Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm
The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keu...
Saved in:
| Published in: | Ocean engineering Vol. 223; p. 108694 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2021
|
| Subjects: | |
| ISSN: | 0029-8018, 1873-5258 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keulegan–Carpenter (KC) number in the literature, and the influences of other wave and vegetation parameters on CD were often ignored. The difference in formulas is largely attributable to inconsistent uses of characteristic velocity and length scales in the definitions of Re and KC. By considering the vegetation and hydrodynamic characteristics in this study, new Re and KC numbers were redefined using the mean pore velocity and vegetation-related hydraulic radius. Besides, a genetic programming algorithm was adopted to develop a robust relationship between CD and possible dimensionless variables based on extensive experimental data. Ultimately, a new CD predictor that has a similar form to that of the classical expression was obtained without any prespecified forms before searching. It turns out that the new predictor depends on not only the new KC number but also the submergence ratio and Ursell number. Compared with the existing predictors, the proposed CD predictor exhibits a considerable improvement in predictive ability for a wider parameter space.
•Genetic programming algorithm is adopted to study the bulk drag coefficient.•Re and KC numbers are redefined using mean pore velocity and vegetation-related hydraulic radius.•A new predictor for estimating the bulk drag coefficient of flexible vegetation in waves is developed.•The proposed predictor depends on the new KC number, the submergence ratio, and Ursell number. |
|---|---|
| AbstractList | The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic processes in wave environments. Different CD empirical formulas have been mostly proposed as functions of either Reynolds (Re) number or Keulegan–Carpenter (KC) number in the literature, and the influences of other wave and vegetation parameters on CD were often ignored. The difference in formulas is largely attributable to inconsistent uses of characteristic velocity and length scales in the definitions of Re and KC. By considering the vegetation and hydrodynamic characteristics in this study, new Re and KC numbers were redefined using the mean pore velocity and vegetation-related hydraulic radius. Besides, a genetic programming algorithm was adopted to develop a robust relationship between CD and possible dimensionless variables based on extensive experimental data. Ultimately, a new CD predictor that has a similar form to that of the classical expression was obtained without any prespecified forms before searching. It turns out that the new predictor depends on not only the new KC number but also the submergence ratio and Ursell number. Compared with the existing predictors, the proposed CD predictor exhibits a considerable improvement in predictive ability for a wider parameter space.
•Genetic programming algorithm is adopted to study the bulk drag coefficient.•Re and KC numbers are redefined using mean pore velocity and vegetation-related hydraulic radius.•A new predictor for estimating the bulk drag coefficient of flexible vegetation in waves is developed.•The proposed predictor depends on the new KC number, the submergence ratio, and Ursell number. |
| ArticleNumber | 108694 |
| Author | Yin, Zegao Liu, Yong Wang, Yanxu |
| Author_xml | – sequence: 1 givenname: Yanxu surname: Wang fullname: Wang, Yanxu organization: College of Engineering, Ocean University of China, Qingdao, 266100, China – sequence: 2 givenname: Zegao surname: Yin fullname: Yin, Zegao email: yinzegao@ouc.edu.cn organization: College of Engineering, Ocean University of China, Qingdao, 266100, China – sequence: 3 givenname: Yong surname: Liu fullname: Liu, Yong organization: College of Engineering, Ocean University of China, Qingdao, 266100, China |
| BookMark | eNqFkE1LAzEQhoMo2Fb_guQPbE2y3XQXPCjFLxD0oOcwOzvZpm6Tko2t_nu3VC9ePA28w_My84zZsQ-eGLuQYiqF1JeraUACT76dKqHkEJa6mh2xkSzneVaoojxmIyFUlZVClqds3PcrIYTWIh-x-BKpcZicb3laEq8_unfeRGg5BrLWoSOfeLDcdvTp6o74llpKkFzw3Hm-gy0Nu7DreQ09NXyIgbfkKTnkmxjaCOv1vh26NkSXluszdmKh6-n8Z07Y293t6-Ihe3q-f1zcPGWYS5Uy1LOqqWuJ0mKDKAs9h6KqZjk0CE2JGhRaba0olIQCpCKrsKo1FnmhKqB8wq4OvRhD30eyBt3h8BTBdUYKs_dnVubXn9n7Mwd_A67_4Jvo1hC__gevDyANz20dRdPvLeLgORIm0wT3X8U3COqULA |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_111522 crossref_primary_10_1016_j_matcom_2023_10_017 crossref_primary_10_1016_j_oceaneng_2024_117940 crossref_primary_10_1016_j_apor_2021_102974 crossref_primary_10_1016_j_oceaneng_2023_114792 crossref_primary_10_1038_s41598_025_91668_8 crossref_primary_10_1016_j_ocemod_2024_102422 crossref_primary_10_1016_j_ecoleng_2022_106619 crossref_primary_10_1038_s41598_025_95230_4 crossref_primary_10_1007_s11356_022_24237_5 crossref_primary_10_1016_j_coastaleng_2025_104788 crossref_primary_10_1016_j_oceaneng_2021_109865 crossref_primary_10_2112_JCOASTRES_D_21_00089_1 crossref_primary_10_1016_j_oceaneng_2021_110103 crossref_primary_10_1016_j_oceaneng_2022_113515 crossref_primary_10_1016_j_gsf_2021_101222 crossref_primary_10_1016_j_oceaneng_2024_119738 crossref_primary_10_1016_j_advwatres_2025_105081 crossref_primary_10_3390_jmse11010008 crossref_primary_10_1080_24705357_2025_2505873 crossref_primary_10_1016_j_coastaleng_2023_104403 crossref_primary_10_1016_j_ocemod_2024_102391 crossref_primary_10_1080_21664250_2023_2195030 crossref_primary_10_1016_j_finmec_2025_100313 crossref_primary_10_1016_j_oceaneng_2023_115274 crossref_primary_10_1016_j_oceaneng_2023_116440 crossref_primary_10_1002_esp_70054 crossref_primary_10_1016_j_apor_2024_103935 crossref_primary_10_3390_jmse12081326 crossref_primary_10_1007_s43832_024_00162_1 crossref_primary_10_1016_j_ocecoaman_2024_107520 crossref_primary_10_1016_j_aquaeng_2025_102528 crossref_primary_10_3390_su141811661 crossref_primary_10_1016_j_engappai_2025_111803 crossref_primary_10_1016_j_oceaneng_2024_118756 crossref_primary_10_1016_j_oceaneng_2024_118954 |
| Cites_doi | 10.1061/(ASCE)0733-9429(2008)134:1(34) 10.1016/j.coastaleng.2020.103648 10.3390/w10070906 10.1016/j.advwatres.2018.10.008 10.1016/j.coastaleng.2019.103509 10.1029/1999JC900119 10.1016/j.coastaleng.2015.03.009 10.1016/j.advwatres.2019.07.006 10.1016/j.coastaleng.2003.11.003 10.1080/00221686.2011.583388 10.1016/j.coastaleng.2013.02.013 10.1016/j.coastaleng.2011.02.003 10.1016/j.coastaleng.2016.07.004 10.1061/(ASCE)0733-950X(1993)119:1(30) 10.6028/jres.060.043 10.1016/j.jher.2013.02.005 10.1002/esp.3290180105 10.1017/jfm.2019.739 10.1016/j.ecss.2015.08.021 10.1051/lhb/2020015 10.1061/(ASCE)HY.1943-7900.0000377 10.3826/jhr.2008.3177 10.1061/(ASCE)0733-9429(1998)124:1(25) 10.1016/j.coastaleng.2012.10.007 10.1016/j.advwatres.2020.103755 10.1061/(ASCE)HY.1943-7900.0000722 10.2118/950149-G 10.1126/science.1165893 10.1002/2014WR016380 10.1016/j.advwatres.2020.103582 10.1007/s11269-017-1708-4 10.1016/j.coastaleng.2019.03.011 10.1038/ngeo2251 10.1061/(ASCE)0733-950X(1984)110:1(67) 10.1016/j.coastaleng.2014.02.009 10.1061/(ASCE)WW.1943-5460.0000251 10.1016/j.jher.2014.06.005 10.1016/j.coastaleng.2015.09.011 10.1016/j.jhydrol.2016.11.058 10.1016/j.coastaleng.2013.10.004 10.1061/(ASCE)WW.1943-5460.0000487 10.1080/00221686.2011.552464 10.1016/j.coastaleng.2008.09.004 10.1016/j.ecss.2015.08.009 10.1016/j.coastaleng.2013.11.014 10.1002/2017WR021732 10.1016/j.coastaleng.2010.10.003 10.1007/s12601-018-0037-8 10.1029/1998WR900069 10.1016/j.jhydrol.2019.02.045 10.1016/j.jfluidstructs.2015.11.007 10.3826/jhr.2009.3283 10.1016/j.coastaleng.2013.04.009 10.1029/2011GL048773 10.1007/s11270-018-3893-z 10.1016/j.csr.2013.09.020 10.1080/00221686.2012.754795 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2021.108694 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2021_108694 S0029801821001293 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-c649dbb1c1fcdcc1567a59943adcad8c6a2cf6ff0521a5a12ef2c9b6c53529ae3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625304400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:26:03 EST 2025 Tue Nov 18 20:40:09 EST 2025 Fri Feb 23 02:45:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wave flows Predictor Aquatic vegetation Genetic programming Bulk drag coefficient |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-c649dbb1c1fcdcc1567a59943adcad8c6a2cf6ff0521a5a12ef2c9b6c53529ae3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2021_108694 crossref_primary_10_1016_j_oceaneng_2021_108694 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108694 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tinoco, Goldstein, Coco (bib57) 2015; 51 Dean, Dalrymple (bib18) 1991 Anderson, Smith, McKay (bib4) 2011 Jadhav, Chen, Smith (bib28) 2013; 77 Morison, Johnson, Schaaf (bib43) 1950; 2 Zeng, Huai (bib64) 2014; 8 Anderson, Smith (bib3) 2014; 83 Yao, Chen, Huang, Tan, Hu, Ren, Yang (bib63) 2018; 10 Keulegan, Carpenter (bib30) 1958; 2857 Mullarney, Henderson (bib44) 2010; 115 Koftis, Prinos, Stratigaki (bib32) 2013; 73 Cheng, Nguyen (bib16) 2011; 137 Wang, Yin, Liu (bib60) 2020; 146 Paul, Rupprecht, Möller, Bouma, Spencer, Kudella, Wolters, van Wesenbeeck, Jensen, Miranda-Lange, Schimmels (bib47) 2016; 117 Dalrymple, Kirby, Hwang (bib17) 1984; 110 Maza, Lara, Losada (bib39) 2019; 131 Ozeren, Wren, Wu (bib46) 2014; 140 Riffe, Henderson, Mullarney (bib48) 2011; 38 Chen, Ni, Li, Liu, Ou, Su, Peng, Hu, Uijttewaal, Suzuki (bib13) 2018; 122 Mattis, Kees, Wei, Dimakopoulos, Dawson (bib37) 2019; 145 Seo, Cheong (bib52) 1998; 124 Liu, Huai, Yang, Zeng (bib34) 2020; 140 He, Chen, Jiang (bib23) 2019; 152 Kothyari, Hayashi, Hashimoto (bib33) 2009; 47 Wu, Cox (bib62) 2015; 164 Chastel, Botten, Durand, Goutal (bib11) 2020 Losada, Maza, Lara (bib35) 2016; 107 Chatagnier (bib12) 2012 Busari, Li (bib8) 2015; 9 Feagin, Irish, Möller, Williams, Colón-Rivera, Mousavi (bib19) 2011; 58 Luhar, Nepf (bib36) 2016; 61 Augustin, Irish, Lynett (bib6) 2009; 56 Mendez, Losada (bib40) 2004; 51 Mendez, Losada, Losada (bib41) 1999; 104 Shi, Liang, Huai, Wang (bib53) 2019; 572 James, Goldbeck, Patini, Jordanova (bib29) 2008; 46 Huai, Shi, Yang, Zeng (bib26) 2018; 229 Möller, Kudella, Rupprecht, Spencer, Paul, van Wesenbeeck, Wolters, Jensen, Bouma, Miranda-Lange, Schimmels (bib42) 2014; 7 Augustin (bib5) 2007 Stratigaki, Manca, Prinos, Losada, Agustín (bib54) 2011; 49 Jacobsen, Bakker, Uijttewaal, Uittenbogaard (bib27) 2019; 880 Wu, Ozeren, Wren, Chen, Zhang, Holland, Ding, Kuiry, Zhang, Jadhav, Chatagnier, Chen, Gordji (bib61) 2011 French (bib21) 1993; 18 Aberle, Jarvela (bib1) 2013; 51 Maza, Lara, Losada (bib38) 2013; 80 Wang, Huai, Wang (bib59) 2017; 544 Cavallaro, Viviano, Paratore, Foti (bib10) 2018; 53 Aghababaei, Etemadshahidi, Jabbari, Taghipour (bib2) 2017; 31 Sánchez-González, Sánchez-Rojas, Memos (bib50) 2011; 49 Henry, Myrhaug, Aberle (bib24) 2015; 165 Suzuki, Hu, Kumada, Phan, Zijlema (bib55) 2019; 149 Camus, Mendez, Medina, Cofiño (bib9) 2011; 58 Kobayashi, Raichle, Asano (bib31) 1993; 119 Bouma, Van Belzen, Balke, Zhu, Airoldi, Blight, Davies, Galvan, Hawkins, Hoggart (bib7) 2014; 87 Nepf (bib45) 1999; 35 Goldstein, Coco, Murray (bib22) 2013; 71 Schmidt, Lipson (bib51) 2009; 324 Freeman, Rahmeyer, Copeland (bib20) 2000 Hu, Suzuki, Zitman, Uittewaal, Stive (bib25) 2014; 88 Zhang, Tang, Nepf (bib65) 2018; 54 Cheng (bib15) 2013; 139 Rupprecht, Möller, Evans, Spencer, Jensen (bib49) 2015; 100 Van Veelen, Fairchild, Reeve, Karunarathna (bib58) 2020 Tanino, Nepf (bib56) 2008; 134 Chen (10.1016/j.oceaneng.2021.108694_bib13) 2018; 122 Mullarney (10.1016/j.oceaneng.2021.108694_bib44) 2010; 115 Freeman (10.1016/j.oceaneng.2021.108694_bib20) 2000 He (10.1016/j.oceaneng.2021.108694_bib23) 2019; 152 Maza (10.1016/j.oceaneng.2021.108694_bib38) 2013; 80 Tanino (10.1016/j.oceaneng.2021.108694_bib56) 2008; 134 Busari (10.1016/j.oceaneng.2021.108694_bib8) 2015; 9 Koftis (10.1016/j.oceaneng.2021.108694_bib32) 2013; 73 Cheng (10.1016/j.oceaneng.2021.108694_bib15) 2013; 139 Ozeren (10.1016/j.oceaneng.2021.108694_bib46) 2014; 140 Wang (10.1016/j.oceaneng.2021.108694_bib59) 2017; 544 French (10.1016/j.oceaneng.2021.108694_bib21) 1993; 18 Aghababaei (10.1016/j.oceaneng.2021.108694_bib2) 2017; 31 Liu (10.1016/j.oceaneng.2021.108694_bib34) 2020; 140 Losada (10.1016/j.oceaneng.2021.108694_bib35) 2016; 107 Jadhav (10.1016/j.oceaneng.2021.108694_bib28) 2013; 77 Mendez (10.1016/j.oceaneng.2021.108694_bib41) 1999; 104 Seo (10.1016/j.oceaneng.2021.108694_bib52) 1998; 124 Stratigaki (10.1016/j.oceaneng.2021.108694_bib54) 2011; 49 Van Veelen (10.1016/j.oceaneng.2021.108694_bib58) 2020 Kobayashi (10.1016/j.oceaneng.2021.108694_bib31) 1993; 119 Shi (10.1016/j.oceaneng.2021.108694_bib53) 2019; 572 Kothyari (10.1016/j.oceaneng.2021.108694_bib33) 2009; 47 Dalrymple (10.1016/j.oceaneng.2021.108694_bib17) 1984; 110 Henry (10.1016/j.oceaneng.2021.108694_bib24) 2015; 165 Sánchez-González (10.1016/j.oceaneng.2021.108694_bib50) 2011; 49 Chastel (10.1016/j.oceaneng.2021.108694_bib11) 2020 Paul (10.1016/j.oceaneng.2021.108694_bib47) 2016; 117 Hu (10.1016/j.oceaneng.2021.108694_bib25) 2014; 88 Maza (10.1016/j.oceaneng.2021.108694_bib39) 2019; 131 Augustin (10.1016/j.oceaneng.2021.108694_bib6) 2009; 56 Riffe (10.1016/j.oceaneng.2021.108694_bib48) 2011; 38 Aberle (10.1016/j.oceaneng.2021.108694_bib1) 2013; 51 Bouma (10.1016/j.oceaneng.2021.108694_bib7) 2014; 87 Chatagnier (10.1016/j.oceaneng.2021.108694_bib12) 2012 Mattis (10.1016/j.oceaneng.2021.108694_bib37) 2019; 145 Möller (10.1016/j.oceaneng.2021.108694_bib42) 2014; 7 Suzuki (10.1016/j.oceaneng.2021.108694_bib55) 2019; 149 Luhar (10.1016/j.oceaneng.2021.108694_bib36) 2016; 61 Keulegan (10.1016/j.oceaneng.2021.108694_bib30) 1958; 2857 Morison (10.1016/j.oceaneng.2021.108694_bib43) 1950; 2 Anderson (10.1016/j.oceaneng.2021.108694_bib4) 2011 Wu (10.1016/j.oceaneng.2021.108694_bib61) 2011 Rupprecht (10.1016/j.oceaneng.2021.108694_bib49) 2015; 100 Wu (10.1016/j.oceaneng.2021.108694_bib62) 2015; 164 Tinoco (10.1016/j.oceaneng.2021.108694_bib57) 2015; 51 Yao (10.1016/j.oceaneng.2021.108694_bib63) 2018; 10 Goldstein (10.1016/j.oceaneng.2021.108694_bib22) 2013; 71 James (10.1016/j.oceaneng.2021.108694_bib29) 2008; 46 Mendez (10.1016/j.oceaneng.2021.108694_bib40) 2004; 51 Cavallaro (10.1016/j.oceaneng.2021.108694_bib10) 2018; 53 Dean (10.1016/j.oceaneng.2021.108694_bib18) 1991 Huai (10.1016/j.oceaneng.2021.108694_bib26) 2018; 229 Zhang (10.1016/j.oceaneng.2021.108694_bib65) 2018; 54 Anderson (10.1016/j.oceaneng.2021.108694_bib3) 2014; 83 Augustin (10.1016/j.oceaneng.2021.108694_bib5) 2007 Zeng (10.1016/j.oceaneng.2021.108694_bib64) 2014; 8 Feagin (10.1016/j.oceaneng.2021.108694_bib19) 2011; 58 Schmidt (10.1016/j.oceaneng.2021.108694_bib51) 2009; 324 Cheng (10.1016/j.oceaneng.2021.108694_bib16) 2011; 137 Nepf (10.1016/j.oceaneng.2021.108694_bib45) 1999; 35 Wang (10.1016/j.oceaneng.2021.108694_bib60) 2020; 146 Camus (10.1016/j.oceaneng.2021.108694_bib9) 2011; 58 Jacobsen (10.1016/j.oceaneng.2021.108694_bib27) 2019; 880 |
| References_xml | – volume: 71 start-page: 1 year: 2013 end-page: 15 ident: bib22 article-title: Prediction of wave ripple characteristics using genetic programming publication-title: Continent. Shelf Res. – volume: 140 year: 2014 ident: bib46 article-title: Experimental investigation of wave attenuation through model and live vegetation publication-title: J. Waterway Port Coast Ocean Eng. ASCE – volume: 7 start-page: 727 year: 2014 end-page: 731 ident: bib42 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. – volume: 122 start-page: 217 year: 2018 end-page: 227 ident: bib13 article-title: Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods publication-title: Adv. Water Resour. – year: 2011 ident: bib61 article-title: Phase I Report for SERRI Project No. 80037: Investigation of Surge and Wave Reduction by Vegetation – start-page: 34 year: 2020 end-page: 42 ident: bib11 article-title: Bulk drag coefficient of a subaquatic vegetation subjected to irregular waves: influence of Reynolds and Keulegan-carpenter numbers publication-title: La Houille Blanche – volume: 51 start-page: 1247 year: 2015 end-page: 1263 ident: bib57 article-title: A data-driven approach to develop physically sound predictors: application to depth-averaged velocities on flows through submerged arrays of rigid cylinders publication-title: Water Resour. Res. – volume: 38 year: 2011 ident: bib48 article-title: Wave dissipation by flexible vegetation publication-title: Geophys. Res. Lett. – volume: 31 start-page: 3809 year: 2017 end-page: 3827 ident: bib2 article-title: Estimation of transverse mixing coefficient in straight and meandering streams publication-title: Water Resour. Manag. – volume: 117 start-page: 70 year: 2016 end-page: 78 ident: bib47 article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics publication-title: Coast. Eng. – volume: 140 year: 2020 ident: bib34 article-title: A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows publication-title: Adv. Water Resour. – volume: 110 start-page: 67 year: 1984 end-page: 79 ident: bib17 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 2 start-page: 149 year: 1950 end-page: 154 ident: bib43 article-title: The force exerted by surface waves on piles publication-title: J. Petrol. Technol. – volume: 100 start-page: 48 year: 2015 end-page: 57 ident: bib49 article-title: Biophysical properties ofsalt marsh canopies—quantifying plant stem flexibility and above ground biomass publication-title: Coast. Eng. – volume: 83 start-page: 82 year: 2014 end-page: 92 ident: bib3 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. – volume: 46 start-page: 536 year: 2008 end-page: 542 ident: bib29 article-title: Influence of foliage on flow resistance of emergent vegetation publication-title: J. Hydraul. Res. – year: 2011 ident: bib4 article-title: Wave dissipation by vegetation publication-title: Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-I-82 – volume: 47 start-page: 691 year: 2009 end-page: 699 ident: bib33 article-title: Drag coefficient of unsubmerged rigid vegetation stems in open channel flows publication-title: J. Hydraul. Res. – volume: 572 start-page: 213 year: 2019 end-page: 225 ident: bib53 article-title: Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation publication-title: J. Hydrol. – volume: 137 start-page: 995 year: 2011 end-page: 1004 ident: bib16 article-title: Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows publication-title: J. Hydraul. Eng. – volume: 880 start-page: 1036 year: 2019 end-page: 1069 ident: bib27 article-title: Experimental investigation of the wave-induced motion of and force distribution along a flexible stem publication-title: J. Fluid Mech. – volume: 87 start-page: 147 year: 2014 end-page: 157 ident: bib7 article-title: Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take publication-title: Coast. Eng. – volume: 18 start-page: 63 year: 1993 end-page: 81 ident: bib21 article-title: Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K publication-title: Earth Surf. Process. Landforms – volume: 88 start-page: 131 year: 2014 end-page: 142 ident: bib25 article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow publication-title: Coast. Eng. – volume: 58 start-page: 251 year: 2011 end-page: 255 ident: bib19 article-title: Short communication: engineering properties of wetland plants with application to wave attenuation publication-title: Coast. Eng. – volume: 134 start-page: 34 year: 2008 end-page: 41 ident: bib56 article-title: Laboratory investigation of mean drag in a random array of rigid, emergent cylinders publication-title: J. Hydraul. Eng. – start-page: 64 year: 2012 ident: bib12 article-title: The Biomechanics of Salt Marsh Vegetation Applied to Wave and Surge Attenuation – volume: 51 start-page: 103 year: 2004 end-page: 118 ident: bib40 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. – volume: 77 start-page: 99 year: 2013 end-page: 107 ident: bib28 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. – volume: 107 start-page: 1 year: 2016 end-page: 13 ident: bib35 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. – volume: 165 start-page: 10 year: 2015 end-page: 24 ident: bib24 article-title: Drag forces on aquatic plants in nonlinear random waves plus current publication-title: Estuar. Coast Shelf Sci. – volume: 73 start-page: 71 year: 2013 end-page: 83 ident: bib32 article-title: Wave damping over artificial publication-title: Coast. Eng. – volume: 8 start-page: 2 year: 2014 end-page: 8 ident: bib64 article-title: Estimation of longitudinal dispersion coefficient in rivers publication-title: J. Hydro-Environ. Res. – volume: 51 start-page: 33 year: 2013 end-page: 45 ident: bib1 article-title: Flow resistance of emergent rigid and flexible floodplain vegetation publication-title: J. Hydraul. Res. – volume: 56 start-page: 332 year: 2009 end-page: 340 ident: bib6 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. – volume: 49 start-page: 503 year: 2011 end-page: 514 ident: bib50 article-title: Wave attenuation due to Posidonia oceanica meadows publication-title: J. Hydraul. Res. – volume: 229 year: 2018 ident: bib26 article-title: Estimating the transverse mixing coefficient in laboratory flumes and natural rivers publication-title: Water Air Soil Pollut. – volume: 124 start-page: 25 year: 1998 end-page: 32 ident: bib52 article-title: Predicting longitudinal dispersion coefficient in natural streams publication-title: J. Hydraul. Eng. – volume: 49 start-page: 31 year: 2011 end-page: 43 ident: bib54 article-title: Large-scale experiments on wave propagation over posidonia oceanica publication-title: J. Hydraul. Res. – volume: 152 start-page: 103509 year: 2019 ident: bib23 article-title: Surface wave attenuation by vegetation with the stem, root and canopy publication-title: Coast. Eng. – volume: 164 start-page: 443 year: 2015 end-page: 450 ident: bib62 article-title: Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation publication-title: Estuar. Coast Shelf Sci. – volume: 35 start-page: 479 year: 1999 end-page: 489 ident: bib45 article-title: Drag, turbulence, and diffusion in flow through emergent vegetation publication-title: Water Resour. Res. – volume: 104 start-page: 18383 year: 1999 end-page: 18396 ident: bib41 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res. – volume: 54 start-page: 1734 year: 2018 end-page: 1750 ident: bib65 article-title: Turbulent kinetic energy in submerged model canopies under oscillatory flow publication-title: Water Resour. Res. – start-page: 103648 year: 2020 ident: bib58 article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure publication-title: Coast. Eng. – volume: 58 start-page: 453 year: 2011 end-page: 462 ident: bib9 article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate publication-title: Coast. Eng. – volume: 53 start-page: 461 year: 2018 end-page: 474 ident: bib10 article-title: Experiments on surface waves interacting with flexible aquatic vegetation publication-title: Ocean Sci. J. – volume: 9 start-page: 268 year: 2015 end-page: 280 ident: bib8 article-title: A hydraulic roughness model for submerged flexible vegetation with uncertainty estimation publication-title: J. Hydro-Environ. Res. – volume: 544 start-page: 511 year: 2017 end-page: 523 ident: bib59 article-title: Physically sound formula for longitudinal dispersion coefficients of natural rivers publication-title: J. Hydrol. – volume: 80 start-page: 16 year: 2013 end-page: 34 ident: bib38 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations publication-title: Coast. Eng. – volume: 115 start-page: 1 year: 2010 end-page: 14 ident: bib44 article-title: Wave-forced motion of submerged single-stem vegetation publication-title: J. Geophys. Res. – volume: 131 year: 2019 ident: bib39 article-title: Experimental analysis of wave attenuation and drag forces in a realistic fringe publication-title: Adv. Water Resour. – volume: 119 start-page: 30 year: 1993 end-page: 48 ident: bib31 article-title: Wave attenuation by vegetation publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 145 year: 2019 ident: bib37 article-title: Computational model for wave attenuation by flexible vegetation publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 61 start-page: 20 year: 2016 end-page: 41 ident: bib36 article-title: Wave-induced dynamics of flexible blades publication-title: J. Fluid Struct. – year: 1991 ident: bib18 article-title: Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering – year: 2007 ident: bib5 article-title: Laboratory Experiments and Numerical Modeling of Wave Attenuation through Artificial Vegetation – volume: 10 year: 2018 ident: bib63 article-title: Applying a new force–velocity synchronizing algorithm to derive drag coefficients of rigid vegetation in oscillatory flows publication-title: Water – year: 2000 ident: bib20 article-title: Determination of Resistance Due to Shrubs and Woody Vegetation – volume: 149 start-page: 49 year: 2019 end-page: 64 ident: bib55 article-title: Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields publication-title: Coast. Eng. – volume: 146 start-page: 103755 year: 2020 ident: bib60 article-title: Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model publication-title: Adv. Water Resour. – volume: 139 start-page: 602 year: 2013 end-page: 611 ident: bib15 article-title: Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model publication-title: J. Hydraul. Eng. – volume: 2857 start-page: 423 year: 1958 end-page: 440 ident: bib30 article-title: Forces on cylinders and plates in an oscillating fluid publication-title: J. Res. Natl. Bur. Stand. Res. Pap. – volume: 324 start-page: 81 year: 2009 end-page: 85 ident: bib51 article-title: Distilling free-form natural laws from experimental data publication-title: Science – volume: 134 start-page: 34 issue: 1 year: 2008 ident: 10.1016/j.oceaneng.2021.108694_bib56 article-title: Laboratory investigation of mean drag in a random array of rigid, emergent cylinders publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2008)134:1(34) – start-page: 103648 year: 2020 ident: 10.1016/j.oceaneng.2021.108694_bib58 article-title: Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2020.103648 – volume: 10 issue: 7 year: 2018 ident: 10.1016/j.oceaneng.2021.108694_bib63 article-title: Applying a new force–velocity synchronizing algorithm to derive drag coefficients of rigid vegetation in oscillatory flows publication-title: Water doi: 10.3390/w10070906 – volume: 122 start-page: 217 year: 2018 ident: 10.1016/j.oceaneng.2021.108694_bib13 article-title: Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.10.008 – volume: 152 start-page: 103509 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib23 article-title: Surface wave attenuation by vegetation with the stem, root and canopy publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103509 – volume: 104 start-page: 18383 year: 1999 ident: 10.1016/j.oceaneng.2021.108694_bib41 article-title: Hydrodynamics induced by wind waves in a vegetation field publication-title: J. Geophys. Res. doi: 10.1029/1999JC900119 – volume: 100 start-page: 48 year: 2015 ident: 10.1016/j.oceaneng.2021.108694_bib49 article-title: Biophysical properties ofsalt marsh canopies—quantifying plant stem flexibility and above ground biomass publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.03.009 – volume: 131 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib39 article-title: Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.07.006 – volume: 51 start-page: 103 issue: 2 year: 2004 ident: 10.1016/j.oceaneng.2021.108694_bib40 article-title: An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2003.11.003 – volume: 49 start-page: 31 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib54 article-title: Large-scale experiments on wave propagation over posidonia oceanica publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2011.583388 – volume: 77 start-page: 99 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib28 article-title: Spectral distribution of wave energy dissipation by salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.02.013 – volume: 58 start-page: 453 issue: 6 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib9 article-title: Analysis of clustering and selection algorithms for the study of multivariate wave climate publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2011.02.003 – volume: 117 start-page: 70 year: 2016 ident: 10.1016/j.oceaneng.2021.108694_bib47 article-title: Plant stiffness and biomass as drivers for drag forces under extreme wave loading: a flume study on mimics publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2016.07.004 – year: 2000 ident: 10.1016/j.oceaneng.2021.108694_bib20 – volume: 119 start-page: 30 issue: 1 year: 1993 ident: 10.1016/j.oceaneng.2021.108694_bib31 article-title: Wave attenuation by vegetation publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1993)119:1(30) – volume: 2857 start-page: 423 year: 1958 ident: 10.1016/j.oceaneng.2021.108694_bib30 article-title: Forces on cylinders and plates in an oscillating fluid publication-title: J. Res. Natl. Bur. Stand. Res. Pap. doi: 10.6028/jres.060.043 – year: 1991 ident: 10.1016/j.oceaneng.2021.108694_bib18 – start-page: 64 year: 2012 ident: 10.1016/j.oceaneng.2021.108694_bib12 – volume: 8 start-page: 2 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib64 article-title: Estimation of longitudinal dispersion coefficient in rivers publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2013.02.005 – volume: 18 start-page: 63 issue: 1 year: 1993 ident: 10.1016/j.oceaneng.2021.108694_bib21 article-title: Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K publication-title: Earth Surf. Process. Landforms doi: 10.1002/esp.3290180105 – volume: 880 start-page: 1036 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib27 article-title: Experimental investigation of the wave-induced motion of and force distribution along a flexible stem publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.739 – year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib4 article-title: Wave dissipation by vegetation – volume: 165 start-page: 10 year: 2015 ident: 10.1016/j.oceaneng.2021.108694_bib24 article-title: Drag forces on aquatic plants in nonlinear random waves plus current publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2015.08.021 – year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib61 – start-page: 34 issue: 2 year: 2020 ident: 10.1016/j.oceaneng.2021.108694_bib11 article-title: Bulk drag coefficient of a subaquatic vegetation subjected to irregular waves: influence of Reynolds and Keulegan-carpenter numbers publication-title: La Houille Blanche doi: 10.1051/lhb/2020015 – volume: 137 start-page: 995 issue: 9 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib16 article-title: Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000377 – volume: 46 start-page: 536 issue: 4 year: 2008 ident: 10.1016/j.oceaneng.2021.108694_bib29 article-title: Influence of foliage on flow resistance of emergent vegetation publication-title: J. Hydraul. Res. doi: 10.3826/jhr.2008.3177 – volume: 124 start-page: 25 issue: 1 year: 1998 ident: 10.1016/j.oceaneng.2021.108694_bib52 article-title: Predicting longitudinal dispersion coefficient in natural streams publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1998)124:1(25) – volume: 73 start-page: 71 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib32 article-title: Wave damping over artificial Posidonia oceanica meadow: a large-scale experimental study publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2012.10.007 – volume: 146 start-page: 103755 year: 2020 ident: 10.1016/j.oceaneng.2021.108694_bib60 article-title: Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103755 – volume: 115 start-page: 1 year: 2010 ident: 10.1016/j.oceaneng.2021.108694_bib44 article-title: Wave-forced motion of submerged single-stem vegetation publication-title: J. Geophys. Res. – volume: 139 start-page: 602 issue: 6 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib15 article-title: Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000722 – volume: 2 start-page: 149 issue: 5 year: 1950 ident: 10.1016/j.oceaneng.2021.108694_bib43 article-title: The force exerted by surface waves on piles publication-title: J. Petrol. Technol. doi: 10.2118/950149-G – volume: 324 start-page: 81 issue: 5923 year: 2009 ident: 10.1016/j.oceaneng.2021.108694_bib51 article-title: Distilling free-form natural laws from experimental data publication-title: Science doi: 10.1126/science.1165893 – volume: 51 start-page: 1247 issue: 2 year: 2015 ident: 10.1016/j.oceaneng.2021.108694_bib57 article-title: A data-driven approach to develop physically sound predictors: application to depth-averaged velocities on flows through submerged arrays of rigid cylinders publication-title: Water Resour. Res. doi: 10.1002/2014WR016380 – volume: 140 year: 2020 ident: 10.1016/j.oceaneng.2021.108694_bib34 article-title: A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103582 – volume: 31 start-page: 3809 issue: 12 year: 2017 ident: 10.1016/j.oceaneng.2021.108694_bib2 article-title: Estimation of transverse mixing coefficient in straight and meandering streams publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1708-4 – volume: 149 start-page: 49 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib55 article-title: Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.03.011 – volume: 7 start-page: 727 issue: 10 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib42 article-title: Wave attenuation over coastal salt marshes under storm surge conditions publication-title: Nat. Geosci. doi: 10.1038/ngeo2251 – volume: 110 start-page: 67 issue: 1 year: 1984 ident: 10.1016/j.oceaneng.2021.108694_bib17 article-title: Wave diffraction due to areas of energy dissipation publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1984)110:1(67) – volume: 88 start-page: 131 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib25 article-title: Laboratory study on wave dissipation by vegetation in combined current–wave flow publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.02.009 – year: 2007 ident: 10.1016/j.oceaneng.2021.108694_bib5 – volume: 140 issue: 5 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib46 article-title: Experimental investigation of wave attenuation through model and live vegetation publication-title: J. Waterway Port Coast Ocean Eng. ASCE doi: 10.1061/(ASCE)WW.1943-5460.0000251 – volume: 9 start-page: 268 issue: 2 year: 2015 ident: 10.1016/j.oceaneng.2021.108694_bib8 article-title: A hydraulic roughness model for submerged flexible vegetation with uncertainty estimation publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2014.06.005 – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2021.108694_bib35 article-title: A new formulation for vegetation-induced damping under combined waves and currents publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2015.09.011 – volume: 544 start-page: 511 year: 2017 ident: 10.1016/j.oceaneng.2021.108694_bib59 article-title: Physically sound formula for longitudinal dispersion coefficients of natural rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.058 – volume: 83 start-page: 82 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib3 article-title: Wave attenuation by flexible, idealized salt marsh vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.10.004 – volume: 145 issue: 1 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib37 article-title: Computational model for wave attenuation by flexible vegetation publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000487 – volume: 49 start-page: 503 issue: 4 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib50 article-title: Wave attenuation due to Posidonia oceanica meadows publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2011.552464 – volume: 56 start-page: 332 issue: 3 year: 2009 ident: 10.1016/j.oceaneng.2021.108694_bib6 article-title: Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.09.004 – volume: 164 start-page: 443 year: 2015 ident: 10.1016/j.oceaneng.2021.108694_bib62 article-title: Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2015.08.009 – volume: 87 start-page: 147 year: 2014 ident: 10.1016/j.oceaneng.2021.108694_bib7 article-title: Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.11.014 – volume: 54 start-page: 1734 issue: 3 year: 2018 ident: 10.1016/j.oceaneng.2021.108694_bib65 article-title: Turbulent kinetic energy in submerged model canopies under oscillatory flow publication-title: Water Resour. Res. doi: 10.1002/2017WR021732 – volume: 58 start-page: 251 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib19 article-title: Short communication: engineering properties of wetland plants with application to wave attenuation publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2010.10.003 – volume: 53 start-page: 461 issue: 3 year: 2018 ident: 10.1016/j.oceaneng.2021.108694_bib10 article-title: Experiments on surface waves interacting with flexible aquatic vegetation publication-title: Ocean Sci. J. doi: 10.1007/s12601-018-0037-8 – volume: 35 start-page: 479 issue: 2 year: 1999 ident: 10.1016/j.oceaneng.2021.108694_bib45 article-title: Drag, turbulence, and diffusion in flow through emergent vegetation publication-title: Water Resour. Res. doi: 10.1029/1998WR900069 – volume: 572 start-page: 213 year: 2019 ident: 10.1016/j.oceaneng.2021.108694_bib53 article-title: Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.02.045 – volume: 61 start-page: 20 year: 2016 ident: 10.1016/j.oceaneng.2021.108694_bib36 article-title: Wave-induced dynamics of flexible blades publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2015.11.007 – volume: 47 start-page: 691 issue: 6 year: 2009 ident: 10.1016/j.oceaneng.2021.108694_bib33 article-title: Drag coefficient of unsubmerged rigid vegetation stems in open channel flows publication-title: J. Hydraul. Res. doi: 10.3826/jhr.2009.3283 – volume: 80 start-page: 16 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib38 article-title: A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2013.04.009 – volume: 38 year: 2011 ident: 10.1016/j.oceaneng.2021.108694_bib48 article-title: Wave dissipation by flexible vegetation publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL048773 – volume: 229 issue: 8 year: 2018 ident: 10.1016/j.oceaneng.2021.108694_bib26 article-title: Estimating the transverse mixing coefficient in laboratory flumes and natural rivers publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-018-3893-z – volume: 71 start-page: 1 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib22 article-title: Prediction of wave ripple characteristics using genetic programming publication-title: Continent. Shelf Res. doi: 10.1016/j.csr.2013.09.020 – volume: 51 start-page: 33 issue: 1 year: 2013 ident: 10.1016/j.oceaneng.2021.108694_bib1 article-title: Flow resistance of emergent rigid and flexible floodplain vegetation publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2012.754795 |
| SSID | ssj0006603 |
| Score | 2.4525528 |
| Snippet | The prediction of the bulk drag coefficient (CD) for aquatic vegetation is of great significance for evaluating the influence of vegetation on the hydrodynamic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108694 |
| SubjectTerms | Aquatic vegetation Bulk drag coefficient Genetic programming Predictor Wave flows |
| Title | Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2021.108694 |
| Volume | 223 |
| WOSCitedRecordID | wos000625304400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wGQEAwQ40t-4K3KaOzUiR8nNAQIjUkMqfASOY5dMrpkStOtfz4-fyQRTBoI8RJVVi9Wcr-cz-e73yH0SmudUVrKiFHFo0RpFgmqeZQxHUuzABeZtiSuH9Ojo2yx4Mf-oH1t2wmkdZ1tt_z8v6rajBllQ-nsX6i7v6kZML-N0s3VqN1c_0jxxy2cvXShDKrYrH5My1ZAaa2yfBH-9F8DFSbUTV2oZcg5rOrpJbQj0qvmcj2FFa6E0wQBjZah2jGkc53Z0sbVsmmr7vvZ2MH9JCG0rwaWwyFi76zKV1FvN72tcQwG39RSNH1qULWx_2u8rA9JkFFOlouThVqZITHJ1Q1wWA-dtVXO3GYpNVthR94e7DFxBci_2XYXZjjdb-BBzHPsw9S2U5Rrk_wLb_Znyy5v5iOxjbbRm2iHpHOeTdDOwfvDxYd-wWZsRkMmEAiMCsmvnu1qH2bkl5zcR_f8hgIfOCA8QDdUvYvujGgmd9FdqxTPTf4QtQNCsEEIBoRgQAgeIQQ3GgeE4AEhuKoxIARbhGCLEGyGBfYIwSOE4B4hj9CXt4cnb95FvvVGJGlMukiyhJdFEctYy1JKs8lPxZzzhIpSijKTTBCpmdZQ-i3mIiZKE8kLJoEtiAtFH6NJ3dTqCcJmS8yyUsyoAPJL4_ByPUtJJhKSpGpWzPbQPLzMXHpeemiPsspDAuJpHpSQgxJyp4Q99LqXO3fMLNdK8KCr3PuXzm_MDcSukX36D7LP0O3hK3mOJl27US_QLXnRVev2pUfjTwYfpt0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+bulk+drag+coefficient+of+flexible+vegetation+in+wave+flows+based+on+a+genetic+programming+algorithm&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yanxu&rft.au=Yin%2C+Zegao&rft.au=Liu%2C+Yong&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=223&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108694&rft.externalDocID=S0029801821001293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |