One-class learning for fake news detection through multimodal variational autoencoders
Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the la...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 122; s. 106088 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.06.2023
|
| Predmet: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the labeling of fake news, minimizing data labeling efforts. Although we eliminate the need to label non-interest news, the efficiency of OCL algorithms depends directly on the data representation model adopted. Most existing methods in the OCL literature explore representations based on one modality to detect fake news. However, different text features can be the reason for the news to be fake, such as topic or linguistic features. We model this behavior as different modalities for news to represent different textual feature sets. Thus, we present the MVAE-FakeNews, a multimodal method to represent the texts in the fake news detection through OCL that learns a new representation from the combination of promising modalities for news data: text embeddings, topic, and linguistic information. We used real-world fake news datasets in Portuguese and English in the experimental evaluation. Results show that MVAE-FakeNews obtained a better F1-Score and AUC-ROC, outperforming another fourteen methods in three datasets and getting competitive results on the other three. Moreover, our MVAE-FakeNews, with only 3% of labeled fake news, obtained comparable or higher results than other methods. To improve the experimental evaluation, we also propose the Multimodal LIME for OCL to identify how each modality is associated with the fake news class. |
|---|---|
| AbstractList | Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the labeling of fake news, minimizing data labeling efforts. Although we eliminate the need to label non-interest news, the efficiency of OCL algorithms depends directly on the data representation model adopted. Most existing methods in the OCL literature explore representations based on one modality to detect fake news. However, different text features can be the reason for the news to be fake, such as topic or linguistic features. We model this behavior as different modalities for news to represent different textual feature sets. Thus, we present the MVAE-FakeNews, a multimodal method to represent the texts in the fake news detection through OCL that learns a new representation from the combination of promising modalities for news data: text embeddings, topic, and linguistic information. We used real-world fake news datasets in Portuguese and English in the experimental evaluation. Results show that MVAE-FakeNews obtained a better F1-Score and AUC-ROC, outperforming another fourteen methods in three datasets and getting competitive results on the other three. Moreover, our MVAE-FakeNews, with only 3% of labeled fake news, obtained comparable or higher results than other methods. To improve the experimental evaluation, we also propose the Multimodal LIME for OCL to identify how each modality is associated with the fake news class. |
| ArticleNumber | 106088 |
| Author | Marcacini, Ricardo Marcondes de Souza, Mariana Caravanti Nogueira, Bruno Magalhães Rezende, Solange Oliveira Rossi, Rafael Geraldeli Gôlo, Marcos Paulo Silva |
| Author_xml | – sequence: 1 givenname: Marcos Paulo Silva orcidid: 0000-0002-9093-8195 surname: Gôlo fullname: Gôlo, Marcos Paulo Silva email: marcosgolo@usp.br organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil – sequence: 2 givenname: Mariana Caravanti orcidid: 0000-0002-1746-8414 surname: de Souza fullname: de Souza, Mariana Caravanti email: mariana.caravanti@usp.br organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil – sequence: 3 givenname: Rafael Geraldeli surname: Rossi fullname: Rossi, Rafael Geraldeli email: rafael.g.rossi@ufms.br organization: Federal University of Mato Grosso do Sul - Campus of Três Lagoas, Três Lagoas, Mato Grosso do Sul, 79613-000, Brazil – sequence: 4 givenname: Solange Oliveira surname: Rezende fullname: Rezende, Solange Oliveira email: solange@icmc.usp.br organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil – sequence: 5 givenname: Bruno Magalhães surname: Nogueira fullname: Nogueira, Bruno Magalhães email: bruno@facom.ufms.br organization: FACOM - Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil – sequence: 6 givenname: Ricardo Marcondes orcidid: 0000-0002-2309-3487 surname: Marcacini fullname: Marcacini, Ricardo Marcondes email: ricardo.marcacini@icmc.usp.br organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil |
| BookMark | eNqFkMtKAzEUhoNUsK2-guQFpiaTmVzAhVK8QaEbdRvSXNrUaVKStOLbO7W6cdPVOZzD98P_jcAgxGABuMZoghGmN-uJDUu13So_qVFN-iNFnJ-BIeaMVJRRMQBDJNq6woLRCzDKeY0QIryhQ_A-D7bSncoZdlal4MMSupigUx8WBvuZobHF6uJjgGWV4m65gptdV_wmGtXBvUpeHZ79rnYl2qCjsSlfgnOnumyvfucYvD0-vE6fq9n86WV6P6s0wXWpdGOYcqhhrBWE1IhQphRpa2MXC860aIhmCy4cb3VtNDOCU6da0WKjtcNOkzGgx1ydYs7JOrlNfqPSl8RIHuzItfyzIw925NFOD97-A7UvP01KUr47jd8dcduX23ubZNa-L2-NT70taaI_FfENYBWJ0A |
| CitedBy_id | crossref_primary_10_1007_s10479_024_06388_5 crossref_primary_10_1109_ACCESS_2025_3553909 crossref_primary_10_1016_j_asoc_2025_112965 crossref_primary_10_1016_j_rineng_2025_104752 crossref_primary_10_1109_ACCESS_2025_3546876 crossref_primary_10_1016_j_ins_2024_120300 crossref_primary_10_1007_s13369_024_09354_2 crossref_primary_10_1016_j_datak_2025_102441 |
| Cites_doi | 10.1162/neco_a_01273 10.1016/j.engappai.2022.104757 10.1016/j.eswa.2020.113199 10.1109/LSP.2020.3008087 10.1109/TNNLS.2020.2979670 10.1145/1961189.1961199 10.1002/asi.24359 10.1016/0377-0427(87)90125-7 10.1109/JPROC.2015.2459017 10.1016/j.engappai.2021.104230 10.1145/3381750 10.18653/v1/W16-0802 10.18653/v1/P17-2067 10.1016/j.knosys.2020.105754 10.1140/epjds/s13688-020-00224-z 10.1016/j.ins.2015.06.039 10.18653/v1/2021.eacl-main.56 10.1145/3331184.3331285 10.1007/s11042-020-10183-2 10.1002/asi.24480 10.1016/j.ipm.2019.03.004 10.1145/3472291 10.18653/v1/2021.insights-1.19 10.18653/v1/W19-4812 10.1016/j.eswa.2020.114171 10.1016/j.jnca.2021.103112 10.1016/j.ins.2019.05.035 10.1145/3284750 10.1145/3366423.3380054 10.1089/big.2020.0062 10.1145/2939672.2939778 10.1023/B:MACH.0000008084.60811.49 10.1016/j.eswa.2020.114372 10.1145/3470482.3479634 10.1109/TCSS.2019.2910599 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.106088 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2023_106088 S0952197623002725 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-c4d7af0477593320367aa352debb87c943c7b89f85c2dc7d986fa5951dccf1fc3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957020100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:39:53 EST 2025 Sat Nov 29 07:05:44 EST 2025 Fri Feb 23 02:35:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fake news classification Multimodal representation learning One-class fake news classification Multimodal variational autoencoder One-class classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-c4d7af0477593320367aa352debb87c943c7b89f85c2dc7d986fa5951dccf1fc3 |
| ORCID | 0000-0002-9093-8195 0000-0002-2309-3487 0000-0002-1746-8414 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2023_106088 crossref_citationtrail_10_1016_j_engappai_2023_106088 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106088 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Giachanou, Rosso, Crestani (b27) 2021; 72 Wang, W.Y., 2017. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 422–426. Monteiro, Santos, Pardo, De Almeida, Ruiz, Vale (b43) 2018 Wu, J., Mooney, R., 2019. Faithful Multimodal Explanation for Visual Question Answering. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. pp. 103–112. Devlin, Chang, Lee, Toutanova (b18) 2019 Zhang, Giachanou, Rosso (b76) 2022 Camisani-Calzolari (b8) 2018 Giachanou, A., Rosso, P., Crestani, F., 2019. Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 877–880. Gôlo, M., Caravanti, M., Rossi, R., Rezende, S., Nogueira, B., Marcacini, R., 2021. Learning Textual Representations from Multiple Modalities to Detect Fake News Through One-Class Learning. In: Proceedings of the Brazilian Symposium on Multimedia and the Web. pp. 197–204. Ahmed, Traore, Saad (b1) 2017 Kumari, Ashok, Ghosal, Ekbal (b38) 2021 Martín, Fernández-Isabel, González-Fernández, Lancho, Cuesta, de Diego (b40) 2021; 101 Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp. 1135–1144. Fernández, García, Galar, Prati, Krawczyk, Herrera (b22) 2018 Liu, Li, Xu, Natarajan (b39) 2018 Kaliyar, Goswami, Narang (b32) 2021; 80 Deepak, Chakraborty, Long (b16) 2021 Peng, Qi (b46) 2019; 15 Silva, Santos, Almeida, Pardo (b61) 2020; 146 Otter, Medina, Kalita (b45) 2020; 32 Singh, Ghosh, Sonagara (b62) 2021; 72 Zhang, Ghorbani (b75) 2020; 57 Chang, Lin (b10) 2011; 2 Alam, Sonbhadra, Agarwal, Nagabhushan (b2) 2020; 196 Katsaggelos, Bahaadini, Molina (b33) 2015; 103 Reimers, Gurevych (b50) 2020 Shu, Mahudeswaran, Wang, Lee, Liu (b60) 2020; 8 Tax (b65) 2001 Felhi, G., Le Roux, J., Seddah, D., 2021. Challenging the Semi-Supervised VAE Framework for Text Classification. In: Proceedings of the 2021 Second Workshop on Insights from Negative Results in NLP. pp. 136–143. Reis, Correia, Murai, Veloso, Benevenuto (b51) 2019 Zeng, Cui (b74) 2022; 110 Pennebaker, Boyd, Jordan, Blackburn (b47) 2015 Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S., 2016. Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection. pp. 7–17. Meel, Vishwakarma (b41) 2019; 153 Deng, Liu (b17) 2018 Kirchknopf, Slijepčević, Zeppelzauer (b36) 2021 Zhao, Zhao, Sano, Levy, Takayasu, Takayasu, Li, Wu, Havlin (b78) 2020; 9 Choudhary, Arora (b12) 2021; 169 Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Conference on Advances in Neural Information Processing Systems. pp. 3111–3119. de Oliveira, Medeiros, Mattos (b14) 2020; 27 Sadiq, Wagner, Shyu, Feaster (b57) 2019 Tax, Duin (b66) 2004; 54 Rousseeuw (b54) 1987; 20 Trittenbach, Englhardt, Böhm (b68) 2021; 168 Barnabé-Lortie, Bellinger, Japkowicz (b3) 2015 Ghanem, Rosso, Rangel (b25) 2020; 20 Sharma, Qian, Jiang, Ruchansky, Zhang, Liu (b59) 2019; 10 Cheng, M., Nazarian, S., Bogdan, P., 2020. Vroc: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proceedings of the Web Conference 2020. pp. 2892–2898. Van der Maaten, Hinton (b69) 2008; 9 Nicolau, McDermott (b44) 2018; 49 Dor, L.E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., Slonim, N., 2020. Active learning for BERT: An empirical study. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. EMNLP, pp. 7949–7962. Khattar, Goud, Gupta, Varma (b35) 2019 Xu, Durrett (b73) 2018 Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b52) 2021; 54 Bhatt, Goenka, Kalra, Sharma (b5) 2021 Sahan, Smidl, Marik (b58) 2021 Blikstein (b6) 2013 Cao, Nicolau, McDermott (b9) 2016 Rashkin, Choi, Jang, Volkova, Choi (b49) 2017 Gôlo, Marcacini, Rossi (b29) 2019 Wang, Cai, Lin, Guo (b71) 2019; 6 Tan, Steinbach, Kumar (b63) 2013 Khan, Michalas, Akhunzada (b34) 2021 Hassan, Gomaa, Khoriba, Haggag (b31) 2020 Pérez-Rosas, Kleinberg, Lefevre, Mihalcea (b48) 2017 De Amorim, Hennig (b13) 2015; 324 Bondielli, Marcelloni (b7) 2019; 497 Ghanem, B., Ponzetto, S.P., Rosso, P., Rangel, F., 2021. FakeFlow: Fake News Detection by Modeling the Flow of Affective Information. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. pp. 679–689. Gao, Li, Chen, Zhang (b23) 2020; 32 Faustini, Covões (b20) 2019 Kocak, Miller, Kesidis (b37) 2014 Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Müller, Kloft (b56) 2018 Greifeneder, Jaffe, Newman, Schwarz (b30) 2021 Tanwar, Sharma (b64) 2020 Zhao, Sawlani, Srinivasan, Akoglu (b77) 2022 Trawinski, Smetek, Telec, Lasota (b67) 2012; 22 Bekker, Davis (b4) 2020; 1 de Souza, Nogueira, Rossi, Marcacini, Dos Santos, Rezende (b15) 2021 Nicolau (10.1016/j.engappai.2023.106088_b44) 2018; 49 10.1016/j.engappai.2023.106088_b21 Khattar (10.1016/j.engappai.2023.106088_b35) 2019 Bondielli (10.1016/j.engappai.2023.106088_b7) 2019; 497 10.1016/j.engappai.2023.106088_b26 10.1016/j.engappai.2023.106088_b28 Blikstein (10.1016/j.engappai.2023.106088_b6) 2013 Rousseeuw (10.1016/j.engappai.2023.106088_b54) 1987; 20 10.1016/j.engappai.2023.106088_b24 Martín (10.1016/j.engappai.2023.106088_b40) 2021; 101 Kirchknopf (10.1016/j.engappai.2023.106088_b36) 2021 Zhang (10.1016/j.engappai.2023.106088_b76) 2022 Gôlo (10.1016/j.engappai.2023.106088_b29) 2019 Pérez-Rosas (10.1016/j.engappai.2023.106088_b48) 2017 Trittenbach (10.1016/j.engappai.2023.106088_b68) 2021; 168 Meel (10.1016/j.engappai.2023.106088_b41) 2019; 153 Liu (10.1016/j.engappai.2023.106088_b39) 2018 De Amorim (10.1016/j.engappai.2023.106088_b13) 2015; 324 Greifeneder (10.1016/j.engappai.2023.106088_b30) 2021 Bhatt (10.1016/j.engappai.2023.106088_b5) 2021 Zeng (10.1016/j.engappai.2023.106088_b74) 2022; 110 Xu (10.1016/j.engappai.2023.106088_b73) 2018 Cao (10.1016/j.engappai.2023.106088_b9) 2016 10.1016/j.engappai.2023.106088_b53 Ruff (10.1016/j.engappai.2023.106088_b56) 2018 Deepak (10.1016/j.engappai.2023.106088_b16) 2021 Peng (10.1016/j.engappai.2023.106088_b46) 2019; 15 10.1016/j.engappai.2023.106088_b11 Ren (10.1016/j.engappai.2023.106088_b52) 2021; 54 10.1016/j.engappai.2023.106088_b55 Shu (10.1016/j.engappai.2023.106088_b60) 2020; 8 Barnabé-Lortie (10.1016/j.engappai.2023.106088_b3) 2015 Wang (10.1016/j.engappai.2023.106088_b71) 2019; 6 Rashkin (10.1016/j.engappai.2023.106088_b49) 2017 Zhao (10.1016/j.engappai.2023.106088_b78) 2020; 9 10.1016/j.engappai.2023.106088_b19 Ghanem (10.1016/j.engappai.2023.106088_b25) 2020; 20 Katsaggelos (10.1016/j.engappai.2023.106088_b33) 2015; 103 Pennebaker (10.1016/j.engappai.2023.106088_b47) 2015 Camisani-Calzolari (10.1016/j.engappai.2023.106088_b8) 2018 Tanwar (10.1016/j.engappai.2023.106088_b64) 2020 Kaliyar (10.1016/j.engappai.2023.106088_b32) 2021; 80 10.1016/j.engappai.2023.106088_b42 Monteiro (10.1016/j.engappai.2023.106088_b43) 2018 Devlin (10.1016/j.engappai.2023.106088_b18) 2019 Zhang (10.1016/j.engappai.2023.106088_b75) 2020; 57 Ahmed (10.1016/j.engappai.2023.106088_b1) 2017 de Souza (10.1016/j.engappai.2023.106088_b15) 2021 Gao (10.1016/j.engappai.2023.106088_b23) 2020; 32 Tan (10.1016/j.engappai.2023.106088_b63) 2013 Kumari (10.1016/j.engappai.2023.106088_b38) 2021 Khan (10.1016/j.engappai.2023.106088_b34) 2021 Sadiq (10.1016/j.engappai.2023.106088_b57) 2019 Tax (10.1016/j.engappai.2023.106088_b65) 2001 Giachanou (10.1016/j.engappai.2023.106088_b27) 2021; 72 Reis (10.1016/j.engappai.2023.106088_b51) 2019 Tax (10.1016/j.engappai.2023.106088_b66) 2004; 54 Chang (10.1016/j.engappai.2023.106088_b10) 2011; 2 Zhao (10.1016/j.engappai.2023.106088_b77) 2022 Faustini (10.1016/j.engappai.2023.106088_b20) 2019 Fernández (10.1016/j.engappai.2023.106088_b22) 2018 Silva (10.1016/j.engappai.2023.106088_b61) 2020; 146 10.1016/j.engappai.2023.106088_b70 10.1016/j.engappai.2023.106088_b72 de Oliveira (10.1016/j.engappai.2023.106088_b14) 2020; 27 Singh (10.1016/j.engappai.2023.106088_b62) 2021; 72 Sharma (10.1016/j.engappai.2023.106088_b59) 2019; 10 Hassan (10.1016/j.engappai.2023.106088_b31) 2020 Bekker (10.1016/j.engappai.2023.106088_b4) 2020; 1 Deng (10.1016/j.engappai.2023.106088_b17) 2018 Reimers (10.1016/j.engappai.2023.106088_b50) 2020 Choudhary (10.1016/j.engappai.2023.106088_b12) 2021; 169 Kocak (10.1016/j.engappai.2023.106088_b37) 2014 Trawinski (10.1016/j.engappai.2023.106088_b67) 2012; 22 Otter (10.1016/j.engappai.2023.106088_b45) 2020; 32 Sahan (10.1016/j.engappai.2023.106088_b58) 2021 Alam (10.1016/j.engappai.2023.106088_b2) 2020; 196 Van der Maaten (10.1016/j.engappai.2023.106088_b69) 2008; 9 |
| References_xml | – year: 2013 ident: b63 article-title: Introduction to Data Mining: Pearson New International Edition – start-page: 1 year: 2018 end-page: 15 ident: b39 article-title: Learn to combine modalities in multimodal deep learning, 1 – reference: Ghanem, B., Ponzetto, S.P., Rosso, P., Rangel, F., 2021. FakeFlow: Fake News Detection by Modeling the Flow of Affective Information. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. pp. 679–689. – year: 2017 ident: b48 article-title: Automatic detection of fake news – start-page: 1344 year: 2020 end-page: 1348 ident: b64 article-title: Multi-model fake news detection based on concatenation of visual latent features publication-title: 2020 International Conference on Communication and Signal Processing – volume: 101 year: 2021 ident: b40 article-title: Suspicious news detection through semantic and sentiment measures publication-title: Eng. Appl. Artif. Intell. – start-page: 592 year: 2019 end-page: 597 ident: b20 article-title: Fake news detection using one-class classification publication-title: BRACIS 2019: Proceedings of the Brazilian Conference on Intelligent Systems – reference: Wu, J., Mooney, R., 2019. Faithful Multimodal Explanation for Visual Question Answering. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. pp. 103–112. – reference: Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Conference on Advances in Neural Information Processing Systems. pp. 3111–3119. – year: 2018 ident: b8 article-title: The fake news bible: A guide to fake news. How do they start? Who originates fake news? How do they become viral? Answers to questions on a new phenomenon that is changing our lives – volume: 10 start-page: 1 year: 2019 end-page: 42 ident: b59 article-title: Combating fake news: A survey on identification and mitigation techniques publication-title: TIST 2019: ACM Trans. Intell. Syst. Technol. – volume: 6 start-page: 504 year: 2019 end-page: 517 ident: b71 article-title: An overview of unsupervised deep feature representation for text categorization publication-title: IEEE Trans. Comput. Soc. Syst. – start-page: 87 year: 2021 end-page: 94 ident: b58 article-title: Active learning for text classification and fake news detection publication-title: 2021 International Symposium on Computer Science and Intelligent Controls – volume: 32 start-page: 604 year: 2020 end-page: 624 ident: b45 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b54 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – year: 2021 ident: b34 article-title: Fake news outbreak 2021: Can we stop the viral spread? publication-title: J. Netw. Comput. Appl. – start-page: 4171 year: 2019 end-page: 4186 ident: b18 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: NAACL 2019: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) – volume: 1 start-page: 1 year: 2020 end-page: 45 ident: b4 article-title: Learning from positive and unlabeled data: A survey publication-title: Mach. Learn. – start-page: 1 year: 2021 end-page: 8 ident: b38 article-title: A multitask learning approach for fake news detection: Novelty, emotion, and sentiment lend a helping hand publication-title: 2021 International Joint Conference on Neural Networks – start-page: 2931 year: 2017 end-page: 2937 ident: b49 article-title: Truth of varying shades: Analyzing language in fake news and political fact-checking publication-title: EMNLP 2017: Proceedings of the Conference on Empirical Methods in Natural Language Processing – reference: Dor, L.E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., Slonim, N., 2020. Active learning for BERT: An empirical study. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. EMNLP, pp. 7949–7962. – start-page: 17 year: 2019 end-page: 26 ident: b51 article-title: Explainable machine learning for fake news detection publication-title: WebSci 2019: Proceedings of the 10th ACM Conference on Web Science – start-page: 390 year: 2015 end-page: 395 ident: b3 article-title: Active learning for one-class classification publication-title: 2015 IEEE 14th International Conference on Machine Learning and Applications – volume: 324 start-page: 126 year: 2015 end-page: 145 ident: b13 article-title: Recovering the number of clusters in data sets with noise features using feature rescaling factors publication-title: Inform. Sci. – volume: 153 start-page: 1 year: 2019 end-page: 26 ident: b41 article-title: Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities publication-title: Expert Syst. Appl. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b69 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 7 year: 2020 ident: b78 article-title: Fake news propagates differently from real news even at early stages of spreading publication-title: EPJ Data Sci. – reference: Giachanou, A., Rosso, P., Crestani, F., 2019. Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 877–880. – start-page: 2915 year: 2019 end-page: 2921 ident: b35 article-title: Mvae: Multimodal variational autoencoder for fake news detection publication-title: WWW 19: The World Wide Web Conference – start-page: 4503 year: 2018 end-page: 4513 ident: b73 article-title: Spherical latent spaces for stable variational autoencoders publication-title: EMNLP 2018: Proceedings of the Conference on Empirical Methods in Natural Language Processing – start-page: 717 year: 2016 end-page: 726 ident: b9 article-title: A hybrid autoencoder and density estimation model for anomaly detection publication-title: International Conference on Parallel Problem Solving from Nature – year: 2001 ident: b65 article-title: One-Class Classification: Concept Learning in the Absence of Counter-Examples – reference: Gôlo, M., Caravanti, M., Rossi, R., Rezende, S., Nogueira, B., Marcacini, R., 2021. Learning Textual Representations from Multiple Modalities to Detect Fake News Through One-Class Learning. In: Proceedings of the Brazilian Symposium on Multimedia and the Web. pp. 197–204. – volume: 80 start-page: 11765 year: 2021 end-page: 11788 ident: b32 article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach publication-title: Multimedia Tools Appl. – start-page: 1 year: 2021 end-page: 44 ident: b15 article-title: A network-based positive and unlabeled learning approach for fake news detection publication-title: Mach. Learn. – year: 2022 ident: b76 article-title: SceneFND: Multimodal fake news detection by modelling scene context information publication-title: J. Inf. Sci. – volume: 20 start-page: 1 year: 2020 end-page: 18 ident: b25 article-title: An emotional analysis of false information in social media and news articles publication-title: ACM Trans. Internet Technol. (TOIT) – volume: 72 start-page: 3 year: 2021 end-page: 17 ident: b62 article-title: Detecting fake news stories via multimodal analysis publication-title: J. Assoc. Inform. Sci. Technol. – start-page: 1 year: 2021 end-page: 4 ident: b36 article-title: Multimodal detection of information disorder from social media publication-title: 2021 International Conference on Content-Based Multimedia Indexing – year: 2015 ident: b47 article-title: The Development and Psychometric Properties of LIWC2015 – year: 2018 ident: b22 article-title: Learning from Imbalanced Data Sets, Vol. 11 – volume: 49 start-page: 3074 year: 2018 end-page: 3087 ident: b44 article-title: Learning neural representations for network anomaly detection publication-title: IEEE Trans. Cybern. – reference: Felhi, G., Le Roux, J., Seddah, D., 2021. Challenging the Semi-Supervised VAE Framework for Text Classification. In: Proceedings of the 2021 Second Workshop on Insights from Negative Results in NLP. pp. 136–143. – reference: Wang, W.Y., 2017. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 422–426. – start-page: 262 year: 2019 end-page: 273 ident: b29 article-title: An extensive empirical evaluation of preprocessing techniques and supervised one class learning algorithms for text classification publication-title: Proceeding of the National Meeting on Artificial and Computational Intelligence – volume: 27 start-page: 1250 year: 2020 end-page: 1254 ident: b14 article-title: A sensitive stylistic approach to identify fake news on social networking publication-title: IEEE Signal Process. Lett. – year: 2020 ident: b31 article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques publication-title: Int. J. Intell. Eng. Syst. – volume: 22 start-page: 867 year: 2012 end-page: 881 ident: b67 article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms publication-title: Appl. Math. Comput. Sci. – start-page: 324 year: 2018 end-page: 334 ident: b43 article-title: Contributions to the study of fake news in Portuguese: New corpus and automatic detection results publication-title: International Conference on Computational Processing of the Portuguese Language – volume: 497 start-page: 38 year: 2019 end-page: 55 ident: b7 article-title: A survey on fake news and rumour detection techniques publication-title: Inform. Sci. – reference: Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S., 2016. Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection. pp. 7–17. – start-page: 102 year: 2013 end-page: 106 ident: b6 article-title: Multimodal learning analytics publication-title: LAK 2013: Proceedings of the International Conference on Learning Analytics and Knowledge – volume: 103 start-page: 1635 year: 2015 end-page: 1653 ident: b33 article-title: Audiovisual fusion: Challenges and new approaches publication-title: IEEE – start-page: 113 year: 2021 end-page: 128 ident: b5 article-title: Fake news detection: Experiments and approaches beyond linguistic features publication-title: Data Management, Analytics and Innovation – year: 2021 ident: b30 article-title: The Psychology of Fake News: Accepting, Sharing, and Correcting Misinformation – volume: 15 start-page: 1 year: 2019 end-page: 24 ident: b46 article-title: CM-GANs: Cross-modal generative adversarial networks for common representation learning publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) – volume: 146 start-page: 1 year: 2020 end-page: 14 ident: b61 article-title: Towards automatically filtering fake news in Portuguese publication-title: Expert Syst. Appl. – volume: 168 year: 2021 ident: b68 article-title: An overview and a benchmark of active learning for outlier detection with one-class classifiers publication-title: Expert Syst. Appl. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: b10 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp. 1135–1144. – volume: 8 start-page: 171 year: 2020 end-page: 188 ident: b60 article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media publication-title: Big Data – start-page: 437 year: 2019 end-page: 442 ident: b57 article-title: High dimensional latent space variational autoencoders for fake news detection publication-title: 2019 IEEE Conference on Multimedia Information Processing and Retrieval – volume: 110 year: 2022 ident: b74 article-title: SimCLRT: A simple framework for contrastive learning of rumor tracking publication-title: Eng. Appl. Artif. Intell. – reference: Cheng, M., Nazarian, S., Bogdan, P., 2020. Vroc: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proceedings of the Web Conference 2020. pp. 2892–2898. – start-page: 4512 year: 2020 ident: b50 article-title: Making monolingual sentence embeddings multilingual using knowledge distillation publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing – volume: 54 start-page: 1 year: 2021 end-page: 40 ident: b52 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. – volume: 32 start-page: 829 year: 2020 end-page: 864 ident: b23 article-title: A survey on deep learning for multimodal data fusion publication-title: Neural Comput. – start-page: 1 year: 2014 end-page: 6 ident: b37 article-title: Detecting anomalous latent classes in a batch of network traffic flows publication-title: 2014 48th Annual Conference on Information Sciences and Systems – volume: 57 start-page: 1 year: 2020 end-page: 26 ident: b75 article-title: An overview of online fake news: Characterization, detection, and discussion publication-title: Inf. Process. Manage. – start-page: 127 year: 2017 end-page: 138 ident: b1 article-title: Detection of online fake news using N-gram analysis and machine learning techniques publication-title: ISDDC 2017: International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments – volume: 169 start-page: 1 year: 2021 end-page: 15 ident: b12 article-title: Linguistic feature based learning model for fake news detection and classification publication-title: Expert Syst. Appl. – volume: 72 start-page: 1117 year: 2021 end-page: 1132 ident: b27 article-title: The impact of emotional signals on credibility assessment publication-title: J. Assoc. Inform. Sci. Technol. – volume: 54 start-page: 45 year: 2004 end-page: 66 ident: b66 article-title: Support vector data description publication-title: Mach. Learn. – volume: 196 start-page: 1 year: 2020 end-page: 19 ident: b2 article-title: One-class support vector classifiers: A survey publication-title: Knowl.-Based Syst. – year: 2021 ident: b16 article-title: Data Science for Fake News: Surveys and Perspectives, Vol. 42 – start-page: 4393 year: 2018 end-page: 4402 ident: b56 article-title: Deep one-class classification publication-title: ICMLT 2018: Proceedings of the International Conference on Machine Learning – year: 2018 ident: b17 article-title: Deep Learning in Natural Language Processing – year: 2022 ident: b77 article-title: Graph anomaly detection with unsupervised GNNs – volume: 32 start-page: 829 issue: 5 year: 2020 ident: 10.1016/j.engappai.2023.106088_b23 article-title: A survey on deep learning for multimodal data fusion publication-title: Neural Comput. doi: 10.1162/neco_a_01273 – volume: 22 start-page: 867 issue: 4 year: 2012 ident: 10.1016/j.engappai.2023.106088_b67 article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms publication-title: Appl. Math. Comput. Sci. – year: 2021 ident: 10.1016/j.engappai.2023.106088_b30 – volume: 110 year: 2022 ident: 10.1016/j.engappai.2023.106088_b74 article-title: SimCLRT: A simple framework for contrastive learning of rumor tracking publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104757 – start-page: 4171 year: 2019 ident: 10.1016/j.engappai.2023.106088_b18 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – year: 2001 ident: 10.1016/j.engappai.2023.106088_b65 – volume: 146 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2023.106088_b61 article-title: Towards automatically filtering fake news in Portuguese publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113199 – start-page: 390 year: 2015 ident: 10.1016/j.engappai.2023.106088_b3 article-title: Active learning for one-class classification – year: 2015 ident: 10.1016/j.engappai.2023.106088_b47 – volume: 27 start-page: 1250 year: 2020 ident: 10.1016/j.engappai.2023.106088_b14 article-title: A sensitive stylistic approach to identify fake news on social networking publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.3008087 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.engappai.2023.106088_b69 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 604 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106088_b45 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2979670 – start-page: 4503 year: 2018 ident: 10.1016/j.engappai.2023.106088_b73 article-title: Spherical latent spaces for stable variational autoencoders – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.engappai.2023.106088_b10 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – start-page: 324 year: 2018 ident: 10.1016/j.engappai.2023.106088_b43 article-title: Contributions to the study of fake news in Portuguese: New corpus and automatic detection results – volume: 72 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.106088_b62 article-title: Detecting fake news stories via multimodal analysis publication-title: J. Assoc. Inform. Sci. Technol. doi: 10.1002/asi.24359 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.engappai.2023.106088_b54 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 103 start-page: 1635 issue: 9 year: 2015 ident: 10.1016/j.engappai.2023.106088_b33 article-title: Audiovisual fusion: Challenges and new approaches publication-title: IEEE doi: 10.1109/JPROC.2015.2459017 – start-page: 17 year: 2019 ident: 10.1016/j.engappai.2023.106088_b51 article-title: Explainable machine learning for fake news detection – start-page: 592 year: 2019 ident: 10.1016/j.engappai.2023.106088_b20 article-title: Fake news detection using one-class classification – volume: 101 year: 2021 ident: 10.1016/j.engappai.2023.106088_b40 article-title: Suspicious news detection through semantic and sentiment measures publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104230 – volume: 1 start-page: 1 issue: Apr year: 2020 ident: 10.1016/j.engappai.2023.106088_b4 article-title: Learning from positive and unlabeled data: A survey publication-title: Mach. Learn. – year: 2018 ident: 10.1016/j.engappai.2023.106088_b8 – volume: 20 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106088_b25 article-title: An emotional analysis of false information in social media and news articles publication-title: ACM Trans. Internet Technol. (TOIT) doi: 10.1145/3381750 – ident: 10.1016/j.engappai.2023.106088_b42 – ident: 10.1016/j.engappai.2023.106088_b55 doi: 10.18653/v1/W16-0802 – year: 2018 ident: 10.1016/j.engappai.2023.106088_b22 – ident: 10.1016/j.engappai.2023.106088_b70 doi: 10.18653/v1/P17-2067 – volume: 196 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2023.106088_b2 article-title: One-class support vector classifiers: A survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105754 – volume: 9 start-page: 7 issue: 1 year: 2020 ident: 10.1016/j.engappai.2023.106088_b78 article-title: Fake news propagates differently from real news even at early stages of spreading publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-020-00224-z – volume: 324 start-page: 126 year: 2015 ident: 10.1016/j.engappai.2023.106088_b13 article-title: Recovering the number of clusters in data sets with noise features using feature rescaling factors publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.06.039 – ident: 10.1016/j.engappai.2023.106088_b24 doi: 10.18653/v1/2021.eacl-main.56 – ident: 10.1016/j.engappai.2023.106088_b26 doi: 10.1145/3331184.3331285 – volume: 80 start-page: 11765 issue: 8 year: 2021 ident: 10.1016/j.engappai.2023.106088_b32 article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-10183-2 – start-page: 717 year: 2016 ident: 10.1016/j.engappai.2023.106088_b9 article-title: A hybrid autoencoder and density estimation model for anomaly detection – start-page: 2915 year: 2019 ident: 10.1016/j.engappai.2023.106088_b35 article-title: Mvae: Multimodal variational autoencoder for fake news detection – start-page: 1 year: 2018 ident: 10.1016/j.engappai.2023.106088_b39 – start-page: 262 year: 2019 ident: 10.1016/j.engappai.2023.106088_b29 article-title: An extensive empirical evaluation of preprocessing techniques and supervised one class learning algorithms for text classification – volume: 72 start-page: 1117 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.106088_b27 article-title: The impact of emotional signals on credibility assessment publication-title: J. Assoc. Inform. Sci. Technol. doi: 10.1002/asi.24480 – start-page: 4393 year: 2018 ident: 10.1016/j.engappai.2023.106088_b56 article-title: Deep one-class classification – volume: 57 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106088_b75 article-title: An overview of online fake news: Characterization, detection, and discussion publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.03.004 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.106088_b52 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. doi: 10.1145/3472291 – year: 2022 ident: 10.1016/j.engappai.2023.106088_b77 – start-page: 127 year: 2017 ident: 10.1016/j.engappai.2023.106088_b1 article-title: Detection of online fake news using N-gram analysis and machine learning techniques – ident: 10.1016/j.engappai.2023.106088_b21 doi: 10.18653/v1/2021.insights-1.19 – ident: 10.1016/j.engappai.2023.106088_b72 doi: 10.18653/v1/W19-4812 – volume: 169 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106088_b12 article-title: Linguistic feature based learning model for fake news detection and classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114171 – year: 2021 ident: 10.1016/j.engappai.2023.106088_b34 article-title: Fake news outbreak 2021: Can we stop the viral spread? publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103112 – year: 2020 ident: 10.1016/j.engappai.2023.106088_b31 article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques publication-title: Int. J. Intell. Eng. Syst. – start-page: 437 year: 2019 ident: 10.1016/j.engappai.2023.106088_b57 article-title: High dimensional latent space variational autoencoders for fake news detection – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106088_b36 article-title: Multimodal detection of information disorder from social media – start-page: 113 year: 2021 ident: 10.1016/j.engappai.2023.106088_b5 article-title: Fake news detection: Experiments and approaches beyond linguistic features – volume: 497 start-page: 38 year: 2019 ident: 10.1016/j.engappai.2023.106088_b7 article-title: A survey on fake news and rumour detection techniques publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.05.035 – volume: 15 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.engappai.2023.106088_b46 article-title: CM-GANs: Cross-modal generative adversarial networks for common representation learning publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) doi: 10.1145/3284750 – ident: 10.1016/j.engappai.2023.106088_b19 – volume: 49 start-page: 3074 issue: 8 year: 2018 ident: 10.1016/j.engappai.2023.106088_b44 article-title: Learning neural representations for network anomaly detection publication-title: IEEE Trans. Cybern. – year: 2018 ident: 10.1016/j.engappai.2023.106088_b17 – ident: 10.1016/j.engappai.2023.106088_b11 doi: 10.1145/3366423.3380054 – volume: 8 start-page: 171 issue: 3 year: 2020 ident: 10.1016/j.engappai.2023.106088_b60 article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media publication-title: Big Data doi: 10.1089/big.2020.0062 – ident: 10.1016/j.engappai.2023.106088_b53 doi: 10.1145/2939672.2939778 – volume: 54 start-page: 45 issue: 1 year: 2004 ident: 10.1016/j.engappai.2023.106088_b66 article-title: Support vector data description publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000008084.60811.49 – year: 2017 ident: 10.1016/j.engappai.2023.106088_b48 – volume: 153 start-page: 1 year: 2019 ident: 10.1016/j.engappai.2023.106088_b41 article-title: Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities publication-title: Expert Syst. Appl. – start-page: 2931 year: 2017 ident: 10.1016/j.engappai.2023.106088_b49 article-title: Truth of varying shades: Analyzing language in fake news and political fact-checking – start-page: 102 year: 2013 ident: 10.1016/j.engappai.2023.106088_b6 article-title: Multimodal learning analytics – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106088_b15 article-title: A network-based positive and unlabeled learning approach for fake news detection publication-title: Mach. Learn. – year: 2021 ident: 10.1016/j.engappai.2023.106088_b16 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106088_b38 article-title: A multitask learning approach for fake news detection: Novelty, emotion, and sentiment lend a helping hand – start-page: 4512 year: 2020 ident: 10.1016/j.engappai.2023.106088_b50 article-title: Making monolingual sentence embeddings multilingual using knowledge distillation – start-page: 1 year: 2014 ident: 10.1016/j.engappai.2023.106088_b37 article-title: Detecting anomalous latent classes in a batch of network traffic flows – year: 2013 ident: 10.1016/j.engappai.2023.106088_b63 – volume: 168 year: 2021 ident: 10.1016/j.engappai.2023.106088_b68 article-title: An overview and a benchmark of active learning for outlier detection with one-class classifiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114372 – volume: 10 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.106088_b59 article-title: Combating fake news: A survey on identification and mitigation techniques publication-title: TIST 2019: ACM Trans. Intell. Syst. Technol. – start-page: 1344 year: 2020 ident: 10.1016/j.engappai.2023.106088_b64 article-title: Multi-model fake news detection based on concatenation of visual latent features – start-page: 87 year: 2021 ident: 10.1016/j.engappai.2023.106088_b58 article-title: Active learning for text classification and fake news detection – ident: 10.1016/j.engappai.2023.106088_b28 doi: 10.1145/3470482.3479634 – volume: 6 start-page: 504 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.106088_b71 article-title: An overview of unsupervised deep feature representation for text categorization publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2910599 – year: 2022 ident: 10.1016/j.engappai.2023.106088_b76 article-title: SceneFND: Multimodal fake news detection by modelling scene context information publication-title: J. Inf. Sci. |
| SSID | ssj0003846 |
| Score | 2.4665747 |
| Snippet | Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106088 |
| SubjectTerms | Fake news classification Multimodal representation learning Multimodal variational autoencoder One-class classification One-class fake news classification |
| Title | One-class learning for fake news detection through multimodal variational autoencoders |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106088 |
| Volume | 122 |
| WOSCitedRecordID | wos000957020100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3oi2gHzgFmXZjfOwjwWVl0SL1IL2Fjm2U6WEpNrNrqr-Q_4V4_iRABWlBy7RyoqdrOeLPTP-Zgahl9rkUnEqQqZtkxgMgrBIOQUss2xWUBmRRPbFJrLDQ7pYsM-TyQ8XC7Ops6ahFxfs_L-KGtpA2Dp09gbi9oNCA_wGocMVxA7XfxL8UaNCoXViVxHCMCVL_k319cMDqTplCoS7Ij09q_B7K0FcG7CdnX-Qr7tW57mUliXvPfhDDsNgfADecwqWPfmoLwUyyvbpaT76YP51bM57PsHMt6uenNgGx1W98VuEVMFxu77k9i6AMNfUFA5qf1cNZ0TwPfcQ4SVXdfCud6-perhBXWoHf-_gbbVjVgVHNazu1ZKPnR0RGUhZ3msZhXNmSsb4BdxENtslGGzcmakU-MfuYBwVZ1PVnMLs8GqqHzEdOvyajvu3bdKTFx0v7ix34-R6nNyMcwttR1nCYI_Y3v9wsPjo1QJCTdSY-wejcPWr3-hqTWmk_ZzcR3et2YL3DdweoIlqHqJ71oTBdoNYQZOrEuLaHqGvHpDYARIDILEGJNaAxB6Q2AISD4DEI0DiMSAfoy9vD07evA9tNY9QkHnUhSKWGS9ncQazQ4g-_844B_VfqqKgmWAxEVlBWUkTEUmRSUbTkidgAEghynkpyBO01bSNeoowaPklJSKdMVrGiRKUFCqFhQVMl3lJYrqDEjdzubCp7nXFlTr_u-x20Cvf79wke7m2B3OCya3KalTRHDB3Td_dGz9tD90ZPopnaKtbrtVzdFtsumq1fGEB9xMENMDQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-class+learning+for+fake+news+detection+through+multimodal+variational+autoencoders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=G%C3%B4lo%2C+Marcos+Paulo+Silva&rft.au=de+Souza%2C+Mariana+Caravanti&rft.au=Rossi%2C+Rafael+Geraldeli&rft.au=Rezende%2C+Solange+Oliveira&rft.date=2023-06-01&rft.issn=0952-1976&rft.volume=122&rft.spage=106088&rft_id=info:doi/10.1016%2Fj.engappai.2023.106088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |