulic radius.•A new predictor for estimating the bulk drag coefficient of flexible vegetation in waves is developed.•The proposed predictor depends on the new KC number, the submergence ratio, and Ursell number.
AbstractList The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keulegan–Carpenter (KC) number in the literature, and the influences of other wave and vegetation parameters on CD were often ignored. The difference in formulas is largely attributable to inconsistent uses of characteristic velocity and length scales in the definitions of Re and KC. By considering the vegetation and hydrodynamic characteristics in this study, new Re and KC numbers were redefined using the mean pore velocity and vegetation-related hydraulic radius. Besides, a genetic programming algorithm was adopted to develop a robust relationship between CD and possible dimensionless variables based on extensive experimental data. Ultimately, a new CD predictor that has a similar form to that of the classical expression was obtained without any prespecified forms before searching. It turns out that the new predictor depends on not only the new KC number but also the submergence ratio and Ursell number. Compared with the existing predictors, the proposed CD predictor exhibits a considerable improvement in predictive ability for a wider parameter space. •Genetic programming algorithm is adopted to study the bulk drag coefficient.•Re and KC numbers are redefined using mean pore velocity and vegetation-related hydraulic radius.•A new predictor for estimating the bulk drag coefficient of flexible vegetation in waves is developed.•The proposed predictor depends on the new KC number, the submergence ratio, and Ursell number.
ArticleNumber 108694
Author Yin, Zegao
Liu, Yong
Wang, Yanxu
Author_xml – sequence: 1
  givenname: Yanxu
  surname: Wang
  fullname: Wang, Yanxu
  organization: College of Engineering, Ocean University of China, Qingdao, 266100, China
– sequence: 2
  givenname: Zegao
  surname: Yin
  fullname: Yin, Zegao
  email: yinzegao@ouc.edu.cn
  organization: College of Engineering, Ocean University of China, Qingdao, 266100, China
– sequence: 3
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: College of Engineering, Ocean University of China, Qingdao, 266100, China
BookMark eNqFkE1LAzEQhoMo2Fb_guQPbE2y3XQXPCjFLxD0oOcwOzvZpm6Tko2t_nu3VC9ePA28w_My84zZsQ-eGLuQYiqF1JeraUACT76dKqHkEJa6mh2xkSzneVaoojxmIyFUlZVClqds3PcrIYTWIh-x-BKpcZicb3laEq8_unfeRGg5BrLWoSOfeLDcdvTp6o74llpKkFzw3Hm-gy0Nu7DreQ09NXyIgbfkKTnkmxjaCOv1vh26NkSXluszdmKh6-n8Z07Y293t6-Ihe3q-f1zcPGWYS5Uy1LOqqWuJ0mKDKAs9h6KqZjk0CE2JGhRaba0olIQCpCKrsKo1FnmhKqB8wq4OvRhD30eyBt3h8BTBdUYKs_dnVubXn9n7Mwd_A67_4Jvo1hC__gevDyANz20dRdPvLeLgORIm0wT3X8U3COqULA
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_111522
crossref_primary_10_1016_j_matcom_2023_10_017
crossref_primary_10_1016_j_oceaneng_2024_117940
crossref_primary_10_1016_j_apor_2021_102974
crossref_primary_10_1016_j_oceaneng_2023_114792
crossref_primary_10_1038_s41598_025_91668_8
crossref_primary_10_1016_j_ocemod_2024_102422
crossref_primary_10_1016_j_ecoleng_2022_106619
crossref_primary_10_1038_s41598_025_95230_4
crossref_primary_10_1007_s11356_022_24237_5
crossref_primary_10_1016_j_coastaleng_2025_104788
crossref_primary_10_1016_j_oceaneng_2021_109865
crossref_primary_10_2112_JCOASTRES_D_21_00089_1
crossref_primary_10_1016_j_oceaneng_2021_110103
crossref_primary_10_1016_j_oceaneng_2022_113515
crossref_primary_10_1016_j_gsf_2021_101222
crossref_primary_10_1016_j_oceaneng_2024_119738
crossref_primary_10_1016_j_advwatres_2025_105081
crossref_primary_10_3390_jmse11010008
crossref_primary_10_1080_24705357_2025_2505873
crossref_primary_10_1016_j_coastaleng_2023_104403
crossref_primary_10_1016_j_ocemod_2024_102391
crossref_primary_10_1080_21664250_2023_2195030
crossref_primary_10_1016_j_finmec_2025_100313
crossref_primary_10_1016_j_oceaneng_2023_115274
crossref_primary_10_1016_j_oceaneng_2023_116440
crossref_primary_10_1002_esp_70054
crossref_primary_10_1016_j_apor_2024_103935
crossref_primary_10_3390_jmse12081326
crossref_primary_10_1007_s43832_024_00162_1
crossref_primary_10_1016_j_ocecoaman_2024_107520
crossref_primary_10_1016_j_aquaeng_2025_102528
crossref_primary_10_3390_su141811661
crossref_primary_10_1016_j_engappai_2025_111803
crossref_primary_10_1016_j_oceaneng_2024_118756
crossref_primary_10_1016_j_oceaneng_2024_118954
Cites_doi 10.1061/(ASCE)0733-9429(2008)134:1(34)
10.1016/j.coastaleng.2020.103648
10.3390/w10070906
10.1016/j.advwatres.2018.10.008
10.1016/j.coastaleng.2019.103509
10.1029/1999JC900119
10.1016/j.coastaleng.2015.03.009
10.1016/j.advwatres.2019.07.006
10.1016/j.coastaleng.2003.11.003
10.1080/00221686.2011.583388
10.1016/j.coastaleng.2013.02.013
10.1016/j.coastaleng.2011.02.003
10.1016/j.coastaleng.2016.07.004
10.1061/(ASCE)0733-950X(1993)119:1(30)
10.6028/jres.060.043
10.1016/j.jher.2013.02.005
10.1002/esp.3290180105
10.1017/jfm.2019.739
10.1016/j.ecss.2015.08.021
10.1051/lhb/2020015
10.1061/(ASCE)HY.1943-7900.0000377
10.3826/jhr.2008.3177
10.1061/(ASCE)0733-9429(1998)124:1(25)
10.1016/j.coastaleng.2012.10.007
10.1016/j.advwatres.2020.103755
10.1061/(ASCE)HY.1943-7900.0000722
10.2118/950149-G
10.1126/science.1165893
10.1002/2014WR016380
10.1016/j.advwatres.2020.103582
10.1007/s11269-017-1708-4
10.1016/j.coastaleng.2019.03.011
10.1038/ngeo2251
10.1061/(ASCE)0733-950X(1984)110:1(67)
10.1016/j.coastaleng.2014.02.009
10.1061/(ASCE)WW.1943-5460.0000251
10.1016/j.jher.2014.06.005
10.1016/j.coastaleng.2015.09.011
10.1016/j.jhydrol.2016.11.058
10.1016/j.coastaleng.2013.10.004
10.1061/(ASCE)WW.1943-5460.0000487
10.1080/00221686.2011.552464
10.1016/j.coastaleng.2008.09.004
10.1016/j.ecss.2015.08.009
10.1016/j.coastaleng.2013.11.014
10.1002/2017WR021732
10.1016/j.coastaleng.2010.10.003
10.1007/s12601-018-0037-8
10.1029/1998WR900069
10.1016/j.jhydrol.2019.02.045
10.1016/j.jfluidstructs.2015.11.007
10.3826/jhr.2009.3283
10.1016/j.coastaleng.2013.04.009
10.1029/2011GL048773
10.1007/s11270-018-3893-z
10.1016/j.csr.2013.09.020
10.1080/00221686.2012.754795
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2021.108694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2021_108694
S0029801821001293
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c312t-c649dbb1c1fcdcc1567a59943adcad8c6a2cf6ff0521a5a12ef2c9b6c53529ae3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625304400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:26:03 EST 2025
Tue Nov 18 20:40:09 EST 2025
Fri Feb 23 02:45:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wave flows
Predictor
Aquatic vegetation
Genetic programming
Bulk drag coefficient
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-c649dbb1c1fcdcc1567a59943adcad8c6a2cf6ff0521a5a12ef2c9b6c53529ae3
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2021_108694
crossref_primary_10_1016_j_oceaneng_2021_108694
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108694
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tinoco, Goldstein, Coco (bib57) 2015; 51
Dean, Dalrymple (bib18) 1991
Anderson, Smith, McKay (bib4) 2011
Jadhav, Chen, Smith (bib28) 2013; 77
Morison, Johnson, Schaaf (bib43) 1950; 2
Zeng, Huai (bib64) 2014; 8
Anderson, Smith (bib3) 2014; 83
Yao, Chen, Huang, Tan, Hu, Ren, Yang (bib63) 2018; 10
Keulegan, Carpenter (bib30) 1958; 2857
Mullarney, Henderson (bib44) 2010; 115
Koftis, Prinos, Stratigaki (bib32) 2013; 73
Cheng, Nguyen (bib16) 2011; 137
Wang, Yin, Liu (bib60) 2020; 146
Paul, Rupprecht, Möller, Bouma, Spencer, Kudella, Wolters, van Wesenbeeck, Jensen, Miranda-Lange, Schimmels (bib47) 2016; 117
Dalrymple, Kirby, Hwang (bib17) 1984; 110
Maza, Lara, Losada (bib39) 2019; 131
Ozeren, Wren, Wu (bib46) 2014; 140
Riffe, Henderson, Mullarney (bib48) 2011; 38
Chen, Ni, Li, Liu, Ou, Su, Peng, Hu, Uijttewaal, Suzuki (bib13) 2018; 122
Mattis, Kees, Wei, Dimakopoulos, Dawson (bib37) 2019; 145
Seo, Cheong (bib52) 1998; 124
Liu, Huai, Yang, Zeng (bib34) 2020; 140
He, Chen, Jiang (bib23) 2019; 152
Kothyari, Hayashi, Hashimoto (bib33) 2009; 47
Wu, Cox (bib62) 2015; 164
Chastel, Botten, Durand, Goutal (bib11) 2020
Losada, Maza, Lara (bib35) 2016; 107
Chatagnier (bib12) 2012
Busari, Li (bib8) 2015; 9
Feagin, Irish, Möller, Williams, Colón-Rivera, Mousavi (bib19) 2011; 58
Luhar, Nepf (bib36) 2016; 61
Augustin, Irish, Lynett (bib6) 2009; 56
Mendez, Losada (bib40) 2004; 51
Mendez, Losada, Losada (bib41) 1999; 104
Shi, Liang, Huai, Wang (bib53) 2019; 572
James, Goldbeck, Patini, Jordanova (bib29) 2008; 46
Huai, Shi, Yang, Zeng (bib26) 2018; 229
Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (bib42) 2014; 7
Augustin (bib5) 2007
Stratigaki, Manca, Prinos, Losada, Agustín (bib54) 2011; 49
Jacobsen, Bakker, Uijttewaal, Uittenbogaard (bib27) 2019; 880
Wu, Ozeren, Wren, Chen, Zhang, Holland, Ding, Kuiry, Zhang, Jadhav, Chatagnier, Chen, Gordji (bib61) 2011
French (bib21) 1993; 18
Aberle, Jarvela (bib1) 2013; 51
Maza, Lara, Losada (bib38) 2013; 80
Wang, Huai, Wang (bib59) 2017; 544
Cavallaro, Viviano, Paratore, Foti (bib10) 2018; 53
Aghababaei, Etemadshahidi, Jabbari, Taghipour (bib2) 2017; 31
Sánchez-González, Sánchez-Rojas, Memos (bib50) 2011; 49
Henry, Myrhaug, Aberle (bib24) 2015; 165
Suzuki, Hu, Kumada, Phan, Zijlema (bib55) 2019; 149
Camus, Mendez, Medina, Cofiño (bib9) 2011; 58
Kobayashi, Raichle, Asano (bib31) 1993; 119
Bouma, Van Belzen, Balke, Zhu, Airoldi, Blight, Davies, Galvan, Hawkins, Hoggart (bib7) 2014; 87
Nepf (bib45) 1999; 35
Goldstein, Coco, Murray (bib22) 2013; 71
Schmidt, Lipson (bib51) 2009; 324
Freeman, Rahmeyer, Copeland (bib20) 2000
Hu, Suzuki, Zitman, Uittewaal, Stive (bib25) 2014; 88
Zhang, Tang, Nepf (bib65) 2018; 54
Cheng (bib15) 2013; 139
Rupprecht, Möller, Evans, Spencer, Jensen (bib49) 2015; 100
Van Veelen, Fairchild, Reeve, Karunarathna (bib58) 2020
Tanino, Nepf (bib56) 2008; 134
Chen (10.1016/j.oceaneng.2021.108694_bib13) 2018; 122
Mullarney (10.1016/j.oceaneng.2021.108694_bib44) 2010; 115
Freeman (10.1016/j.oceaneng.2021.108694_bib20) 2000
He (10.1016/j.oceaneng.2021.108694_bib23) 2019; 152
Maza (10.1016/j.oceaneng.2021.108694_bib38) 2013; 80
Tanino (10.1016/j.oceaneng.2021.108694_bib56) 2008; 134
Busari (10.1016/j.oceaneng.2021.108694_bib8) 2015; 9
Koftis (10.1016/j.oceaneng.2021.108694_bib32) 2013; 73
Cheng (10.1016/j.oceaneng.2021.108694_bib15) 2013; 139
Ozeren (10.1016/j.oceaneng.2021.108694_bib46) 2014; 140
Wang (10.1016/j.oceaneng.2021.108694_bib59) 2017; 544
French (10.1016/j.oceaneng.2021.108694_bib21) 1993; 18
Aghababaei (10.1016/j.oceaneng.2021.108694_bib2) 2017; 31
Liu (10.1016/j.oceaneng.2021.108694_bib34) 2020; 140
Losada (10.1016/j.oceaneng.2021.108694_bib35) 2016; 107
Jadhav (10.1016/j.oceaneng.2021.108694_bib28) 2013; 77
Mendez (10.1016/j.oceaneng.2021.108694_bib41) 1999; 104
Seo (10.1016/j.oceaneng.2021.108694_bib52) 1998; 124
Stratigaki (10.1016/j.oceaneng.2021.108694_bib54) 2011; 49
Van Veelen (10.1016/j.oceaneng.2021.108694_bib58) 2020
Kobayashi (10.1016/j.oceaneng.2021.108694_bib31) 1993; 119
Shi (10.1016/j.oceaneng.2021.108694_bib53) 2019; 572
Kothyari (10.1016/j.oceaneng.2021.108694_bib33) 2009; 47
Dalrymple (10.1016/j.oceaneng.2021.108694_bib17) 1984; 110
Henry (10.1016/j.oceaneng.2021.108694_bib24) 2015; 165
Sánchez-González (10.1016/j.oceaneng.2021.108694_bib50) 2011; 49
Chastel (10.1016/j.oceaneng.2021.108694_bib11) 2020
Paul (10.1016/j.oceaneng.2021.108694_bib47) 2016; 117
Hu (10.1016/j.oceaneng.2021.108694_bib25) 2014; 88
Maza (10.1016/j.oceaneng.2021.108694_bib39) 2019; 131
Augustin (10.1016/j.oceaneng.2021.108694_bib6) 2009; 56
Riffe (10.1016/j.oceaneng.2021.108694_bib48) 2011; 38
Aberle (10.1016/j.oceaneng.2021.108694_bib1) 2013; 51
Bouma (10.1016/j.oceaneng.2021.108694_bib7) 2014; 87
Chatagnier (10.1016/j.oceaneng.2021.108694_bib12) 2012
Mattis (10.1016/j.oceaneng.2021.108694_bib37) 2019; 145
Möller (10.1016/j.oceaneng.2021.108694_bib42) 2014; 7
Suzuki (10.1016/j.oceaneng.2021.108694_bib55) 2019; 149
Luhar (10.1016/j.oceaneng.2021.108694_bib36) 2016; 61
Keulegan (10.1016/j.oceaneng.2021.108694_bib30) 1958; 2857
Morison (10.1016/j.oceaneng.2021.108694_bib43) 1950; 2
Anderson (10.1016/j.oceaneng.2021.108694_bib4) 2011
Wu (10.1016/j.oceaneng.2021.108694_bib61) 2011
Rupprecht (10.1016/j.oceaneng.2021.108694_bib49) 2015; 100
Wu (10.1016/j.oceaneng.2021.108694_bib62) 2015; 164
Tinoco (10.1016/j.oceaneng.2021.108694_bib57) 2015; 51
Yao (10.1016/j.oceaneng.2021.108694_bib63) 2018; 10
Goldstein (10.1016/j.oceaneng.2021.108694_bib22) 2013; 71
James (10.1016/j.oceaneng.2021.108694_bib29) 2008; 46
Mendez (10.1016/j.oceaneng.2021.108694_bib40) 2004; 51
Cavallaro (10.1016/j.oceaneng.2021.108694_bib10) 2018; 53
Dean (10.1016/j.oceaneng.2021.108694_bib18) 1991
Huai (10.1016/j.oceaneng.2021.108694_bib26) 2018; 229
Zhang (10.1016/j.oceaneng.2021.108694_bib65) 2018; 54
Anderson (10.1016/j.oceaneng.2021.108694_bib3) 2014; 83
Augustin (10.1016/j.oceaneng.2021.108694_bib5) 2007
Zeng (10.1016/j.oceaneng.2021.108694_bib64) 2014; 8
Feagin (10.1016/j.oceaneng.2021.108694_bib19) 2011; 58
Schmidt (10.1016/j.oceaneng.2021.108694_bib51) 2009; 324
Cheng (10.1016/j.oceaneng.2021.108694_bib16) 2011; 137
Nepf (10.1016/j.oceaneng.2021.108694_bib45) 1999; 35
Wang (10.1016/j.oceaneng.2021.108694_bib60) 2020; 146
Camus (10.1016/j.oceaneng.2021.108694_bib9) 2011; 58
Jacobsen (10.1016/j.oceaneng.2021.108694_bib27) 2019; 880
References_xml – volume: 71
  start-page: 1
  year: 2013
  end-page: 15
  ident: bib22
  article-title: Prediction of wave ripple characteristics using genetic programming
  publication-title: Continent. Shelf Res.
– volume: 140
  year: 2014
  ident: bib46
  article-title: Experimental investigation of wave attenuation through model and live vegetation
  publication-title: J. Waterway Port Coast Ocean Eng. ASCE
– volume: 7
  start-page: 727
  year: 2014
  end-page: 731
  ident: bib42
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
– volume: 122
  start-page: 217
  year: 2018
  end-page: 227
  ident: bib13
  article-title: Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods
  publication-title: Adv. Water Resour.
– year: 2011
  ident: bib61
  article-title: Phase I Report for SERRI Project No. 80037: Investigation of Surge and Wave Reduction by Vegetation
– start-page: 34
  year: 2020
  end-page: 42
  ident: bib11
  article-title: Bulk drag coefficient of a subaquatic vegetation subjected to irregular waves: influence of Reynolds and Keulegan-carpenter numbers
  publication-title: La Houille Blanche
– volume: 51
  start-page: 1247
  year: 2015
  end-page: 1263
  ident: bib57
  article-title: A data-driven approach to develop physically sound predictors: application to depth-averaged velocities on flows through submerged arrays of rigid cylinders
  publication-title: Water Resour. Res.
– volume: 38
  year: 2011
  ident: bib48
  article-title: Wave dissipation by flexible vegetation
  publication-title: Geophys. Res. Lett.
– volume: 31
  start-page: 3809
  year: 2017
  end-page: 3827
  ident: bib2
  article-title: Estimation of transverse mixing coefficient in straight and meandering streams
  publication-title: Water Resour. Manag.
– volume: 117
  start-page: 70
  year: 2016
  end-page: 78
  ident: bib47
  article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics
  publication-title: Coast. Eng.
– volume: 140
  year: 2020
  ident: bib34
  article-title: A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows
  publication-title: Adv. Water Resour.
– volume: 110
  start-page: 67
  year: 1984
  end-page: 79
  ident: bib17
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
– volume: 2
  start-page: 149
  year: 1950
  end-page: 154
  ident: bib43
  article-title: The force exerted by surface waves on piles
  publication-title: J. Petrol. Technol.
– volume: 100
  start-page: 48
  year: 2015
  end-page: 57
  ident: bib49
  article-title: Biophysical properties ofsalt marsh canopies—quantifying plant stem flexibility and above ground biomass
  publication-title: Coast. Eng.
– volume: 83
  start-page: 82
  year: 2014
  end-page: 92
  ident: bib3
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 46
  start-page: 536
  year: 2008
  end-page: 542
  ident: bib29
  article-title: Influence of foliage on flow resistance of emergent vegetation
  publication-title: J. Hydraul. Res.
– year: 2011
  ident: bib4
  article-title: Wave dissipation by vegetation
  publication-title: Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-I-82
– volume: 47
  start-page: 691
  year: 2009
  end-page: 699
  ident: bib33
  article-title: Drag coefficient of unsubmerged rigid vegetation stems in open channel flows
  publication-title: J. Hydraul. Res.
– volume: 572
  start-page: 213
  year: 2019
  end-page: 225
  ident: bib53
  article-title: Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation
  publication-title: J. Hydrol.
– volume: 137
  start-page: 995
  year: 2011
  end-page: 1004
  ident: bib16
  article-title: Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows
  publication-title: J. Hydraul. Eng.
– volume: 880
  start-page: 1036
  year: 2019
  end-page: 1069
  ident: bib27
  article-title: Experimental investigation of the wave-induced motion of and force distribution along a flexible stem
  publication-title: J. Fluid Mech.
– volume: 87
  start-page: 147
  year: 2014
  end-page: 157
  ident: bib7
  article-title: Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take
  publication-title: Coast. Eng.
– volume: 18
  start-page: 63
  year: 1993
  end-page: 81
  ident: bib21
  article-title: Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K
  publication-title: Earth Surf. Process. Landforms
– volume: 88
  start-page: 131
  year: 2014
  end-page: 142
  ident: bib25
  article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow
  publication-title: Coast. Eng.
– volume: 58
  start-page: 251
  year: 2011
  end-page: 255
  ident: bib19
  article-title: Short communication: engineering properties of wetland plants with application to wave attenuation
  publication-title: Coast. Eng.
– volume: 134
  start-page: 34
  year: 2008
  end-page: 41
  ident: bib56
  article-title: Laboratory investigation of mean drag in a random array of rigid, emergent cylinders
  publication-title: J. Hydraul. Eng.
– start-page: 64
  year: 2012
  ident: bib12
  article-title: The Biomechanics of Salt Marsh Vegetation Applied to Wave and Surge Attenuation
– volume: 51
  start-page: 103
  year: 2004
  end-page: 118
  ident: bib40
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
– volume: 77
  start-page: 99
  year: 2013
  end-page: 107
  ident: bib28
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
– volume: 107
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib35
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
– volume: 165
  start-page: 10
  year: 2015
  end-page: 24
  ident: bib24
  article-title: Drag forces on aquatic plants in nonlinear random waves plus current
  publication-title: Estuar. Coast Shelf Sci.
– volume: 73
  start-page: 71
  year: 2013
  end-page: 83
  ident: bib32
  article-title: Wave damping over artificial
  publication-title: Coast. Eng.
– volume: 8
  start-page: 2
  year: 2014
  end-page: 8
  ident: bib64
  article-title: Estimation of longitudinal dispersion coefficient in rivers
  publication-title: J. Hydro-Environ. Res.
– volume: 51
  start-page: 33
  year: 2013
  end-page: 45
  ident: bib1
  article-title: Flow resistance of emergent rigid and flexible floodplain vegetation
  publication-title: J. Hydraul. Res.
– volume: 56
  start-page: 332
  year: 2009
  end-page: 340
  ident: bib6
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
– volume: 49
  start-page: 503
  year: 2011
  end-page: 514
  ident: bib50
  article-title: Wave attenuation due to Posidonia oceanica meadows
  publication-title: J. Hydraul. Res.
– volume: 229
  year: 2018
  ident: bib26
  article-title: Estimating the transverse mixing coefficient in laboratory flumes and natural rivers
  publication-title: Water Air Soil Pollut.
– volume: 124
  start-page: 25
  year: 1998
  end-page: 32
  ident: bib52
  article-title: Predicting longitudinal dispersion coefficient in natural streams
  publication-title: J. Hydraul. Eng.
– volume: 49
  start-page: 31
  year: 2011
  end-page: 43
  ident: bib54
  article-title: Large-scale experiments on wave propagation over posidonia oceanica
  publication-title: J. Hydraul. Res.
– volume: 152
  start-page: 103509
  year: 2019
  ident: bib23
  article-title: Surface wave attenuation by vegetation with the stem, root and canopy
  publication-title: Coast. Eng.
– volume: 164
  start-page: 443
  year: 2015
  end-page: 450
  ident: bib62
  article-title: Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation
  publication-title: Estuar. Coast Shelf Sci.
– volume: 35
  start-page: 479
  year: 1999
  end-page: 489
  ident: bib45
  article-title: Drag, turbulence, and diffusion in flow through emergent vegetation
  publication-title: Water Resour. Res.
– volume: 104
  start-page: 18383
  year: 1999
  end-page: 18396
  ident: bib41
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res.
– volume: 54
  start-page: 1734
  year: 2018
  end-page: 1750
  ident: bib65
  article-title: Turbulent kinetic energy in submerged model canopies under oscillatory flow
  publication-title: Water Resour. Res.
– start-page: 103648
  year: 2020
  ident: bib58
  article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure
  publication-title: Coast. Eng.
– volume: 58
  start-page: 453
  year: 2011
  end-page: 462
  ident: bib9
  article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate
  publication-title: Coast. Eng.
– volume: 53
  start-page: 461
  year: 2018
  end-page: 474
  ident: bib10
  article-title: Experiments on surface waves interacting with flexible aquatic vegetation
  publication-title: Ocean Sci. J.
– volume: 9
  start-page: 268
  year: 2015
  end-page: 280
  ident: bib8
  article-title: A hydraulic roughness model for submerged flexible vegetation with uncertainty estimation
  publication-title: J. Hydro-Environ. Res.
– volume: 544
  start-page: 511
  year: 2017
  end-page: 523
  ident: bib59
  article-title: Physically sound formula for longitudinal dispersion coefficients of natural rivers
  publication-title: J. Hydrol.
– volume: 80
  start-page: 16
  year: 2013
  end-page: 34
  ident: bib38
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations
  publication-title: Coast. Eng.
– volume: 115
  start-page: 1
  year: 2010
  end-page: 14
  ident: bib44
  article-title: Wave-forced motion of submerged single-stem vegetation
  publication-title: J. Geophys. Res.
– volume: 131
  year: 2019
  ident: bib39
  article-title: Experimental analysis of wave attenuation and drag forces in a realistic fringe
  publication-title: Adv. Water Resour.
– volume: 119
  start-page: 30
  year: 1993
  end-page: 48
  ident: bib31
  article-title: Wave attenuation by vegetation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
– volume: 145
  year: 2019
  ident: bib37
  article-title: Computational model for wave attenuation by flexible vegetation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
– volume: 61
  start-page: 20
  year: 2016
  end-page: 41
  ident: bib36
  article-title: Wave-induced dynamics of flexible blades
  publication-title: J. Fluid Struct.
– year: 1991
  ident: bib18
  article-title: Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering
– year: 2007
  ident: bib5
  article-title: Laboratory Experiments and Numerical Modeling of Wave Attenuation through Artificial Vegetation
– volume: 10
  year: 2018
  ident: bib63
  article-title: Applying a new force–velocity synchronizing algorithm to derive drag coefficients of rigid vegetation in oscillatory flows
  publication-title: Water
– year: 2000
  ident: bib20
  article-title: Determination of Resistance Due to Shrubs and Woody Vegetation
– volume: 149
  start-page: 49
  year: 2019
  end-page: 64
  ident: bib55
  article-title: Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields
  publication-title: Coast. Eng.
– volume: 146
  start-page: 103755
  year: 2020
  ident: bib60
  article-title: Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model
  publication-title: Adv. Water Resour.
– volume: 139
  start-page: 602
  year: 2013
  end-page: 611
  ident: bib15
  article-title: Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model
  publication-title: J. Hydraul. Eng.
– volume: 2857
  start-page: 423
  year: 1958
  end-page: 440
  ident: bib30
  article-title: Forces on cylinders and plates in an oscillating fluid
  publication-title: J. Res. Natl. Bur. Stand. Res. Pap.
– volume: 324
  start-page: 81
  year: 2009
  end-page: 85
  ident: bib51
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– volume: 134
  start-page: 34
  issue: 1
  year: 2008
  ident: 10.1016/j.oceaneng.2021.108694_bib56
  article-title: Laboratory investigation of mean drag in a random array of rigid, emergent cylinders
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2008)134:1(34)
– start-page: 103648
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108694_bib58
  article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2020.103648
– volume: 10
  issue: 7
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108694_bib63
  article-title: Applying a new force–velocity synchronizing algorithm to derive drag coefficients of rigid vegetation in oscillatory flows
  publication-title: Water
  doi: 10.3390/w10070906
– volume: 122
  start-page: 217
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108694_bib13
  article-title: Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.10.008
– volume: 152
  start-page: 103509
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib23
  article-title: Surface wave attenuation by vegetation with the stem, root and canopy
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2019.103509
– volume: 104
  start-page: 18383
  year: 1999
  ident: 10.1016/j.oceaneng.2021.108694_bib41
  article-title: Hydrodynamics induced by wind waves in a vegetation field
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JC900119
– volume: 100
  start-page: 48
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108694_bib49
  article-title: Biophysical properties ofsalt marsh canopies—quantifying plant stem flexibility and above ground biomass
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.03.009
– volume: 131
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib39
  article-title: Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.07.006
– volume: 51
  start-page: 103
  issue: 2
  year: 2004
  ident: 10.1016/j.oceaneng.2021.108694_bib40
  article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2003.11.003
– volume: 49
  start-page: 31
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib54
  article-title: Large-scale experiments on wave propagation over posidonia oceanica
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2011.583388
– volume: 77
  start-page: 99
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib28
  article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.02.013
– volume: 58
  start-page: 453
  issue: 6
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib9
  article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2011.02.003
– volume: 117
  start-page: 70
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108694_bib47
  article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2016.07.004
– year: 2000
  ident: 10.1016/j.oceaneng.2021.108694_bib20
– volume: 119
  start-page: 30
  issue: 1
  year: 1993
  ident: 10.1016/j.oceaneng.2021.108694_bib31
  article-title: Wave attenuation by vegetation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1993)119:1(30)
– volume: 2857
  start-page: 423
  year: 1958
  ident: 10.1016/j.oceaneng.2021.108694_bib30
  article-title: Forces on cylinders and plates in an oscillating fluid
  publication-title: J. Res. Natl. Bur. Stand. Res. Pap.
  doi: 10.6028/jres.060.043
– year: 1991
  ident: 10.1016/j.oceaneng.2021.108694_bib18
– start-page: 64
  year: 2012
  ident: 10.1016/j.oceaneng.2021.108694_bib12
– volume: 8
  start-page: 2
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib64
  article-title: Estimation of longitudinal dispersion coefficient in rivers
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2013.02.005
– volume: 18
  start-page: 63
  issue: 1
  year: 1993
  ident: 10.1016/j.oceaneng.2021.108694_bib21
  article-title: Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/esp.3290180105
– volume: 880
  start-page: 1036
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib27
  article-title: Experimental investigation of the wave-induced motion of and force distribution along a flexible stem
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.739
– year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib4
  article-title: Wave dissipation by vegetation
– volume: 165
  start-page: 10
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108694_bib24
  article-title: Drag forces on aquatic plants in nonlinear random waves plus current
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2015.08.021
– year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib61
– start-page: 34
  issue: 2
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108694_bib11
  article-title: Bulk drag coefficient of a subaquatic vegetation subjected to irregular waves: influence of Reynolds and Keulegan-carpenter numbers
  publication-title: La Houille Blanche
  doi: 10.1051/lhb/2020015
– volume: 137
  start-page: 995
  issue: 9
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib16
  article-title: Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000377
– volume: 46
  start-page: 536
  issue: 4
  year: 2008
  ident: 10.1016/j.oceaneng.2021.108694_bib29
  article-title: Influence of foliage on flow resistance of emergent vegetation
  publication-title: J. Hydraul. Res.
  doi: 10.3826/jhr.2008.3177
– volume: 124
  start-page: 25
  issue: 1
  year: 1998
  ident: 10.1016/j.oceaneng.2021.108694_bib52
  article-title: Predicting longitudinal dispersion coefficient in natural streams
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1998)124:1(25)
– volume: 73
  start-page: 71
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib32
  article-title: Wave damping over artificial Posidonia oceanica meadow: a large-scale experimental study
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2012.10.007
– volume: 146
  start-page: 103755
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108694_bib60
  article-title: Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103755
– volume: 115
  start-page: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2021.108694_bib44
  article-title: Wave-forced motion of submerged single-stem vegetation
  publication-title: J. Geophys. Res.
– volume: 139
  start-page: 602
  issue: 6
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib15
  article-title: Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000722
– volume: 2
  start-page: 149
  issue: 5
  year: 1950
  ident: 10.1016/j.oceaneng.2021.108694_bib43
  article-title: The force exerted by surface waves on piles
  publication-title: J. Petrol. Technol.
  doi: 10.2118/950149-G
– volume: 324
  start-page: 81
  issue: 5923
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108694_bib51
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 51
  start-page: 1247
  issue: 2
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108694_bib57
  article-title: A data-driven approach to develop physically sound predictors: application to depth-averaged velocities on flows through submerged arrays of rigid cylinders
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016380
– volume: 140
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108694_bib34
  article-title: A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103582
– volume: 31
  start-page: 3809
  issue: 12
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108694_bib2
  article-title: Estimation of transverse mixing coefficient in straight and meandering streams
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1708-4
– volume: 149
  start-page: 49
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib55
  article-title: Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2019.03.011
– volume: 7
  start-page: 727
  issue: 10
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib42
  article-title: Wave attenuation over coastal salt marshes under storm surge conditions
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2251
– volume: 110
  start-page: 67
  issue: 1
  year: 1984
  ident: 10.1016/j.oceaneng.2021.108694_bib17
  article-title: Wave diffraction due to areas of energy dissipation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
– volume: 88
  start-page: 131
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib25
  article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.02.009
– year: 2007
  ident: 10.1016/j.oceaneng.2021.108694_bib5
– volume: 140
  issue: 5
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib46
  article-title: Experimental investigation of wave attenuation through model and live vegetation
  publication-title: J. Waterway Port Coast Ocean Eng. ASCE
  doi: 10.1061/(ASCE)WW.1943-5460.0000251
– volume: 9
  start-page: 268
  issue: 2
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108694_bib8
  article-title: A hydraulic roughness model for submerged flexible vegetation with uncertainty estimation
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2014.06.005
– volume: 107
  start-page: 1
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108694_bib35
  article-title: A new formulation for vegetation-induced damping under combined waves and currents
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.09.011
– volume: 544
  start-page: 511
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108694_bib59
  article-title: Physically sound formula for longitudinal dispersion coefficients of natural rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.058
– volume: 83
  start-page: 82
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib3
  article-title: Wave attenuation by flexible, idealized salt marsh vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.10.004
– volume: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib37
  article-title: Computational model for wave attenuation by flexible vegetation
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000487
– volume: 49
  start-page: 503
  issue: 4
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib50
  article-title: Wave attenuation due to Posidonia oceanica meadows
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2011.552464
– volume: 56
  start-page: 332
  issue: 3
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108694_bib6
  article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.09.004
– volume: 164
  start-page: 443
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108694_bib62
  article-title: Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2015.08.009
– volume: 87
  start-page: 147
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108694_bib7
  article-title: Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.11.014
– volume: 54
  start-page: 1734
  issue: 3
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108694_bib65
  article-title: Turbulent kinetic energy in submerged model canopies under oscillatory flow
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021732
– volume: 58
  start-page: 251
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib19
  article-title: Short communication: engineering properties of wetland plants with application to wave attenuation
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2010.10.003
– volume: 53
  start-page: 461
  issue: 3
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108694_bib10
  article-title: Experiments on surface waves interacting with flexible aquatic vegetation
  publication-title: Ocean Sci. J.
  doi: 10.1007/s12601-018-0037-8
– volume: 35
  start-page: 479
  issue: 2
  year: 1999
  ident: 10.1016/j.oceaneng.2021.108694_bib45
  article-title: Drag, turbulence, and diffusion in flow through emergent vegetation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900069
– volume: 572
  start-page: 213
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108694_bib53
  article-title: Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.02.045
– volume: 61
  start-page: 20
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108694_bib36
  article-title: Wave-induced dynamics of flexible blades
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2015.11.007
– volume: 47
  start-page: 691
  issue: 6
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108694_bib33
  article-title: Drag coefficient of unsubmerged rigid vegetation stems in open channel flows
  publication-title: J. Hydraul. Res.
  doi: 10.3826/jhr.2009.3283
– volume: 80
  start-page: 16
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib38
  article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2013.04.009
– volume: 38
  year: 2011
  ident: 10.1016/j.oceaneng.2021.108694_bib48
  article-title: Wave dissipation by flexible vegetation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL048773
– volume: 229
  issue: 8
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108694_bib26
  article-title: Estimating the transverse mixing coefficient in laboratory flumes and natural rivers
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-018-3893-z
– volume: 71
  start-page: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib22
  article-title: Prediction of wave ripple characteristics using genetic programming
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2013.09.020
– volume: 51
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2021.108694_bib1
  article-title: Flow resistance of emergent rigid and flexible floodplain vegetation
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2012.754795
SSID ssj0006603
Score 2.4525528
Snippet The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108694
SubjectTerms Aquatic vegetation
Bulk drag coefficient
Genetic programming
Predictor
Wave flows
Title Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm
URI https://dx.doi.org/10.1016/j.oceaneng.2021.108694
Volume 223
WOSCitedRecordID wos000625304400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wGQEAwQ40t-4K3KaOzUiR8nNAQIjUkMqfASOY5dMrpkStOtfz4-fyQRTBoI8RJVVi9Wcr-cz-e73yH0SmudUVrKiFHFo0RpFgmqeZQxHUuzABeZtiSuH9Ojo2yx4Mf-oH1t2wmkdZ1tt_z8v6rajBllQ-nsX6i7v6kZML-N0s3VqN1c_0jxxy2cvXShDKrYrH5My1ZAaa2yfBH-9F8DFSbUTV2oZcg5rOrpJbQj0qvmcj2FFa6E0wQBjZah2jGkc53Z0sbVsmmr7vvZ2MH9JCG0rwaWwyFi76zKV1FvN72tcQwG39RSNH1qULWx_2u8rA9JkFFOlouThVqZITHJ1Q1wWA-dtVXO3GYpNVthR94e7DFxBci_2XYXZjjdb-BBzHPsw9S2U5Rrk_wLb_Znyy5v5iOxjbbRm2iHpHOeTdDOwfvDxYd-wWZsRkMmEAiMCsmvnu1qH2bkl5zcR_f8hgIfOCA8QDdUvYvujGgmd9FdqxTPTf4QtQNCsEEIBoRgQAgeIQQ3GgeE4AEhuKoxIARbhGCLEGyGBfYIwSOE4B4hj9CXt4cnb95FvvVGJGlMukiyhJdFEctYy1JKs8lPxZzzhIpSijKTTBCpmdZQ-i3mIiZKE8kLJoEtiAtFH6NJ3dTqCcJmS8yyUsyoAPJL4_ByPUtJJhKSpGpWzPbQPLzMXHpeemiPsspDAuJpHpSQgxJyp4Q99LqXO3fMLNdK8KCr3PuXzm_MDcSukX36D7LP0O3hK3mOJl27US_QLXnRVev2pUfjTwYfpt0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+bulk+drag+coefficient+of+flexible+vegetation+in+wave+flows+based+on+a+genetic+programming+algorithm&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yanxu&rft.au=Yin%2C+Zegao&rft.au=Liu%2C+Yong&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=223&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108694&rft.externalDocID=S0029801821001293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon