One-class learning for fake news detection through multimodal variational autoencoders

Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the la...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 122; s. 106088
Hlavní autori: Gôlo, Marcos Paulo Silva, de Souza, Mariana Caravanti, Rossi, Rafael Geraldeli, Rezende, Solange Oliveira, Nogueira, Bruno Magalhães, Marcacini, Ricardo Marcondes
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2023
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the labeling of fake news, minimizing data labeling efforts. Although we eliminate the need to label non-interest news, the efficiency of OCL algorithms depends directly on the data representation model adopted. Most existing methods in the OCL literature explore representations based on one modality to detect fake news. However, different text features can be the reason for the news to be fake, such as topic or linguistic features. We model this behavior as different modalities for news to represent different textual feature sets. Thus, we present the MVAE-FakeNews, a multimodal method to represent the texts in the fake news detection through OCL that learns a new representation from the combination of promising modalities for news data: text embeddings, topic, and linguistic information. We used real-world fake news datasets in Portuguese and English in the experimental evaluation. Results show that MVAE-FakeNews obtained a better F1-Score and AUC-ROC, outperforming another fourteen methods in three datasets and getting competitive results on the other three. Moreover, our MVAE-FakeNews, with only 3% of labeled fake news, obtained comparable or higher results than other methods. To improve the experimental evaluation, we also propose the Multimodal LIME for OCL to identify how each modality is associated with the fake news class.
AbstractList Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news set is still a very costly process. On the other hand, one of the prominent approaches is One-Class Learning (OCL). OCL requires only the labeling of fake news, minimizing data labeling efforts. Although we eliminate the need to label non-interest news, the efficiency of OCL algorithms depends directly on the data representation model adopted. Most existing methods in the OCL literature explore representations based on one modality to detect fake news. However, different text features can be the reason for the news to be fake, such as topic or linguistic features. We model this behavior as different modalities for news to represent different textual feature sets. Thus, we present the MVAE-FakeNews, a multimodal method to represent the texts in the fake news detection through OCL that learns a new representation from the combination of promising modalities for news data: text embeddings, topic, and linguistic information. We used real-world fake news datasets in Portuguese and English in the experimental evaluation. Results show that MVAE-FakeNews obtained a better F1-Score and AUC-ROC, outperforming another fourteen methods in three datasets and getting competitive results on the other three. Moreover, our MVAE-FakeNews, with only 3% of labeled fake news, obtained comparable or higher results than other methods. To improve the experimental evaluation, we also propose the Multimodal LIME for OCL to identify how each modality is associated with the fake news class.
ArticleNumber 106088
Author Marcacini, Ricardo Marcondes
de Souza, Mariana Caravanti
Nogueira, Bruno Magalhães
Rezende, Solange Oliveira
Rossi, Rafael Geraldeli
Gôlo, Marcos Paulo Silva
Author_xml – sequence: 1
  givenname: Marcos Paulo Silva
  orcidid: 0000-0002-9093-8195
  surname: Gôlo
  fullname: Gôlo, Marcos Paulo Silva
  email: marcosgolo@usp.br
  organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil
– sequence: 2
  givenname: Mariana Caravanti
  orcidid: 0000-0002-1746-8414
  surname: de Souza
  fullname: de Souza, Mariana Caravanti
  email: mariana.caravanti@usp.br
  organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil
– sequence: 3
  givenname: Rafael Geraldeli
  surname: Rossi
  fullname: Rossi, Rafael Geraldeli
  email: rafael.g.rossi@ufms.br
  organization: Federal University of Mato Grosso do Sul - Campus of Três Lagoas, Três Lagoas, Mato Grosso do Sul, 79613-000, Brazil
– sequence: 4
  givenname: Solange Oliveira
  surname: Rezende
  fullname: Rezende, Solange Oliveira
  email: solange@icmc.usp.br
  organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil
– sequence: 5
  givenname: Bruno Magalhães
  surname: Nogueira
  fullname: Nogueira, Bruno Magalhães
  email: bruno@facom.ufms.br
  organization: FACOM - Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
– sequence: 6
  givenname: Ricardo Marcondes
  orcidid: 0000-0002-2309-3487
  surname: Marcacini
  fullname: Marcacini, Ricardo Marcondes
  email: ricardo.marcacini@icmc.usp.br
  organization: Institute of Mathematics and Computer Sciences - University of São Paulo (USP), PO Box 668, São Carlos, São Paulo, 13.560-970, Brazil
BookMark eNqFkMtKAzEUhoNUsK2-guQFpiaTmVzAhVK8QaEbdRvSXNrUaVKStOLbO7W6cdPVOZzD98P_jcAgxGABuMZoghGmN-uJDUu13So_qVFN-iNFnJ-BIeaMVJRRMQBDJNq6woLRCzDKeY0QIryhQ_A-D7bSncoZdlal4MMSupigUx8WBvuZobHF6uJjgGWV4m65gptdV_wmGtXBvUpeHZ79rnYl2qCjsSlfgnOnumyvfucYvD0-vE6fq9n86WV6P6s0wXWpdGOYcqhhrBWE1IhQphRpa2MXC860aIhmCy4cb3VtNDOCU6da0WKjtcNOkzGgx1ydYs7JOrlNfqPSl8RIHuzItfyzIw925NFOD97-A7UvP01KUr47jd8dcduX23ubZNa-L2-NT70taaI_FfENYBWJ0A
CitedBy_id crossref_primary_10_1007_s10479_024_06388_5
crossref_primary_10_1109_ACCESS_2025_3553909
crossref_primary_10_1016_j_asoc_2025_112965
crossref_primary_10_1016_j_rineng_2025_104752
crossref_primary_10_1109_ACCESS_2025_3546876
crossref_primary_10_1016_j_ins_2024_120300
crossref_primary_10_1007_s13369_024_09354_2
crossref_primary_10_1016_j_datak_2025_102441
Cites_doi 10.1162/neco_a_01273
10.1016/j.engappai.2022.104757
10.1016/j.eswa.2020.113199
10.1109/LSP.2020.3008087
10.1109/TNNLS.2020.2979670
10.1145/1961189.1961199
10.1002/asi.24359
10.1016/0377-0427(87)90125-7
10.1109/JPROC.2015.2459017
10.1016/j.engappai.2021.104230
10.1145/3381750
10.18653/v1/W16-0802
10.18653/v1/P17-2067
10.1016/j.knosys.2020.105754
10.1140/epjds/s13688-020-00224-z
10.1016/j.ins.2015.06.039
10.18653/v1/2021.eacl-main.56
10.1145/3331184.3331285
10.1007/s11042-020-10183-2
10.1002/asi.24480
10.1016/j.ipm.2019.03.004
10.1145/3472291
10.18653/v1/2021.insights-1.19
10.18653/v1/W19-4812
10.1016/j.eswa.2020.114171
10.1016/j.jnca.2021.103112
10.1016/j.ins.2019.05.035
10.1145/3284750
10.1145/3366423.3380054
10.1089/big.2020.0062
10.1145/2939672.2939778
10.1023/B:MACH.0000008084.60811.49
10.1016/j.eswa.2020.114372
10.1145/3470482.3479634
10.1109/TCSS.2019.2910599
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.106088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_106088
S0952197623002725
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-c4d7af0477593320367aa352debb87c943c7b89f85c2dc7d986fa5951dccf1fc3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957020100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:39:53 EST 2025
Sat Nov 29 07:05:44 EST 2025
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fake news classification
Multimodal representation learning
One-class fake news classification
Multimodal variational autoencoder
One-class classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-c4d7af0477593320367aa352debb87c943c7b89f85c2dc7d986fa5951dccf1fc3
ORCID 0000-0002-9093-8195
0000-0002-2309-3487
0000-0002-1746-8414
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_106088
crossref_citationtrail_10_1016_j_engappai_2023_106088
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106088
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Giachanou, Rosso, Crestani (b27) 2021; 72
Wang, W.Y., 2017. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 422–426.
Monteiro, Santos, Pardo, De Almeida, Ruiz, Vale (b43) 2018
Wu, J., Mooney, R., 2019. Faithful Multimodal Explanation for Visual Question Answering. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. pp. 103–112.
Devlin, Chang, Lee, Toutanova (b18) 2019
Zhang, Giachanou, Rosso (b76) 2022
Camisani-Calzolari (b8) 2018
Giachanou, A., Rosso, P., Crestani, F., 2019. Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 877–880.
Gôlo, M., Caravanti, M., Rossi, R., Rezende, S., Nogueira, B., Marcacini, R., 2021. Learning Textual Representations from Multiple Modalities to Detect Fake News Through One-Class Learning. In: Proceedings of the Brazilian Symposium on Multimedia and the Web. pp. 197–204.
Ahmed, Traore, Saad (b1) 2017
Kumari, Ashok, Ghosal, Ekbal (b38) 2021
Martín, Fernández-Isabel, González-Fernández, Lancho, Cuesta, de Diego (b40) 2021; 101
Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp. 1135–1144.
Fernández, García, Galar, Prati, Krawczyk, Herrera (b22) 2018
Liu, Li, Xu, Natarajan (b39) 2018
Kaliyar, Goswami, Narang (b32) 2021; 80
Deepak, Chakraborty, Long (b16) 2021
Peng, Qi (b46) 2019; 15
Silva, Santos, Almeida, Pardo (b61) 2020; 146
Otter, Medina, Kalita (b45) 2020; 32
Singh, Ghosh, Sonagara (b62) 2021; 72
Zhang, Ghorbani (b75) 2020; 57
Chang, Lin (b10) 2011; 2
Alam, Sonbhadra, Agarwal, Nagabhushan (b2) 2020; 196
Katsaggelos, Bahaadini, Molina (b33) 2015; 103
Reimers, Gurevych (b50) 2020
Shu, Mahudeswaran, Wang, Lee, Liu (b60) 2020; 8
Tax (b65) 2001
Felhi, G., Le Roux, J., Seddah, D., 2021. Challenging the Semi-Supervised VAE Framework for Text Classification. In: Proceedings of the 2021 Second Workshop on Insights from Negative Results in NLP. pp. 136–143.
Reis, Correia, Murai, Veloso, Benevenuto (b51) 2019
Zeng, Cui (b74) 2022; 110
Pennebaker, Boyd, Jordan, Blackburn (b47) 2015
Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S., 2016. Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection. pp. 7–17.
Meel, Vishwakarma (b41) 2019; 153
Deng, Liu (b17) 2018
Kirchknopf, Slijepčević, Zeppelzauer (b36) 2021
Zhao, Zhao, Sano, Levy, Takayasu, Takayasu, Li, Wu, Havlin (b78) 2020; 9
Choudhary, Arora (b12) 2021; 169
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Conference on Advances in Neural Information Processing Systems. pp. 3111–3119.
de Oliveira, Medeiros, Mattos (b14) 2020; 27
Sadiq, Wagner, Shyu, Feaster (b57) 2019
Tax, Duin (b66) 2004; 54
Rousseeuw (b54) 1987; 20
Trittenbach, Englhardt, Böhm (b68) 2021; 168
Barnabé-Lortie, Bellinger, Japkowicz (b3) 2015
Ghanem, Rosso, Rangel (b25) 2020; 20
Sharma, Qian, Jiang, Ruchansky, Zhang, Liu (b59) 2019; 10
Cheng, M., Nazarian, S., Bogdan, P., 2020. Vroc: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proceedings of the Web Conference 2020. pp. 2892–2898.
Van der Maaten, Hinton (b69) 2008; 9
Nicolau, McDermott (b44) 2018; 49
Dor, L.E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., Slonim, N., 2020. Active learning for BERT: An empirical study. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. EMNLP, pp. 7949–7962.
Khattar, Goud, Gupta, Varma (b35) 2019
Xu, Durrett (b73) 2018
Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b52) 2021; 54
Bhatt, Goenka, Kalra, Sharma (b5) 2021
Sahan, Smidl, Marik (b58) 2021
Blikstein (b6) 2013
Cao, Nicolau, McDermott (b9) 2016
Rashkin, Choi, Jang, Volkova, Choi (b49) 2017
Gôlo, Marcacini, Rossi (b29) 2019
Wang, Cai, Lin, Guo (b71) 2019; 6
Tan, Steinbach, Kumar (b63) 2013
Khan, Michalas, Akhunzada (b34) 2021
Hassan, Gomaa, Khoriba, Haggag (b31) 2020
Pérez-Rosas, Kleinberg, Lefevre, Mihalcea (b48) 2017
De Amorim, Hennig (b13) 2015; 324
Bondielli, Marcelloni (b7) 2019; 497
Ghanem, B., Ponzetto, S.P., Rosso, P., Rangel, F., 2021. FakeFlow: Fake News Detection by Modeling the Flow of Affective Information. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. pp. 679–689.
Gao, Li, Chen, Zhang (b23) 2020; 32
Faustini, Covões (b20) 2019
Kocak, Miller, Kesidis (b37) 2014
Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Müller, Kloft (b56) 2018
Greifeneder, Jaffe, Newman, Schwarz (b30) 2021
Tanwar, Sharma (b64) 2020
Zhao, Sawlani, Srinivasan, Akoglu (b77) 2022
Trawinski, Smetek, Telec, Lasota (b67) 2012; 22
Bekker, Davis (b4) 2020; 1
de Souza, Nogueira, Rossi, Marcacini, Dos Santos, Rezende (b15) 2021
Nicolau (10.1016/j.engappai.2023.106088_b44) 2018; 49
10.1016/j.engappai.2023.106088_b21
Khattar (10.1016/j.engappai.2023.106088_b35) 2019
Bondielli (10.1016/j.engappai.2023.106088_b7) 2019; 497
10.1016/j.engappai.2023.106088_b26
10.1016/j.engappai.2023.106088_b28
Blikstein (10.1016/j.engappai.2023.106088_b6) 2013
Rousseeuw (10.1016/j.engappai.2023.106088_b54) 1987; 20
10.1016/j.engappai.2023.106088_b24
Martín (10.1016/j.engappai.2023.106088_b40) 2021; 101
Kirchknopf (10.1016/j.engappai.2023.106088_b36) 2021
Zhang (10.1016/j.engappai.2023.106088_b76) 2022
Gôlo (10.1016/j.engappai.2023.106088_b29) 2019
Pérez-Rosas (10.1016/j.engappai.2023.106088_b48) 2017
Trittenbach (10.1016/j.engappai.2023.106088_b68) 2021; 168
Meel (10.1016/j.engappai.2023.106088_b41) 2019; 153
Liu (10.1016/j.engappai.2023.106088_b39) 2018
De Amorim (10.1016/j.engappai.2023.106088_b13) 2015; 324
Greifeneder (10.1016/j.engappai.2023.106088_b30) 2021
Bhatt (10.1016/j.engappai.2023.106088_b5) 2021
Zeng (10.1016/j.engappai.2023.106088_b74) 2022; 110
Xu (10.1016/j.engappai.2023.106088_b73) 2018
Cao (10.1016/j.engappai.2023.106088_b9) 2016
10.1016/j.engappai.2023.106088_b53
Ruff (10.1016/j.engappai.2023.106088_b56) 2018
Deepak (10.1016/j.engappai.2023.106088_b16) 2021
Peng (10.1016/j.engappai.2023.106088_b46) 2019; 15
10.1016/j.engappai.2023.106088_b11
Ren (10.1016/j.engappai.2023.106088_b52) 2021; 54
10.1016/j.engappai.2023.106088_b55
Shu (10.1016/j.engappai.2023.106088_b60) 2020; 8
Barnabé-Lortie (10.1016/j.engappai.2023.106088_b3) 2015
Wang (10.1016/j.engappai.2023.106088_b71) 2019; 6
Rashkin (10.1016/j.engappai.2023.106088_b49) 2017
Zhao (10.1016/j.engappai.2023.106088_b78) 2020; 9
10.1016/j.engappai.2023.106088_b19
Ghanem (10.1016/j.engappai.2023.106088_b25) 2020; 20
Katsaggelos (10.1016/j.engappai.2023.106088_b33) 2015; 103
Pennebaker (10.1016/j.engappai.2023.106088_b47) 2015
Camisani-Calzolari (10.1016/j.engappai.2023.106088_b8) 2018
Tanwar (10.1016/j.engappai.2023.106088_b64) 2020
Kaliyar (10.1016/j.engappai.2023.106088_b32) 2021; 80
10.1016/j.engappai.2023.106088_b42
Monteiro (10.1016/j.engappai.2023.106088_b43) 2018
Devlin (10.1016/j.engappai.2023.106088_b18) 2019
Zhang (10.1016/j.engappai.2023.106088_b75) 2020; 57
Ahmed (10.1016/j.engappai.2023.106088_b1) 2017
de Souza (10.1016/j.engappai.2023.106088_b15) 2021
Gao (10.1016/j.engappai.2023.106088_b23) 2020; 32
Tan (10.1016/j.engappai.2023.106088_b63) 2013
Kumari (10.1016/j.engappai.2023.106088_b38) 2021
Khan (10.1016/j.engappai.2023.106088_b34) 2021
Sadiq (10.1016/j.engappai.2023.106088_b57) 2019
Tax (10.1016/j.engappai.2023.106088_b65) 2001
Giachanou (10.1016/j.engappai.2023.106088_b27) 2021; 72
Reis (10.1016/j.engappai.2023.106088_b51) 2019
Tax (10.1016/j.engappai.2023.106088_b66) 2004; 54
Chang (10.1016/j.engappai.2023.106088_b10) 2011; 2
Zhao (10.1016/j.engappai.2023.106088_b77) 2022
Faustini (10.1016/j.engappai.2023.106088_b20) 2019
Fernández (10.1016/j.engappai.2023.106088_b22) 2018
Silva (10.1016/j.engappai.2023.106088_b61) 2020; 146
10.1016/j.engappai.2023.106088_b70
10.1016/j.engappai.2023.106088_b72
de Oliveira (10.1016/j.engappai.2023.106088_b14) 2020; 27
Singh (10.1016/j.engappai.2023.106088_b62) 2021; 72
Sharma (10.1016/j.engappai.2023.106088_b59) 2019; 10
Hassan (10.1016/j.engappai.2023.106088_b31) 2020
Bekker (10.1016/j.engappai.2023.106088_b4) 2020; 1
Deng (10.1016/j.engappai.2023.106088_b17) 2018
Reimers (10.1016/j.engappai.2023.106088_b50) 2020
Choudhary (10.1016/j.engappai.2023.106088_b12) 2021; 169
Kocak (10.1016/j.engappai.2023.106088_b37) 2014
Trawinski (10.1016/j.engappai.2023.106088_b67) 2012; 22
Otter (10.1016/j.engappai.2023.106088_b45) 2020; 32
Sahan (10.1016/j.engappai.2023.106088_b58) 2021
Alam (10.1016/j.engappai.2023.106088_b2) 2020; 196
Van der Maaten (10.1016/j.engappai.2023.106088_b69) 2008; 9
References_xml – year: 2013
  ident: b63
  article-title: Introduction to Data Mining: Pearson New International Edition
– start-page: 1
  year: 2018
  end-page: 15
  ident: b39
  article-title: Learn to combine modalities in multimodal deep learning, 1
– reference: Ghanem, B., Ponzetto, S.P., Rosso, P., Rangel, F., 2021. FakeFlow: Fake News Detection by Modeling the Flow of Affective Information. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. pp. 679–689.
– year: 2017
  ident: b48
  article-title: Automatic detection of fake news
– start-page: 1344
  year: 2020
  end-page: 1348
  ident: b64
  article-title: Multi-model fake news detection based on concatenation of visual latent features
  publication-title: 2020 International Conference on Communication and Signal Processing
– volume: 101
  year: 2021
  ident: b40
  article-title: Suspicious news detection through semantic and sentiment measures
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 592
  year: 2019
  end-page: 597
  ident: b20
  article-title: Fake news detection using one-class classification
  publication-title: BRACIS 2019: Proceedings of the Brazilian Conference on Intelligent Systems
– reference: Wu, J., Mooney, R., 2019. Faithful Multimodal Explanation for Visual Question Answering. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. pp. 103–112.
– reference: Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Conference on Advances in Neural Information Processing Systems. pp. 3111–3119.
– year: 2018
  ident: b8
  article-title: The fake news bible: A guide to fake news. How do they start? Who originates fake news? How do they become viral? Answers to questions on a new phenomenon that is changing our lives
– volume: 10
  start-page: 1
  year: 2019
  end-page: 42
  ident: b59
  article-title: Combating fake news: A survey on identification and mitigation techniques
  publication-title: TIST 2019: ACM Trans. Intell. Syst. Technol.
– volume: 6
  start-page: 504
  year: 2019
  end-page: 517
  ident: b71
  article-title: An overview of unsupervised deep feature representation for text categorization
  publication-title: IEEE Trans. Comput. Soc. Syst.
– start-page: 87
  year: 2021
  end-page: 94
  ident: b58
  article-title: Active learning for text classification and fake news detection
  publication-title: 2021 International Symposium on Computer Science and Intelligent Controls
– volume: 32
  start-page: 604
  year: 2020
  end-page: 624
  ident: b45
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b54
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– year: 2021
  ident: b34
  article-title: Fake news outbreak 2021: Can we stop the viral spread?
  publication-title: J. Netw. Comput. Appl.
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: b18
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: NAACL 2019: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
– volume: 1
  start-page: 1
  year: 2020
  end-page: 45
  ident: b4
  article-title: Learning from positive and unlabeled data: A survey
  publication-title: Mach. Learn.
– start-page: 1
  year: 2021
  end-page: 8
  ident: b38
  article-title: A multitask learning approach for fake news detection: Novelty, emotion, and sentiment lend a helping hand
  publication-title: 2021 International Joint Conference on Neural Networks
– start-page: 2931
  year: 2017
  end-page: 2937
  ident: b49
  article-title: Truth of varying shades: Analyzing language in fake news and political fact-checking
  publication-title: EMNLP 2017: Proceedings of the Conference on Empirical Methods in Natural Language Processing
– reference: Dor, L.E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., Slonim, N., 2020. Active learning for BERT: An empirical study. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. EMNLP, pp. 7949–7962.
– start-page: 17
  year: 2019
  end-page: 26
  ident: b51
  article-title: Explainable machine learning for fake news detection
  publication-title: WebSci 2019: Proceedings of the 10th ACM Conference on Web Science
– start-page: 390
  year: 2015
  end-page: 395
  ident: b3
  article-title: Active learning for one-class classification
  publication-title: 2015 IEEE 14th International Conference on Machine Learning and Applications
– volume: 324
  start-page: 126
  year: 2015
  end-page: 145
  ident: b13
  article-title: Recovering the number of clusters in data sets with noise features using feature rescaling factors
  publication-title: Inform. Sci.
– volume: 153
  start-page: 1
  year: 2019
  end-page: 26
  ident: b41
  article-title: Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b69
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 7
  year: 2020
  ident: b78
  article-title: Fake news propagates differently from real news even at early stages of spreading
  publication-title: EPJ Data Sci.
– reference: Giachanou, A., Rosso, P., Crestani, F., 2019. Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 877–880.
– start-page: 2915
  year: 2019
  end-page: 2921
  ident: b35
  article-title: Mvae: Multimodal variational autoencoder for fake news detection
  publication-title: WWW 19: The World Wide Web Conference
– start-page: 4503
  year: 2018
  end-page: 4513
  ident: b73
  article-title: Spherical latent spaces for stable variational autoencoders
  publication-title: EMNLP 2018: Proceedings of the Conference on Empirical Methods in Natural Language Processing
– start-page: 717
  year: 2016
  end-page: 726
  ident: b9
  article-title: A hybrid autoencoder and density estimation model for anomaly detection
  publication-title: International Conference on Parallel Problem Solving from Nature
– year: 2001
  ident: b65
  article-title: One-Class Classification: Concept Learning in the Absence of Counter-Examples
– reference: Gôlo, M., Caravanti, M., Rossi, R., Rezende, S., Nogueira, B., Marcacini, R., 2021. Learning Textual Representations from Multiple Modalities to Detect Fake News Through One-Class Learning. In: Proceedings of the Brazilian Symposium on Multimedia and the Web. pp. 197–204.
– volume: 80
  start-page: 11765
  year: 2021
  end-page: 11788
  ident: b32
  article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
  publication-title: Multimedia Tools Appl.
– start-page: 1
  year: 2021
  end-page: 44
  ident: b15
  article-title: A network-based positive and unlabeled learning approach for fake news detection
  publication-title: Mach. Learn.
– year: 2022
  ident: b76
  article-title: SceneFND: Multimodal fake news detection by modelling scene context information
  publication-title: J. Inf. Sci.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 18
  ident: b25
  article-title: An emotional analysis of false information in social media and news articles
  publication-title: ACM Trans. Internet Technol. (TOIT)
– volume: 72
  start-page: 3
  year: 2021
  end-page: 17
  ident: b62
  article-title: Detecting fake news stories via multimodal analysis
  publication-title: J. Assoc. Inform. Sci. Technol.
– start-page: 1
  year: 2021
  end-page: 4
  ident: b36
  article-title: Multimodal detection of information disorder from social media
  publication-title: 2021 International Conference on Content-Based Multimedia Indexing
– year: 2015
  ident: b47
  article-title: The Development and Psychometric Properties of LIWC2015
– year: 2018
  ident: b22
  article-title: Learning from Imbalanced Data Sets, Vol. 11
– volume: 49
  start-page: 3074
  year: 2018
  end-page: 3087
  ident: b44
  article-title: Learning neural representations for network anomaly detection
  publication-title: IEEE Trans. Cybern.
– reference: Felhi, G., Le Roux, J., Seddah, D., 2021. Challenging the Semi-Supervised VAE Framework for Text Classification. In: Proceedings of the 2021 Second Workshop on Insights from Negative Results in NLP. pp. 136–143.
– reference: Wang, W.Y., 2017. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 422–426.
– start-page: 262
  year: 2019
  end-page: 273
  ident: b29
  article-title: An extensive empirical evaluation of preprocessing techniques and supervised one class learning algorithms for text classification
  publication-title: Proceeding of the National Meeting on Artificial and Computational Intelligence
– volume: 27
  start-page: 1250
  year: 2020
  end-page: 1254
  ident: b14
  article-title: A sensitive stylistic approach to identify fake news on social networking
  publication-title: IEEE Signal Process. Lett.
– year: 2020
  ident: b31
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 22
  start-page: 867
  year: 2012
  end-page: 881
  ident: b67
  article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
  publication-title: Appl. Math. Comput. Sci.
– start-page: 324
  year: 2018
  end-page: 334
  ident: b43
  article-title: Contributions to the study of fake news in Portuguese: New corpus and automatic detection results
  publication-title: International Conference on Computational Processing of the Portuguese Language
– volume: 497
  start-page: 38
  year: 2019
  end-page: 55
  ident: b7
  article-title: A survey on fake news and rumour detection techniques
  publication-title: Inform. Sci.
– reference: Rubin, V.L., Conroy, N., Chen, Y., Cornwell, S., 2016. Fake news or truth? using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection. pp. 7–17.
– start-page: 102
  year: 2013
  end-page: 106
  ident: b6
  article-title: Multimodal learning analytics
  publication-title: LAK 2013: Proceedings of the International Conference on Learning Analytics and Knowledge
– volume: 103
  start-page: 1635
  year: 2015
  end-page: 1653
  ident: b33
  article-title: Audiovisual fusion: Challenges and new approaches
  publication-title: IEEE
– start-page: 113
  year: 2021
  end-page: 128
  ident: b5
  article-title: Fake news detection: Experiments and approaches beyond linguistic features
  publication-title: Data Management, Analytics and Innovation
– year: 2021
  ident: b30
  article-title: The Psychology of Fake News: Accepting, Sharing, and Correcting Misinformation
– volume: 15
  start-page: 1
  year: 2019
  end-page: 24
  ident: b46
  article-title: CM-GANs: Cross-modal generative adversarial networks for common representation learning
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
– volume: 146
  start-page: 1
  year: 2020
  end-page: 14
  ident: b61
  article-title: Towards automatically filtering fake news in Portuguese
  publication-title: Expert Syst. Appl.
– volume: 168
  year: 2021
  ident: b68
  article-title: An overview and a benchmark of active learning for outlier detection with one-class classifiers
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: b10
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp. 1135–1144.
– volume: 8
  start-page: 171
  year: 2020
  end-page: 188
  ident: b60
  article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media
  publication-title: Big Data
– start-page: 437
  year: 2019
  end-page: 442
  ident: b57
  article-title: High dimensional latent space variational autoencoders for fake news detection
  publication-title: 2019 IEEE Conference on Multimedia Information Processing and Retrieval
– volume: 110
  year: 2022
  ident: b74
  article-title: SimCLRT: A simple framework for contrastive learning of rumor tracking
  publication-title: Eng. Appl. Artif. Intell.
– reference: Cheng, M., Nazarian, S., Bogdan, P., 2020. Vroc: Variational autoencoder-aided multi-task rumor classifier based on text. In: Proceedings of the Web Conference 2020. pp. 2892–2898.
– start-page: 4512
  year: 2020
  ident: b50
  article-title: Making monolingual sentence embeddings multilingual using knowledge distillation
  publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
– volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: b52
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
– volume: 32
  start-page: 829
  year: 2020
  end-page: 864
  ident: b23
  article-title: A survey on deep learning for multimodal data fusion
  publication-title: Neural Comput.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b37
  article-title: Detecting anomalous latent classes in a batch of network traffic flows
  publication-title: 2014 48th Annual Conference on Information Sciences and Systems
– volume: 57
  start-page: 1
  year: 2020
  end-page: 26
  ident: b75
  article-title: An overview of online fake news: Characterization, detection, and discussion
  publication-title: Inf. Process. Manage.
– start-page: 127
  year: 2017
  end-page: 138
  ident: b1
  article-title: Detection of online fake news using N-gram analysis and machine learning techniques
  publication-title: ISDDC 2017: International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments
– volume: 169
  start-page: 1
  year: 2021
  end-page: 15
  ident: b12
  article-title: Linguistic feature based learning model for fake news detection and classification
  publication-title: Expert Syst. Appl.
– volume: 72
  start-page: 1117
  year: 2021
  end-page: 1132
  ident: b27
  article-title: The impact of emotional signals on credibility assessment
  publication-title: J. Assoc. Inform. Sci. Technol.
– volume: 54
  start-page: 45
  year: 2004
  end-page: 66
  ident: b66
  article-title: Support vector data description
  publication-title: Mach. Learn.
– volume: 196
  start-page: 1
  year: 2020
  end-page: 19
  ident: b2
  article-title: One-class support vector classifiers: A survey
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b16
  article-title: Data Science for Fake News: Surveys and Perspectives, Vol. 42
– start-page: 4393
  year: 2018
  end-page: 4402
  ident: b56
  article-title: Deep one-class classification
  publication-title: ICMLT 2018: Proceedings of the International Conference on Machine Learning
– year: 2018
  ident: b17
  article-title: Deep Learning in Natural Language Processing
– year: 2022
  ident: b77
  article-title: Graph anomaly detection with unsupervised GNNs
– volume: 32
  start-page: 829
  issue: 5
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b23
  article-title: A survey on deep learning for multimodal data fusion
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01273
– volume: 22
  start-page: 867
  issue: 4
  year: 2012
  ident: 10.1016/j.engappai.2023.106088_b67
  article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
  publication-title: Appl. Math. Comput. Sci.
– year: 2021
  ident: 10.1016/j.engappai.2023.106088_b30
– volume: 110
  year: 2022
  ident: 10.1016/j.engappai.2023.106088_b74
  article-title: SimCLRT: A simple framework for contrastive learning of rumor tracking
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104757
– start-page: 4171
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b18
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– year: 2001
  ident: 10.1016/j.engappai.2023.106088_b65
– volume: 146
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b61
  article-title: Towards automatically filtering fake news in Portuguese
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113199
– start-page: 390
  year: 2015
  ident: 10.1016/j.engappai.2023.106088_b3
  article-title: Active learning for one-class classification
– year: 2015
  ident: 10.1016/j.engappai.2023.106088_b47
– volume: 27
  start-page: 1250
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b14
  article-title: A sensitive stylistic approach to identify fake news on social networking
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.3008087
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.engappai.2023.106088_b69
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 604
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b45
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979670
– start-page: 4503
  year: 2018
  ident: 10.1016/j.engappai.2023.106088_b73
  article-title: Spherical latent spaces for stable variational autoencoders
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2023.106088_b10
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– start-page: 324
  year: 2018
  ident: 10.1016/j.engappai.2023.106088_b43
  article-title: Contributions to the study of fake news in Portuguese: New corpus and automatic detection results
– volume: 72
  start-page: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b62
  article-title: Detecting fake news stories via multimodal analysis
  publication-title: J. Assoc. Inform. Sci. Technol.
  doi: 10.1002/asi.24359
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.engappai.2023.106088_b54
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 103
  start-page: 1635
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2023.106088_b33
  article-title: Audiovisual fusion: Challenges and new approaches
  publication-title: IEEE
  doi: 10.1109/JPROC.2015.2459017
– start-page: 17
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b51
  article-title: Explainable machine learning for fake news detection
– start-page: 592
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b20
  article-title: Fake news detection using one-class classification
– volume: 101
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b40
  article-title: Suspicious news detection through semantic and sentiment measures
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104230
– volume: 1
  start-page: 1
  issue: Apr
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b4
  article-title: Learning from positive and unlabeled data: A survey
  publication-title: Mach. Learn.
– year: 2018
  ident: 10.1016/j.engappai.2023.106088_b8
– volume: 20
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b25
  article-title: An emotional analysis of false information in social media and news articles
  publication-title: ACM Trans. Internet Technol. (TOIT)
  doi: 10.1145/3381750
– ident: 10.1016/j.engappai.2023.106088_b42
– ident: 10.1016/j.engappai.2023.106088_b55
  doi: 10.18653/v1/W16-0802
– year: 2018
  ident: 10.1016/j.engappai.2023.106088_b22
– ident: 10.1016/j.engappai.2023.106088_b70
  doi: 10.18653/v1/P17-2067
– volume: 196
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b2
  article-title: One-class support vector classifiers: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105754
– volume: 9
  start-page: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b78
  article-title: Fake news propagates differently from real news even at early stages of spreading
  publication-title: EPJ Data Sci.
  doi: 10.1140/epjds/s13688-020-00224-z
– volume: 324
  start-page: 126
  year: 2015
  ident: 10.1016/j.engappai.2023.106088_b13
  article-title: Recovering the number of clusters in data sets with noise features using feature rescaling factors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.06.039
– ident: 10.1016/j.engappai.2023.106088_b24
  doi: 10.18653/v1/2021.eacl-main.56
– ident: 10.1016/j.engappai.2023.106088_b26
  doi: 10.1145/3331184.3331285
– volume: 80
  start-page: 11765
  issue: 8
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b32
  article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-10183-2
– start-page: 717
  year: 2016
  ident: 10.1016/j.engappai.2023.106088_b9
  article-title: A hybrid autoencoder and density estimation model for anomaly detection
– start-page: 2915
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b35
  article-title: Mvae: Multimodal variational autoencoder for fake news detection
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2023.106088_b39
– start-page: 262
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b29
  article-title: An extensive empirical evaluation of preprocessing techniques and supervised one class learning algorithms for text classification
– volume: 72
  start-page: 1117
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b27
  article-title: The impact of emotional signals on credibility assessment
  publication-title: J. Assoc. Inform. Sci. Technol.
  doi: 10.1002/asi.24480
– start-page: 4393
  year: 2018
  ident: 10.1016/j.engappai.2023.106088_b56
  article-title: Deep one-class classification
– volume: 57
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b75
  article-title: An overview of online fake news: Characterization, detection, and discussion
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.03.004
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b52
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472291
– year: 2022
  ident: 10.1016/j.engappai.2023.106088_b77
– start-page: 127
  year: 2017
  ident: 10.1016/j.engappai.2023.106088_b1
  article-title: Detection of online fake news using N-gram analysis and machine learning techniques
– ident: 10.1016/j.engappai.2023.106088_b21
  doi: 10.18653/v1/2021.insights-1.19
– ident: 10.1016/j.engappai.2023.106088_b72
  doi: 10.18653/v1/W19-4812
– volume: 169
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b12
  article-title: Linguistic feature based learning model for fake news detection and classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114171
– year: 2021
  ident: 10.1016/j.engappai.2023.106088_b34
  article-title: Fake news outbreak 2021: Can we stop the viral spread?
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103112
– year: 2020
  ident: 10.1016/j.engappai.2023.106088_b31
  article-title: Credibility detection in Twitter using word N-gram analysis and supervised machine learning techniques
  publication-title: Int. J. Intell. Eng. Syst.
– start-page: 437
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b57
  article-title: High dimensional latent space variational autoencoders for fake news detection
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b36
  article-title: Multimodal detection of information disorder from social media
– start-page: 113
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b5
  article-title: Fake news detection: Experiments and approaches beyond linguistic features
– volume: 497
  start-page: 38
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b7
  article-title: A survey on fake news and rumour detection techniques
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.035
– volume: 15
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b46
  article-title: CM-GANs: Cross-modal generative adversarial networks for common representation learning
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
  doi: 10.1145/3284750
– ident: 10.1016/j.engappai.2023.106088_b19
– volume: 49
  start-page: 3074
  issue: 8
  year: 2018
  ident: 10.1016/j.engappai.2023.106088_b44
  article-title: Learning neural representations for network anomaly detection
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: 10.1016/j.engappai.2023.106088_b17
– ident: 10.1016/j.engappai.2023.106088_b11
  doi: 10.1145/3366423.3380054
– volume: 8
  start-page: 171
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b60
  article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media
  publication-title: Big Data
  doi: 10.1089/big.2020.0062
– ident: 10.1016/j.engappai.2023.106088_b53
  doi: 10.1145/2939672.2939778
– volume: 54
  start-page: 45
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2023.106088_b66
  article-title: Support vector data description
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008084.60811.49
– year: 2017
  ident: 10.1016/j.engappai.2023.106088_b48
– volume: 153
  start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b41
  article-title: Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities
  publication-title: Expert Syst. Appl.
– start-page: 2931
  year: 2017
  ident: 10.1016/j.engappai.2023.106088_b49
  article-title: Truth of varying shades: Analyzing language in fake news and political fact-checking
– start-page: 102
  year: 2013
  ident: 10.1016/j.engappai.2023.106088_b6
  article-title: Multimodal learning analytics
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b15
  article-title: A network-based positive and unlabeled learning approach for fake news detection
  publication-title: Mach. Learn.
– year: 2021
  ident: 10.1016/j.engappai.2023.106088_b16
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b38
  article-title: A multitask learning approach for fake news detection: Novelty, emotion, and sentiment lend a helping hand
– start-page: 4512
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b50
  article-title: Making monolingual sentence embeddings multilingual using knowledge distillation
– start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2023.106088_b37
  article-title: Detecting anomalous latent classes in a batch of network traffic flows
– year: 2013
  ident: 10.1016/j.engappai.2023.106088_b63
– volume: 168
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b68
  article-title: An overview and a benchmark of active learning for outlier detection with one-class classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114372
– volume: 10
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b59
  article-title: Combating fake news: A survey on identification and mitigation techniques
  publication-title: TIST 2019: ACM Trans. Intell. Syst. Technol.
– start-page: 1344
  year: 2020
  ident: 10.1016/j.engappai.2023.106088_b64
  article-title: Multi-model fake news detection based on concatenation of visual latent features
– start-page: 87
  year: 2021
  ident: 10.1016/j.engappai.2023.106088_b58
  article-title: Active learning for text classification and fake news detection
– ident: 10.1016/j.engappai.2023.106088_b28
  doi: 10.1145/3470482.3479634
– volume: 6
  start-page: 504
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2023.106088_b71
  article-title: An overview of unsupervised deep feature representation for text categorization
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2910599
– year: 2022
  ident: 10.1016/j.engappai.2023.106088_b76
  article-title: SceneFND: Multimodal fake news detection by modelling scene context information
  publication-title: J. Inf. Sci.
SSID ssj0003846
Score 2.4665747
Snippet Machine learning methods to detect fake news typically use textual features and Binary or Multi-class classification. However, accurately labeling a large news...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106088
SubjectTerms Fake news classification
Multimodal representation learning
Multimodal variational autoencoder
One-class classification
One-class fake news classification
Title One-class learning for fake news detection through multimodal variational autoencoders
URI https://dx.doi.org/10.1016/j.engappai.2023.106088
Volume 122
WOSCitedRecordID wos000957020100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3oi2gHzgFmXZjfOwjwWVl0SL1IL2Fjm2U6WEpNrNrqr-Q_4V4_iRABWlBy7RyoqdrOeLPTP-Zgahl9rkUnEqQqZtkxgMgrBIOQUss2xWUBmRRPbFJrLDQ7pYsM-TyQ8XC7Ops6ahFxfs_L-KGtpA2Dp09gbi9oNCA_wGocMVxA7XfxL8UaNCoXViVxHCMCVL_k319cMDqTplCoS7Ij09q_B7K0FcG7CdnX-Qr7tW57mUliXvPfhDDsNgfADecwqWPfmoLwUyyvbpaT76YP51bM57PsHMt6uenNgGx1W98VuEVMFxu77k9i6AMNfUFA5qf1cNZ0TwPfcQ4SVXdfCud6-perhBXWoHf-_gbbVjVgVHNazu1ZKPnR0RGUhZ3msZhXNmSsb4BdxENtslGGzcmakU-MfuYBwVZ1PVnMLs8GqqHzEdOvyajvu3bdKTFx0v7ix34-R6nNyMcwttR1nCYI_Y3v9wsPjo1QJCTdSY-wejcPWr3-hqTWmk_ZzcR3et2YL3DdweoIlqHqJ71oTBdoNYQZOrEuLaHqGvHpDYARIDILEGJNaAxB6Q2AISD4DEI0DiMSAfoy9vD07evA9tNY9QkHnUhSKWGS9ncQazQ4g-_844B_VfqqKgmWAxEVlBWUkTEUmRSUbTkidgAEghynkpyBO01bSNeoowaPklJSKdMVrGiRKUFCqFhQVMl3lJYrqDEjdzubCp7nXFlTr_u-x20Cvf79wke7m2B3OCya3KalTRHDB3Td_dGz9tD90ZPopnaKtbrtVzdFtsumq1fGEB9xMENMDQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-class+learning+for+fake+news+detection+through+multimodal+variational+autoencoders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=G%C3%B4lo%2C+Marcos+Paulo+Silva&rft.au=de+Souza%2C+Mariana+Caravanti&rft.au=Rossi%2C+Rafael+Geraldeli&rft.au=Rezende%2C+Solange+Oliveira&rft.date=2023-06-01&rft.issn=0952-1976&rft.volume=122&rft.spage=106088&rft_id=info:doi/10.1016%2Fj.engappai.2023.106088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon